
66 66

66 66

66 4.2. Cube solitaire

2009-05-04 23:52:14 / rev bb931e4b905e

To solve this resulting temperature distribution, there is no need to solve
the heat equation. Since all the edges are held at 120◦, the temperature
throughout the sheet is 120◦.

That information is enough to solve the original problem. The symmetry
operation is a rotation about the center of the pentagon, so the centers over-
lap when the plates are stacked atop one another. Since the stacked plate
has a temperature of 120◦ throughout, and the centers of the five stacked
sheets align, each center is at T = 120◦/5 = 24◦.

To find transferable ideas, compare the symmetry solutions to Gauss’s sum
and to the pentagon temperature. Both problems looked complex at first
glance. Gauss’s sum had many terms in it, all different. The pentagon
problem seemed to require solving a difficult differential equation. Both
problems contained a symmetry operation. In Gauss’s sum, the symmetry
operation flipping the sum around. In the pentagon problem, the symme-
try operation rotated the pentagon by 72◦. In both problems, the symmetry
operation left an important quantity unchanged: the sum S or the temper-
ature Tcenter. And this invariance became the key to solving the problem
simply.

A moral of these two examples is: When there is change, look for what
does not change. In other words, look for invariants. Alternatively, if those
quantities are given (e.g. the sum S or temperature at the center), look for
operations that leave them unchanged. In other words, look for symme-
tries.

4.2 Cube solitaire
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Here is a game of solitaire that illustrates the theme of this chap-
ter. The following cube starts in the configuration in the margin;
the goal is to make all vertices be multiples of three simultane-
ously. The moves are all of the same form: Pick any edge and
increment its two vertices by one. For example, if I pick the bot-
tom edge of the front face, then the bottom edge of the back face,
the configuration becomes the first one in this series, then the sec-
ond one:

2 1

00

0 0

00

2 1

00

1 1

00



67 67

67 67

Chapter 4. Symmetry and conservation 67

2009-05-04 23:52:14 / rev bb931e4b905e

Alas, neither configuration wins the game.

Can I win the cube game? If I can win, what is a sequence of moves ends
in all vertices being multiples of 3? If I cannot win, how can that negative
result be proved?

Brute force – trying lots of possibilities – looks overwhelming. Each move
requires choosing one of 12 edges, so there are 1210 sequences of ten moves.
That number is an overestimate because the order of the moves does not
affect the final state. I could push that line of reasoning by figuring out
how many possibilities there are, and how to list and check them if the
number is not too large. But that approach is specific to this problem and
unlikely to generalize to other problems.
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Instead of that specific approach, make the generic observation that
this problem is difficult because each move offers many choices. The
problem would be simpler with fewer edges: for example, if the cube
were a square. Can this square be turned into one where the four
vertices are multiples of 3? This problem is not the original problem,
but solving it might teach me enough to solve the cube. This hope
motivates the following advice: When the going gets tough, the tough
lower their standards.

a = 1

b = 0
The square is easier to analyze than is the cube, but standards can be
lowered still more by analyzing the one-dimensional analog, a line. Hav-
ing only one edge means that there is only one move: incrementing the
top and bottom vertices. The vertices start with a difference of one, and
continue with that difference. So they cannot be multiples of 3 simulta-
neously. In symbols: a − b = 1. If all vertices were multiples of 3, then
a − b would also be a multiple of 3. Since a − b = 1, it is also true that

a − b ≡ 1 (mod 3),

where the mathematical notation x ≡ y (mod 3) means that x and y have
the same remainder (the same modulus) when dividing by 3. In this one-
dimensional version of the game, the quantity a − b is an invariant: It is
unchanged after the only move of increasing each vertex on an edge.

a = 1 b = 0

c = 0d = 0
Perhaps a similar invariant exists in the two-dimensional version
of the game. Here is the square with variables to track the number
at each vertex. The one-dimensional invariant a − b is sometimes
an invariant for the square. If my move uses the bottom edge,
then a and b increase by 1, so a − b does not change. If my move
uses the top edge, then a and b are individually unchanged so
a − b is again unchanged. However, if my move uses the left
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or right edge, then either a or b changes without a compensating change
in the other variable. The difference d − c has a similar behavior in that
it is changed by some of the moves. Fortunately, even when a − b and
d − c change, they change in the same way. A move using the left edge
increments a − b and d − c; a move using the right edge decrements a − b

and d − c. So (a − b) − (d − c) is invariant! Therefore for the square,

a − b + c − d ≡ 1 (mod 3),

so it is impossible to get all vertices to be multiples of 3.

a = 1 b = 0

c = 0d = 0

e = 0 f = 0

g = 0h = 0
The original, three-dimensional solitaire game is also likely to
be impossible to win. The correct invariant shows this impos-
sibility. The quantity a−b+c−d+f−g+h−e generalizes the
invariant for the square, and it is preserved by all 12 moves.
So

a − b + c − d + f − g + h − e ≡ 1 (mod 3),

which shows that all vertices cannot be made multiples of 3 simultaneously.

Invariants – quantities that remain unchanged – are a powerful tool for
solving problems. Physics problems are also solitaire games, and invariants
(conserved quantities) are essential in physics. Here is an example: In a
frictionless world, design a roller-coaster track so that an unpowered roller
coaster, starting from rest, rises above its starting height. Perhaps a clever
combination of loops and curves could make it happen.

The rules of the physics game are that the roller coaster’s position is deter-
mined by Newton’s second law of motion F = ma, where the forces on the
roller coaster are its weight and the contact force from the track. In choos-
ing the shape of the track, you affect the contact force on the roller coaster,
and thereby its acceleration, velocity, and position. There are an infinity of
possible tracks, and we do not want to analyze each one to find the forces
and acceleration. An invariant, energy, simplifies the analysis. No matter
what tricks the track does, the kinetic plus potential energy

1

2
mv2 + mgh

is constant. The roller coaster starts with v = 0 and height hstart; it can
never rise above that height without violating the constancy of the energy.
The invariant – the conserved quantity – solves the problem in one step,
avoiding an endless analysis of an infinity of possible paths.
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The moral of this section is: When there is change, look for what does not change.
That quantity becomes a new abstraction (Chapter 3), so looking for invari-
ants is a recipe for developing useful new abstractions.

4.3 Drag using conservation of energy
Conservation of energy helps analyze drag – one of the most difficult sub-
jects in classical physics. To make drag concrete, try the following home
experiment.

4.3.1 Home experiment using falling cones

Photocopy this page and cut out the templates, then tape their edges to-
gether to make a cone:
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When you drop the small cone and the big cone, which one falls faster?
In particular, what is the ratio of their fall speeds vbig/vsmall? The large
cone, having a large area, feels more drag than the small cone does. On the
other hand, the large cone has a higher driving force (its weight) than the


