
6.055J/2.038J (Spring 2009)

Solution set 4

Do the following warmups and problems. Due in class on Monday, 4 May 2009.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers until you solve the problem (or have tried hard). That policy helps you learn the most
from the problems.

Homework will be graded with a light touch: P (made a reasonable effort), D (did not make a reasonable
effort), or F (did not turn in).

If you have a thesis due on Friday 8 May, you can take an automatic extension until Monday 11
May (there will likely be a final problem set due on 13 May, handed out at least a week before that
date).

Warmups
1. Counting dimensionless groups

How many independent dimensionless groups are there in the following sets of variables:

a. size of hydrogen including relativistic effects:

e2/4πε0,  h, c, a0 (Bohr radius), me (electron mass).

According to the Buckingham Pi theorem, five quantities composed of three independent di-
mensions make two independent dimensionless groups.

The question did not ask you to choose the dimensionless groups. But it is useful to see what
they could be. The following pair is a reasonable choice for the two groups:

Π1 ≡
 h2

mea0(e2/4πε0)
and Π2 ≡

e2/4πε0

 hc
.

The groups are often called Π variables, following a tradition started by Buckingham, author
of the Buckingham Pi theorem.

In the preceding choice of groups, the second group Π2 is the fine-structure constant α.

b. period of a spring–mass system in a gravitational field:

T (period), k (spring constant), m, x0 (amplitude), g.

Five quantities composed of three independent dimensions make two independent dimension-
less groups. Here is a reasonable combination:

Π1 ≡
kT2

m
and Π2 ≡

kx0

mg
.
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It turns out that the second group Π2 does not affect the period T . However, dimensional
analysis does not tell you that result; it has to be derived by physical thinking.

c. speed at which a free-falling object hits the ground:

v, g, h (initial drop height).

Three quantities composed of two dimensions (length and time) produce one independent
dimensionless group. A reasonable choice is

Π1 ≡
v2

gh
.

That ratio – except for a factor of 2 – has a physical interpretation as the ratio of kinetic energy
on impact to the potential energy at the start.

d. [tricky!] weight W of an object:

W, g, m.

These three quantities are composed of three dimensions (mass, length, and time), so there
should be zero dimensionless groups! However, there is at least one group: W/mg is dimen-
sionless.

What went wrong is that the three quantities are composed of two independent dimensions:
mass M and acceleration LT−2. So the Buckingham Pi theorem predicts one independent di-
mensionless group. A reasonable choice for it is W/mg.

2. Integrals by dimensions
You can use dimensions to do integrals. As an example, try this integral:

I(β) =

∫∞
−∞

e−βx2
dx.

Which choice has correct dimensions:

(a.)
√

πβ−1 (b.)
√

πβ−1/2 (c.)
√

πβ1/2 (d.)
√

πβ1

Hints:

1. The dimensions of dx are the same as the dimensions of x.

2. Pick interesting dimensions for x, such as length. (If x is dimensionless then you cannot
use dimensional analysis on the integral.)
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An exponent, for example −βx2, the question, ‘How many times do I multiply the base by itself?’
Here the base is e, but the principle applies to any exponent.

Pretend that x is a length. The dimensions of dx are the same as the dimensions of x, so dx is also
a length. The exponential is dimensionless since it’s the product, −βx2 times, of the dimensionless
number e. So the integral, which is the sum of little lengths (from the dx), is also a length.

Now determine which choice has dimensions of length. Since x is a length, [β] = L−2 in order that
βx2 be dimensionless. So β−1/2 is a length; any other power is something else.

The only reasonable choice is
√

πβ−1/2. I might have been unkind by giving you a choice with the
wrong dimensionless constant alongside the correct power of β. But not this time: The factor of√

π is correct.

Problems
3. How to avoid remembering lots of constants

Many atomic problems, such as the size or binding energy of hydrogen, end up in expressions
with  h, the electron mass me, and e2/4πε0, which is a nicer way to express the squared elec-
tron charge. You can avoid having to remember those constants if instead you remember these
values instead:

 hc ≈ 200 eV nm = 2000 eV Å

mec2 ∼ 0.5 ·106 eV

e2/4πε0

 hc
≡ α ≈ 1

137
(fine-structure constant).

Use those values to evaluate the Bohr radius in angstroms (1 Å = 0.1 nm):

a0 =
 h2

me(e2/4πε0)
.

As an example calculation using the  hc value, here is the energy of a photon:

E = hf = 2π hf = 2π hc

λ
,

where f is its frequency and λ is its wavelength. For green light, λ ∼ 600 nm, so

E ∼

2π︷︸︸︷
6 ×

 hc︷ ︸︸ ︷
200 eV nm

600 nm︸ ︷︷ ︸
λ

∼ 2 eV.

Looking at the Bohr radius

a0 =
 h2

me(e2/4πε0)
,

I see two powers of  h just asking to be joined with two powers of c to make ( hc)2. To add two
powers of c without changing the fraction, multiply the denominator by c2 as well. The electron
mass me is happy to join with two powers of c to make mec2, the rest energy of the electron.
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Therefore,

a0 =
 h2c2

mec2(e2/4πε0)
,

Now use

α =
e2/4πε0

 hc

to simplify even more:

a0 =
 hc

mec2

 hc

e2/4πε0︸ ︷︷ ︸
α−1

= α−1
 hc

mec2
.

The pieces of this form are easy to remember:

a0 = α−1
 hc

mec2
∼ 102 × 2000 eVÅ

0.5 ·106 eV
∼ 0.5Å.

4. Heavy nuclei
In lecture we analyzed hydrogen, which is one electron bound to one proton. In this problem
you study the innermost electron in an atom such as uranium that has many protons, and
analyze one physical consequence of its binding energy.

So, imagine a nucleus with Z protons around which orbits one electron. Let E(Z) be the bind-
ing energy (the hydrogen energy is the case Z = 1).

a. Show that the ratio E(Z)/E(1) is Z2.

With Z protons pulling on one electron, the electrostatic energy is Ze2/4πε0. So instead of
using e2/4πε0 as one of the quantities, the dimensional analysis should use Ze2/4πε0. The
other quantities are unchanged. The Z propagates along with the e2 through the calculation of
the radius aZ and the energy E(Z).

Since the radius a0 has one factor of e2 in the denominator, the aZ picks up a factor of Z in the
denominator relative to a0:

aZ =
a0

Z
.

Since the energy E0 has a factor of e4 in the numerator, the energy E(Z) picks up a factor of Z2:

E(Z) = E(1)× Z2.

b. In lecture, we derived that E(1) is the kinetic energy of an electron moving with speed
αc where α is the fine-structure constant (roughly 10−2). How fast does the innermost
electron move around a heavy nucleus with charge Z?

To increase the energy of the electron by a factor of Z2, the speed must increase by a factor of
Z. So the innermost electron moves with speed Zαc.
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c. When that speed is comparable to the speed of light, the electron has a kinetic energy
comparable to its (relativistic) rest energy. One consequence of such a high kinetic energy
is that the electron has enough kinetic energy to produce a positron (an anti-electron) out of
nowhere (‘pair creation’). That positron leaves the nucleus, turning a proton into a neutron
as it exits. So the atomic number Z drops by one: The nucleus is unstable! Relativity sets
an upper limit for Z.

Estimate that maximum Z and compare it with the Z for the heaviest stable nucleus (ura-
nium).

When Zαc ∼ c, the electron becomes significantly relativistic and permits pair creation to
destabilize the nucleus. So the maximum Z is roughly α−1 or about 137.

The heaviest stable nucleus is uranium with Z = 92, so the estimate is not too bad.

5. Power radiated by an accelerating charge
Electromagnetism, where the usual derivations are so cumbersome, is an excellent area to ap-
ply dimensional analysis. In this problem you work out the power radiated by an accelerating
charge, which is how radio stations work.

So, consider a particle with charge q, with position x, velocity v, and acceleration a. What
variables are relevant to the radiated power P? The position cannot matter because it depends
on the origin of the coordinate system, whereas the power radiated cannot depend on the
origin. The velocity cannot matter because of relativity: You can transform to a reference frame
where v = 0, but that change will not affect the radiation (otherwise you could distinguish a
moving frame from a non-moving frame, in violation of the principle of relativity). So the
acceleration a is all that’s left to determine the radiated power. [This line of argument is
slightly dodgy, but it works for low speeds.]

a. Using P, q2/4πε0, and a, how many dimensionless quantities can you form?

Zero! There are three quantities and three independent dimensions, so the Buckingham Pi
theorem says there will be no dimensionless groups.

b. Fix the problem in the previous part by adding one quantity to the list of variables, and
give a physical reason for including the quantity.

Radiation travels at the speed of light. Furthermore, radiation is a relativistic phenomenon.
Relativity means that magnetic fields are electric fields seen from a moving reference frame.
And radiation is an alternation of electric and magnetic fields, like a cat chasing its tail, so
radiation needs relativity. And relativity needs the speed of light.

Therefore, I should add c to the list of variables.
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c. With the new list, use dimensionless groups to find the power radiated by an accelerating
point charge. In case you are curious, the exact result contains a dimensionless factor of
2/3; dimensional analysis triumphs again!

Four quantities composed of three dimensions produce one independent group. The dimen-
sions of power P are ML2T−3. The dimensions of q2/4πε0 are energy times distance, which is
ML3T−2. The dimensions of acceleration a are LT−2. And the dimensions of c are LT−1.

In order to cancel the mass dimensions, a dimensionless combination will contain P/(q2/4πε0),
which has dimensions of L−1T−1. The only way to make those dimensions from a and c is
a2/c3. So a dimensionless group is

Π1 ≡
P/(q2/4πε0)

a2/c3
=

Pc3

a2(q2/4πε0)
.

The radiated power P must therefore be

P ∼
a2q2/4πε0

c3
.

This result explains why radiation (radio waves, light, etc.) is such a good way to transmit
information for a long distance. To see how, I’ll use the power to estimate the electric field at a
distance r from the accelerating (and radiating) charge.

The power P is the same no matter how far away one is from the charge because all the radiated
energy escapes to infinity. Pretend that the angular distribution of the power is isotropic. Then
the radiated power per area at a distance r is

P ∼
P

area of sphere with radius r
∼

P

r2
.

The power per area is also known as the energy flux, which is energy per area per time. Energy
flux is the propagation speed times the energy per volume (the energy density) E in the electric
field:

P ∝ cE.

Hard to believe? Check the dimensions!

The energy density in the electric field is proportional to the square of the field E:

E ∝ E2.

This relation is analogous to the relation that the energy in a spring is proportional to the square
of the amplitude.

Put these relations together to find the relation between energy flux and electric field:

P ∝ cE2.

Since P ∼ P/r2:

E ∝ r−1.

Compare this distance dependence with the similar result for electrostatics: There the electric
field is proportional to r−2. So, by accelerating a charge, we make an electric field that falls off
much more slowly than it would from just electrostatics. The importance of that change grows
as r grows. For large r – from radio stations and, especially, from stars – radiation is the only
way to get a message to us. What a difference that change in the exponent makes!
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6. Yield from an atomic bomb
Geoffrey Taylor, a famous Cambridge fluid mechanic, annoyed the US government by doing
the following analysis. The question he answered: ‘What was the yield (in kilotons of TNT) of
the first atomic blast (in the New Mexico desert in 1945)?’ Declassified pictures, which even
had a scale bar, gave the following data on the radius of the explosion at various times:

t (ms) R (m)
3.26 59.0

4.61 67.3

15.0 106.5

62.0 185.0

a. Use dimensional analysis to work out the relation between radius R, time t, blast energy E,
and air density ρ.

Four quantities composed of three independent dimensions make one independent dimen-
sionless group. The only quantities whose dimensions contain mass are E and ρ. So E and ρ

appear in the group as E/ρ, whose dimensions are L5T−2. Therefore the following choice is
dimensionless:

Π1 ≡
Et2

ρR5
.

b. Use the data in the table to estimate the blast energy E (in Joules).

With only one dimensionless group, the most general statement connecting those four quanti-
ties is

Et2

ρR5
∼ 1.

or

E ∼
ρR5

t2
.

For each row of data in the table, I’ll estimate ρR5/t2, using ρ ∼ 1 kg m−3:

t (ms) R (m) E (1013 J)
3.26 59.0 6.7

4.61 67.3 6.5

15.0 106.5 6.1

62.0 185.0 5.6

The data are not perfectly consistent about the predicted blast energy E, but they hover pretty
closely around 6 ·1013 J.
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c. Convert that energy to kilotons of TNT. One gram of TNT releases 1 kcal or roughly 4 kJ.

One kiloton of TNT is

1 kiloton× 109 [g]

1 kiloton
× 4 ·103 J

1 [g]
∼ 4 ·1012 J.

The predicted yield of 6·1013 J is roughly 15 kiltons, in close agreement with the classified value
of 20 kiltons.

If I’d used the more accurate density ρ ∼ 1.3 kg m−3, then I’d have found E ∼ 19.5 kilotons, a
result that is far too accurate for the number of approximations contained in it!

The actual value was 20 kilotons, a classified number when Taylor published his result [‘The
Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945.’,
Proceedings of the Royal Society of London. Series A, Mathematical and Physical 201(1065): 175–186
(22 March 1950)]

7. Your turn to create
Invent – but you do not need to solve! – an estimation question that dimensional analysis
would help solve.

Optional
8. Atomic blast: A physical interpretation

Use energy densities and sound speeds to make a rough physical explanation of the result in
the ‘yield from an atomic bomb’ problem.

I’ll use the blast energy E, the radius R, and the air density ρ to estimate out how fast the fireball
expands when it has radius R.

For a simple model, imagine that the fireball expands as fast as the speed of sound. Of course, the
speed of sound is much higher in the fireball than in normal air, because the fireball has a huge
pressure due to the blast.

The energy density E in the fireball is the blast energy E divided by the volume of the fireball, so
E ∼ E/R3. The energy density is the pressure, give or take a dimensionless constant. Sound speed
depends on pressure and density (check the dimensions):

cs ∼

√
pressure
density

.

So the sound speed, which is the rate at which the fireball expands, is

cs ∼

√
E

ρR3
.

Next assume that the expansion speed is constant, even though it falls as fireball grows. Then the
radius is R ∼ tcs. So

R ∼ t

√
E

ρR3
,
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or

E ∼
ρR5

t2
,

as derived using dimensions.


