
6.055J/2.038J (Spring 2009)

Solution set 3

Do the following warmups and problems. Due in class on Friday, 03 Apr 2009.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers until you solve the problem (or have tried hard). That policy helps you learn the most
from the problems.

Homework will be graded with a light touch: P (made a reasonable effort), D (did not make a reasonable
effort), or F (did not turn in).

Warmups
1. Minimum power

In lecture we estimated the flight speed that minimizes energy consumption. Call that speed
vE. We could also have estimated vP, the speed that minimizes power consumption. What is
the ratio vP/vE?

The zillions of constants (such as ρ) clutter the analysis without changing the result. So I’ll simplify
the problem by using a system of units where all the constants are 1. Then the energy is

E ∼ v2 +
1

v2
,

where the first term is from drag and the second term is from lift. The power is energy per time,
and time is inversely proportional to v, so P ∝ Ev and

P ∼ v3 +
1

v
.

The first term is the steep v3 dependence of drag power on velocity (which we used to estimate
the world-record cycling and swimming speeds).

The energy expression is unchanged when v → 1/v, so it has a minimum at vE = 1. To minimize
the power, use calculus (ask me if you are curious about calculus-free ways to minimize it):

dP

dv
∼ 3v2 −

1

v2
= 0,

therefore vP = 3−1/4 (roughly 3/4), which is also the ratio vP/vE.

So the minimum-power speed is about 25 less than the minimum-energy speed. That result makes
sense. Drag power grows very fast as v increases – much faster than lift power decreases – so it’s
worth reducing the speed a little to reduce the drag a lot.

If you don’t believe the simplification that I used of setting all constants to 1 – and it is not imme-
diately obvious that it should work – then try using this general form:

E ∼ Av2 +
B

v2
,

where A and B are constants. You’ll find that vE and vP get the same function of A and B, which
disappears from the ratio vP/vE.
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2. Solitaire
You start with the numbers 3, 4, and 5. At each move, you choose any two of the three numbers
– call the choices a and b – and replace them with 0.8a − 0.6b and 0.6a + 0.8b. The goal is to
reach 4, 4, 4. Can you do it? If yes, give a move sequence; if no, show that you cannot.

To see whether solitaire games are solvable, look for an invariant. Alas there is no algorithm for
finding invariants; you have to use clues and make lucky guesses.

Speaking of clues, is it a happy coincidence that 0.82 + 0.62 = 1? That convenient sum suggests
looking at sums of squares, and how those are changed by making a move. Replacing a and b by
a′ = 0.8a − 0.6b and b′ = 0.6a + 0.8b makes the sum of squares a2 + b2 into a′2 + b′2. Expand
that expression:

a′2 + b′2 = (0.8a − 0.6b)2 + (0.6a + 0.8b)2

= 0.64a2 − 0.96ab + 0.36b2 + 0.36a2 + 0.96ab + 0.64b2

= a2 + b2.

Great! Each move leaves the sum of squares unchanged. That sum started out with the invariant
at 32 + 42 + 52 = 50, so it remains 50. The goal state, however, requires that the invariant become
42 + 42 + 42 = 48. It’s not possible to reach the goal.

The invariant has a nice geometric interpretation (a picture). To see it, let P = (a, b, c) be the
coordinates of a point in three-dimensional space. Then each move leaves unchanged the distance
to the origin, which is

√
a2 + b2 + c2. So each move shifts P to another location equally distant

from the origin, meaning that it moves P on the surface of a sphere. But it cannot escape the
surface.

An interesting question to which I don’t know the answer: Can you reach every point on the
surface of the sphere? The distance invariant does not forbid it, but maybe other constraints do?

3. Highway vs city driving
Here is a measure of the importance of drag for a car moving at speed v for a distance d:

Edrag

Ekinetic
∼

ρv2Ad

mcarv2
.

a. Show that the ratio is equivalent to the ratio

mass of the air displaced
mass of the car

and to the ratio

ρair

ρcar
× d

lcar
,

where ρcar is the density of the car (i.e. its mass divided by its volume) and lcar is the
length of the car.

In the ratio ρv2Ad/mcarv
2, the v2 divide out leaving ρAd/mcar, where ρ is the air density.

Since A is the cross-sectional area of the car, Ad is the volume of air that the car displaces, and
ρAd is the mass of that air. So
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Edrag

Ekinetic
∼

ρv2Ad

mcarv2
=

ρAd

mcar
=

mass of the air displaced
mass of the car

.

An alternative equivalence comes from writing the mass of the car as ρcarAlcar. Making that
substitution and dividing out the v2 gives

ρv2Ad

mcarv2
=

ρairAd

ρcarAlcar
=

ρair

ρcar

d

lcar
.

b. Make estimates for a typical car and find the distance d at which the ratio becomes signif-
icant (say, roughly 1). How does the distance compare with the distance between exits on
the highway and between stop signs or stoplights on city streets?

A typical car has mass mcar ∼ 103 kg, cross-sectional area A ∼ 2 m× 1.5 m = 3 m2, and length
lcar ∼ 4 m. So

ρcar ∼
mcar

Alcar
∼

103 kg
3 m2 × 4 m

∼ 102 kg m−3.

Since ρcar/ρair ∼ 100, the ratio

ρair

ρcar

d

lcar

becomes 1 when d/lcar ∼ 100, so d ∼ 400 m.

This distance d is significantly farther than the distance between stop signs or stoplights on
city streets. In Manhattan, for example, 20 east–west blocks are one mile, giving a spacing of
approximately 80 m. So air resistance is not a significant loss in city driving. Instead the loss
comes from engine friction, rolling resistance, and braking.

However, the distance d is comparable to the exit spacing on urban highways. So when you
drive on the highway for even a few exit distances, air resistance is a significant loss.

Interestingly, highway fuel efficiencies are higher than city fuel efficiencies, even though drag
gets worse at the higher, highway speeds, and presumably engine friction and rolling resis-
tance also get worse at higher speeds. Only one loss mechanism, braking, is less prevalent in
highway than in city driving. So braking must cause a significant loss in city driving. Regen-
erative braking, for hybrid or electric cars, should significantly improve fuel efficiency in city
driving.

4. Mountains
Look up the height of the tallest mountain on earth, Mars, and Venus, and explain any pattern
in the three heights.

The heights are:

− Mars: 27 km (Mount Olympus)
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− earth: 9 km (Mount Everest)

− Venus: 11 km (Maxwell Montes)

One pattern is that the large planets (earth and Venus) have short mountains, at least short com-
pared to Mount Olympus at a huge height of 27 km.

Large planets presumably have stronger gravitational fields at their surface, which keeps the
mountains closer to the ground. The derivation in lecture on mountain heights dropped the depen-
dence on g because we looked only at mountains on earth. Here’s the same derivation but retaining
g. The weight of a mountain of size l is W ∝ gl3, so the pressure at the base is p ∝ gl3/l2 ∼ gl.
When the pressure exceeds the maximum pressure that rock can support, the mountain can no
longer grow upward. So the maximum height l depends inversely on g:

l ∝ g−1.

To test that analysis, here are the gravitational field strengths on the three planets:

− Mars: 3.7 m s−2

− earth: 10 m s−2

− Venus: 8.9 m s−2

The product gl for each planet should be the same, and it roughly is:

− Mars: 105 m2 s−2

− earth: 0.9 ·105 m2 s−2

− Venus: 0.98 ·105 m2 s−2

Fun question: Why aren’t mountains on the moon 60 km tall (since the Moon’s surface gravity is
about one-sixth of earth’s surface gravity)?

Problems
5. Raindrop speed

a. How does a raindrop’s terminal velocity v depend on the raindrop’s radius r?

The weight of the raindrop is the density times the volume times g:

W ∼ ρr3g,

where I neglect dimensionless factors such as 4π/3.

At terminal velocity, the weight equals the drag. The drag is

F ∼ ρairv
2A ∼ ρairv

2r2.

Equating the weight to the drag gives an equation for v and r:

ρairv
2r2 ∼ ρr3g,

so v ∝ r1/2.
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Bigger raindrops fall faster but – because of the square root – not much faster.

b. Estimate the terminal speed for a typical raindrop.

With the g and the densities, the terminal velocity is

v ∼

√
ρ

ρair
gr.

A typical raindrop has a diameter of maybe 6 mm, so r ∼ 3 mm. Since the density ratio between
water and air is roughly 1000,

v ∼
√

1000× 10 m s−2 × 3 ·10−3 m ∼ 5 m s−1.

c. How could you check your estimate in part (b)?

First convert the speed into a more familiar value: 11 mph (miles per hour). If one drives at a
speed vcar, then raindrops appear to move at an angle arctan(vcar/v). When vcar = v, the
drops come at a 45-degree angle. So one way to measure the terminal speed is to drive in a
rainstorm, slowly accelerating while the passenger says when the drops come at a 45-degree
angle.

You could also run in a rainstorm and note the speed at which a small umbrella has to be at 45
degrees to keep you perfectly dry.

6. Bird flight

a. For geometrically similar animals (same shape and composition but different size), how
does the minimum-energy speed v depend on mass M and air density ρ? In other words,
what are the exponents α and β in v ∝ ραMβ?

From the lecture notes,

Mg ∼ C1/2ρv2L2,

where C is the modified drag coefficient. So

v ∼

(
Mg

C1/2ρL2

)1/2

.

For geometrically similar animals, g is independent of size (they all fight the same gravity)
and C is also independent of size (because the drag coefficient depends only on shape). But M

depends on L according to M ∝ L3 or L ∝ M1/3. So the L2 in the denominator is proportional
to M2/3 making

v ∝ ρ−1/2M1/6.

giving α = −1/2 and β = 1/6.
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The inverse relationship between the speed and density explains why planes fly at a high alti-
tude. The energy consumption at the minimum-energy speed is independent of ρ, so by flying
high where ρ is low, planes increase their speed without increasing their energy consumption.

b. Use that result to write the ratio v747/vgodwit as a product of dimensionless factors, where
v747 is the minimum-energy speed of a 747, and vgodwit is the minimum-energy speed of
a bar-tailed godwit. Then estimate the dimensionless factors and their product. Useful
information: mgodwit ∼ 0.4 kg.

Assuming that the animals and planes fly at the minimum-energy speed,

v747

vgodwit
=

(
ρhigh

ρsealevel

)−1/2

·
(

m747

mgodwit

)1/6

.

A plane flies at around 10 km where the density is roughly one-third of the sea-level density.
The mass of a 747 is roughly 4·105 kg, so the mass ratio is 106. Therefore the speed ratio should
be roughly

(1/3)−1/2 × (106)1/6 =
√

3× 10 ∼ 17.

c. Use v747, from experience or from looking it up, to find vgodwit. Compare with the speed
of the record-setting bar-tailed godwit, which made its 11, 570 km journey in 8 days, 12
hours.

A 747 flies at around 600 mph so the godwit should fly around 600/17 mph ∼ 35 mph. The
speed of record-setting godwit is

11, 570 km
8.5 days

× 0.6 mi
1 km

× 1 day
24 hours

∼ 35 mph.

That’s absurdly close to the prediction.

7. Checking plane fuel-efficiency calculation
This problem offers two more methods to estimate the fuel efficiency of a plane.

a. Use the cost of a plane ticket to estimate the fuel efficiency of a 747, in passenger–miles per
gallon.

A roundtrip ticket from New York to San Francisco costs roughly $400. The journey is about
2500 miles each way, so a 5000-mile journey costs about $500 (rounding up the $400 to make
the math easier). That’s about 10 cents/mile. Perhaps one-half of that cost is fuel. [Although
the service – in the air, on the phone, and at the counter – is so lousy due to understaffing that
perhaps two-thirds of the cost being fuel would be a better estimate!] At 5 cents/mile for fuel,
and at $3/gallon for fuel, the fuel efficiency is 60 passenger–miles per gallon.
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b. According to Wikipedia, a 747-400 can hold up to 2 · 105` of fuel for a maximum range of
1.3 · 104 km. Use that information to estimate the fuel efficiency of the 747, in passenger–
miles per gallon.

The 747 can hold about 400 people, so the fuel efficiency is

400 passengers× 1.3 ·104 km
2 ·105`

× 1 mile
1.6 km

× 4`

1 gallon
∼ 65 passenger–miles per gallon.

This estimate is amazingly close to the estimate from using the ticket price!

How do these values compare with the rough result from lecture, that the fuel efficiency is
comparable to the fuel efficiency of a car?

The fuel efficiency of a medium-sized car (holding one person, which is typical in much commute
traffic) is roughly 30 passenger–miles per gallon. So both fuel-efficiency estimates in this problem
give a fuel efficiency that is a factor of 2 higher than the result from lecture – not too bad considering
how much we neglected (drag coefficient and lift being the main ones) when we estimated the
efficiency.
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Optional
8. Inertia tensor

[For those who know about inertia tensors.] Here is the inertia tensor (the generalization of mo-
ment of inertia) of a particular object, calculated in a lousy coordinate system: 4 0 0

0 5 4

0 4 5


a. Change coordinate systems to a set of principal axes. In other words, write the inertia

tensor as Ixx 0 0

0 Iyy 0

0 0 Izz


and give Ixx, Iyy, and Izz. Hint: What properties of a matrix are invariant when changing
coordinate systems?

Whatever coordinate change I make, I will leave the x axis alone because the Ixx component is
already separated from the y- and z submatrix. That submatrix is(

5 4

4 5

)
I have to figure out how changing the coordinate system changes this submatrix. Rather than
find the coordinate change explicitly, I use invariants to avoid that computation.

One invariant of any matrix, not just of this 2× 2 matrix, is its determinant. Another invariant
is its trace (the sum of the diagonal elements). In the nasty coordinate system, the trace of the y-
and z submatrix is 5+5 = 10. So the trace is 10 in the nice coordinate system. The determinant
is 5× 5 − 4× 4 = 9, so it the determinant is 9 in the nice coordinate system.

Those facts are sufficient to deduce the submatrix in the nice coordinate system (without need-
ing to figure out what the nice coordinate system is). In the nice coordinate system, the 2 × 2

submatrix looks like(
Iyy 0

0 Izz

)
So I need to find Iyy and Izz such that

Iyy + Izz = 10 (from the trace invariant)

and

IyyIzz = 9 (from the determinant invariant)

The solution is Iyy = 1 and Izz = 9 (or vice versa). So the inertia tensor becomes 4 0 0

0 1 0

0 0 9


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b. Give an example of an object with a similar inertia tensor. On Friday in class we’ll have a
demonstration.

The object has three principal axes, each with a different moment of inertia. If the object is
rectangular and uniform density, the three axes must have different lengths. Most books fit
into this category. They have a short axis that passes perpendicularly through the pages (this
axis is the one with the highest moment of inertia). The medium-length axis is perpendicular
to the spine. And the long axis is parallel to the spine.

9. Resistive grid

Ω

In an infinite grid of 1-ohm resistors, what is the resistance
measured across one resistor?

To measure resistance, an ohmmeter injects a current I at one
terminal (for simplicity, say I = 1 A), removes the same cur-
rent from the other terminal, and measures the resulting volt-
age difference V between the terminals. The resistance is R =

V/I.

Hint: Use symmetry. But it’s still a hard problem!

I’d like to find the current flowing through the resistor when
1 A is sent into one terminal of the ohmmeter and removed from its other terminal. The solution
has two steps, each subtle:

1. Break the resistance-measuring experiment into two parts, each having a lot of symmetry.

2. Analyze those parts using symmetry.

The current distribution that results from the full resistance-measuring experiment is not suffi-
ciently symmetric because it has a preferred direction along the selected resistor. However, if I
break the experiment into two parts – inserting current and removing current – then each part
produces a symmetric current distribution.

By symmetry – because all four coordinate directions are equiv-
alent – inserting 1 A produces 1/4 A flowing in each coordinate
direction away from the terminal. Let’s call this terminal the
positive terminal. So inserting the 1 A at the positive terminal
produces 1/4 A through the selected resistor, and this current
flows away from the positive terminal.
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By symmetry, removing 1 A produces 1/4 A in each coordinate
direction, flowing toward the terminal. Let’s call this termi-
nal the negative terminal. So removing 1 A produces 1/4 A
through the selected resistor, flowing toward the negative ter-
minal. Equivalently, it produces 1/4 A flowing away from the
positive terminal.

Now superimpose the two pictures to reproduce the experi-
ment of measuring the resistance. The experiment produces
1/2 A through the resistor, flowing from the positive to the neg-
ative terminal. The voltage across the resistor is the current
times its resistance, so the voltage is 1/2 V. Since a 1 A test cur-
rent produces a 1/2 V drop, the effective resistance is 1/2 Ω.

If you want an even more difficult problem: Find the resistance measured across a diagonal!


