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The moral of this section is: When there is change, look for what does not change.
That quantity becomes a new abstraction (Chapter 3), so looking for invari-
ants is a recipe for developing useful new abstractions.

4.3 Drag using conservation of energy
Conservation of energy helps analyze drag – one of the most difficult sub-
jects in classical physics. To make drag concrete, try the following home
experiment.

4.3.1 Home experiment using falling cones

Photocopy this page and cut out the templates, then tape their edges to-
gether to make a cone:
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When you drop the small cone and the big cone, which one falls faster?
In particular, what is the ratio of their fall speeds vbig/vsmall? The large
cone, having a large area, feels more drag than the small cone does. On the
other hand, the large cone has a higher driving force (its weight) than the
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small cone has. To decide whether the extra weight or the extra drag wins
requires finding how drag depends on the parameters of the situation.

However, finding the drag force is a very complicated calculation. The full
calculation requires solving the Navier–Stokes equations:

(v·O)v +
∂v
∂t

= −
1

ρ
Op + νO2v.

And the difficulty does not end with this set of second-order, coupled, non-
linear partial-differential equations. The full description of the situation
includes a fourth equation, the continuity equation:

O·v = 0.

One imposes boundary conditions, which include the motion of the object
and the requirement that no fluid enters the object – and solves for the
pressure p and the velocity gradient at the surface of the object. Integrating
the pressure force and the shear force gives the drag force.

In short, solving the equations analytically is difficult. I could spend hun-
dreds of pages describing the mathematics to solve them. Even then, so-
lutions are known only in a few circumstances, for example a sphere or a
cylinder moving slowly in a viscous fluid or a sphere moving at any speed
in an zero-viscosity fluid. But an inviscid fluid – what Feynman calls ‘dry
water’ [12, Chapter II-40] – is particularly irrelevant to real life since vis-
cosity is the reason for drag, so an inviscid solution predicts zero drag!
Conservation of energy, supplemented with skillful lying, is a simple and
quick alternative.

The analysis analysis imagines an object of cross-sectional area A moving
through a fluid at speed v for a distance d:

A volume ∼ Ad

distance ∼ d

The drag force is the energy consumed per distance. The energy is con-
sumed by imparting kinetic energy to the fluid, which viscosity eventually
removes from the fluid. The kinetic energy is mass times velocity squared.
The mass disturbed is ρAd, where ρ is the fluid density (here, the air den-
sity). The velocity imparted to the fluid is roughly the velocity of the dis-
turbance, which is v. So the kinetic energy imparted to the fluid is ρAv2d,
making the drag force
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F ∼ ρAv2.

The analysis has a divide-and-conquer tree:

force ∼ E/d
ρAv2

energy imparted, ∼ mv2

ρAv2d

mass disturbed
ρAd

density
ρ

volume
Ad

velocity imparted
∼ v

distance d

The result that Fdrag ∼ ρv2A is enough to predict the result of the cone
experiment. The cones reach terminal velocity quickly (see Problem 8.6),
so the relevant quantity in finding the fall time is the terminal velocity.
From the drag-force formula, the terminal velocity is

v ∼

√
Fdrag

ρA
.

The cross-sectional areas are easy to measure with a ruler, and the ratio
between the small- and large-cone terminal velocities is even easier. The
experiment is set up to make the drag force easy to measure: Since the
cones fall at their respective terminal velocities, the drag force equals the
weight. So

v ∼

√
W

ρA
.

Each cone’s weight is proportional to its cross-sectional area, because they
are geometrically similar and made out of the same piece of paper. So the
terminal velocity v is independent of the area A: so the small and large
cones should fall at the same speed.

To test this prediction, I stood on a table and dropped the two cones. The
fall lasted about two seconds, and they landed within 0.1 s of one another.
So, the approximate conservation-of-energy analysis gains in plausibility
(all the inaccuracies are hidden within the changing drag coefficient).


