6.055]/2.038] (Spring 2009)

Solution set 2

Do the following warmups and problems. Due in class on Monday, 09 Mar 2009.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers until you solve the problem (or have tried hard). That policy helps you learn the most
from the problems.

Homework will be graded with a light touch: P (made a reasonable effort), D (did not make a reasonable
effort), or F (did not turn in).

Several questions reference decline.txt: It is the plain-text file on the course website that con-
tains volume 1 of Gibbon’s Decline and Fall. It is also available (like any other file on the course
website) on any Athena machine as “6.055/data/decline.txt where the notation “6.055
refers to the home directory of the 6.055 user.

On linux.mit.edu (the Athena GNU/Linux machine), an (American) English dictionary lives in
/usr/share/dict/words

Warmups

1. Bandwidth
Estimate the bandwidth (bits/s) of a 747 crossing the Atlantic filled with CDROM’s, and ex-
plain your estimate using a tree.

Divide and conquer! Here’s a tree on which to fill values:

bandwidth

/\

capacity (bits) of 747 time to cross Atlantic

/\

number of CDROM’s CDROM capacity

N

cargo mass CDROM mass

First I estimate the cargo mass. A 747 can easily carry about 400 people, each person having a mass
(with luggage) of, say 140 kg. The total mass is

m ~ 400 x 140kg ~ 6-10* kg.

A special cargo plane, with no seats or other frills for passengers, probably can carry 10° kg.

Here are the other estimates. A CDROM'’s mass is perhaps one ounce or 30g. So the number of
CDROM'’s is 3-10°. The capacity of a CDROM is 600 MB or about 5- 107 bits. The time to cross the
Atlantic is about 8 hours or 3-10% s.

Now propagate the values toward the root of the tree: J

Solution set 2 / 6.055]/2.038]: Art of approximation in science and engineering (Spring 2009)

bandwidth (capacity/time)

5. 1011 =1
capacity (bits) of 747 time to cross Atlantic
1.5 1016 3-10%s
number of CDROM’s CDROM capacity
3-106 5-10°

N

cargo mass CDROM mass
10° kg 30g
The bandwidth is 0.5 terabits per second.

Despite the large bandwidth offered by a 747 carrying CDROM’s (not to mention DVDROM’s),
trans-Atlantic Internet connections go via undersea fiber-optic cables. Low latency is important!

2. Integrals

Evaluate these definite integrals:

10 R
a. J x3e X" dx
—-10

The integrand x> e " is antisymmetric: Replacing x by —x changes the function’s sign. There-
fore integrating it over a symmetric range such as —10 to 10 produces zero.

00 X3
- JOO T+ e

This integrand is also antisymmetric, so integrating it over a symmetric range such as —oo to
oo produces zero.

[As a physics undergraduate, I spent many hours with the table of integrals that we knew
affectionately as Gradshteyn. The table was so massive and complete that when we could not

locate an integral in it, we suspected that the integral should be zero and went looking for the
symmetry.]

3. Explain a Unix pipeline
What does this pipeline do?

1s -t | head | tac

Solution set 2 / 6.055]/2.038]: Art of approximation in science and engineering (Spring 2009) 3

The 1s -t lists the files and subdirectories in a directory ordered by modification time with the
most recently modified files at the beginning. The head selects the first ten lines, which means
the first ten names. The tac reverses the order of the lines, so the 10th-most-recently-modified file
(or subdirectory) comes first, then the 9th-most-recently-modified file, etc. with the most-recently-
modified file at the end of the list.

4. Different word counts by different methods
Why do the following two commands produce different counts:

$ wc -w < decline.txt

268863

$ tr —-cs ’a-zA-Z’ ’\n’ < decline.txt | wc -1
264164

The second command pipline first turns every non-letter character into a newline, removes the
repeated newlines, and then counts the lines. It does almost the same operation as counting the
words directly (the first pipeline), but not quite. For example, the first pipeline will count numbers,
such as 257, whereas the second pipeline will turn each digit into a newline, and then squeeze out
the repeated newlines, so 257 won't get counted.

5. Spell checkers

Why, from the point of view of making abstractions, is it worth separating spell checking into
its own program rather than building it into a word processor?

Many other activities, such as writing an email, require spell checking. If the spell checker is em-
bedded into the word processor, then the email-composition program, and many similar programs,
need to have its own spell checker embedded into it.

UNIX therefore adopts the abstraction approach: The spell checker ispell will check any text
file. So, it works with TgX files or with email messages (composed as plain text in an editor, for
example).

A related point: To make the spell checker broadly useful, the various programs should use plain-
text files, rather than each having its own binary format (such as the ones used by word processors
such as OpenOffice).

Problems

6. Number sum
Use symmetry to find the sum of the integers between 200 and 300 (inclusive).

Reversing the order of the terms is the symmetry operation because the sum is the same in reverse:

200 + 201 + 202 4 - - - + 300 = 300 + 299 + 298 + - - - + 200.

Solution set 2 / 6.055]/2.038]: Art of approximation in science and engineering (Spring 2009) 4

Add these sums as follows:
200 + 201 4+ 202 + - - - + 300
4300 + 299 4+ 298 + - - - + 200
=500+ 500 4+ 500 + - - - + 500.

There are 101 copies of the 500, so this duplicated sum is 500 x 101 = 50500. The original sum is
one-half of the duplicated sum, so it is 25250.

A quick confirmation is the following Unix pipeline:

seq 200 300 | awk ’{total += $1}; END {print totall};’

which produces 25250.

7. Searching text files

a. What English word, besides angry, ends in gry?

Humans are much worse than computers at this question, because we store words not by their
endings but more by their beginnings and meanings. For a computer, it’s all bit strings, and

computers don’t care whether the bit string happens at the beginning or end of the word (and
there’s no meaning).

The regular expression that matches words ending in gry is gry$. In the following pipeline,
the first grep finds all those words, and the second grep excludes angry from the list:

grep ’gry$’ /usr/share/dict/words | grep -v ’"angry$’

The result is just one line: “hungry’.

b. How many times does the word Empire (uppercase E, then all lowercase) occur in de-
cline.txt? Give a pipeline that does the counting.

Divide and conquer! First turn all non-letters into newlines (squeezing out repeated newlines);
second, look for lines that exactly match ‘Empire’; and third, count the lines. Those three stages
are the three stages of the following pipeline:

tr -cs ’a-zA-Z’ ’\012’ < ./data/decline.txt | grep ’“Empire$’ | wc -1

It produces ‘37’

Optional

Solution set 2 / 6.055]/2.038]: Art of approximation in science and engineering (Spring 2009) 5

8. Email indexer
Design a set of shell scripts for doing quick keyword searches of a large database of emails.
Assume that each email is stored in its own plain-text file. Perhaps one shell script generates
an index, and a second script searches the index.

9. Running time
Ordinary long multiplication requires O(n?) digit-by-digit multiplications. Show that the
Karatsuba multiplication method explained in lecture requires O(n'°92 3) ~ O(n'28) digit-
by-digit multiplications.

10. Heat equation

In lecture we used symmetry to argue that the temperature at the center of the N
metal sheet is the average of the temperatures of the sides. S &r

Check this result by making a simulation or, if you are bold but crazy, by finding
an analytic solution of the heat equation. £

[y

This simulation in Python was written to be clear though not necessarily efficient. It uses a lat-
tice to approximate the continuous sheet, and implements so-called relaxation: At each step, the
temperature at each point is replaced by the average temperature of the neighbors. The main
complications are:

1. The edges of the pentagon are held at fixed temperatures (10 degrees for four edges and 80
degrees for the fifth edge). However, the relaxation step does not maintain those fixed values.
So they are re-imposed after each sweep through the lattice.

2. Only one of the edges lies along a coordinate direction. The other four edges have funny slopes,
and need to be rasterized. It is the identical problem to rendering lines on a laser printer: Which
pixels get the toner? Bresenham’s algorithm does the rasterization.

Relaxation simulation of the temperature at the center of the pentagon.
Four edges are held at 10 degrees, and the fifth at 80 degrees.

from scipy import *

rounds to nearest integer, and returns an integer
def intround(f):
return int(round(f))

Bresenham’s algorithm: returns list of lattice points on the line connecting
rl and r2
def line(rl, r2):

x0, yO = intround(r1[0]), intround(ri([1])

x1, y1 = intround(r2[0]), intround(r2[1])
points = []

steep = abs(yl - y0) > abs(xl - x0)

if steep:

x0,y0 = y0,x0

xl,y1 = y1,x1
if x0 > x1:

x0,x1=x1,x0

100

Solution set 2 / 6.055]/2.038]: Art of approximation in science and engineering (Spring 2009) 6

y0,y1=y1,y0
deltax = x1 - xO0
deltay = abs(yl - y0)

error = 0
deltaerr = float(deltay) / deltax
y =y0
if yO < yi:
ystep = 1
else:
ystep = -1
for x in range(x0,x1+1):
if steep:
points.append((y,x))
else:

points.append((x,y))
error += deltaerr
if error >= 0.5:
y += ystep
error —= 1.0
return points

def complex2pair(c):
return (real(c),imag(c))

def set_edge_temps(grid):
for e in lo_temp_edges:
grid[e[0]] [e[1]] = 10
for e in hi_temp_edges:
if e in lo_temp_edges:
grid[e[0]] [e[1]] = 45 # corner joining high- and lo-temp edges
else:
grid[e[0]] [e[1]] = 80

angle = 72.0/180*pi # 72 degrees
use complex plane to find the vertices
r = exp(anglex*1j)

pentagon vertices in the complex plane, with first vertex duplicated
at the end of the list

corners = array([r**(i+0.25) for i in range(6)])

translate pentagon into first quadrant

corners -= complex(min(real(corners)), min(imag(corners)))

corners *= 50 # grid spacing (bigger means finer spacing)
center = sum(corners[0:5])/5 # center of pentagon

use Bresenham’s algorithm to find the lattice points on the edges
lo_temp_edges]
hi_temp_edges = []
for i in range(4):

lo_temp_edges += line(complex2pair(corners[i]), complex2pair(corners[i+1])
hi_temp_edges = line(complex2pair(corners[4]), complex2pair(corners([5]))

Solution set 2 / 6.055]/2.038]: Art of approximation in science and engineering (Spring 2009)

figure out the grid dimensions
max_x = max([r[0] for r in lo_temp_edges+hi_temp_edges])
max_y = max([r[1] for r in lo_temp_edges+hi_temp_edges])
zeros ((max_x+1,max_y+1))

grid

dirs = [(-1,0), (1,0), (0,1), (0,-1)]

while True:
newgrid = zeros((max_x+1,max_y+1))
set_edge_temps (grid) # impose constraint

for y in range(max_y+1):
total = n =0

for d in dirs: # use each neighbor that’s within the grid
try:
total += grid[x+d[0]] [y+d[1]]
n+=1
except: pass # that neighbor was not inside the grid

newgrid[x] [y] = total/n # but save new value in a new grid
grid, newgrid = newgrid, grid # swap new and old grid
print temperature at the center of the pentagon
print grid[intround(real(center))] [intround(imag(center))]

for x in range(max_x+1): # relax each location to avg of its neighbors

