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Chapter 9
Discretization

9.1 Diaper usage

9.2 Pendulum period

9.3 Random walks

Random walks are everywhere. Do you remember the card game War? How long does
it last, on average? A molecule of neurotransmitter is released from a vesicle. Eventually
it binds to the synapse, and your leg twitches. How long does it take to get there? On a
winter day, you stand outside wearing only a thin layer of clothing. Why do you feel cold?

These physical situations are examples of random walks. In a physical random walk, for
example a gas molecule moving and colliding, the walker moves a variable distance and
can move in any direction. This general situation is complicated. Fortunately, the essential
features of the random walk do not depend on these complicated details.

Simplify by discarding the generality. The generality arises from the continuous degrees of
freedom: the direction is continuous and the distance between collisions is continuous. So,
discretize the direction and the distance: Assume that the particle travels a fixed distance
between collisions and that it can move only along the coordinate axes. Furthermore, ana-
lyze the special case of one-dimensional motion before going to the more general cases of
two- and three-dimensional motion.

In this discretized, one-dimensional model, a particle starts at the origin and moves along
a line. At each tick it moves left or right with probability 1/2 in each direction. Let the
position after n steps be xn, and the expected position after n steps be 〈xn〉. Because the
random walk is unbiased – because moving in each direction is equally likely – the expected
position remains constant:

〈xn〉 = 〈xn−1〉 .

So 〈x〉, the so-called first moment of the position, is an invariant. However, it is not a
fascinating invariant because it does not tell us much that we do not already understand
intuitively.
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Given that the first moment is not interesting, try the next-most-complicated moment: the
second moment 〈x2

〉. This analysis is easiest in special cases. Suppose that after a while
wandering, the particle has arrived at 7, i.e. x = 7. At the next tick it will be at either x = 6
or x = 8. Its expected squared position – not its squared expected position! – has become

〈x2
〉 =

1
2

(
62 + 82

)
= 50.

The expected squared position increased by 1.

Let’s check this pattern in a second example. Suppose that the particle is at x = 10, so
〈x2
〉 = 100. After one tick, the new expected squared position is

〈x2
〉 =

1
2

(
92 + 112

)
= 101.

Yet again 〈x2
〉 has increased by 1! Based on those two examples, the conclusion is that

〈x2
n+1〉 = 〈x

2
n〉 + 1.

In other words,

〈x2
n〉 = n.

Since each step takes a constant time, in this discretized analysis, the conclusion is that

〈x2
n〉 ∝ t.

The result that 〈x2
〉 is proportional to time applied to the one-dimensional random walk.

And it works for any dimension. Here’s an example in two dimensions. Suppose that the
particle’s position is (5, 2), so 〈x2

〉 = 29. After one step, it has four equally likely positions:

(0, 0)

(5, 2)

r

Rather than compute the new expected squared distance using all four positions, be lazy
and just look at the two horizontal motions. The two possibilities are (6, 2) and (4, 2). The
expected squared distance is

〈x2
〉 =

1
2

(40 + 20) = 30,

which is one more than the previous value of 〈x2
〉. Since nothing is special about horizontal

motion compared to vertical motion – symmetry! – the same result holds for vertical mo-
tion. So, averaging over the four possible locations produces an expected squared distance
of 30.

For two dimensions, the pattern is:
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〈x2
n+1〉 = 〈x

2
n〉 + 1.

No step in the analysis depended on being in only two dimensions. In fancy words, the
derivation and the result are invariant to change of dimensionality. In plain English, this
result also works in three dimensions.

9.3.1 Difference between a random walk and a regular walk

In a standard walk in a straight line, 〈x〉 ∝ time. Note the single power of x. The interesting
quantity in a regular walk is not x itself, since it can grow without limit and is not invariant,
but the ratio x/t, which is invariant to changes in t. This invariant is also known as the
speed.

In a random walk, where 〈x2
〉 ∝ t, the interesting quantity is 〈x2

〉/t. The expected squared
position is not invariant to changes in t, but the ratio 〈x2

〉/t is an invariant. This invari-
ant is, except for a dimensionless constant, the diffusion constant often denoted D. It has
dimensions of L2T−1.

The difference between a random and a regular walk makes intuitive sense. A random
walker, for example a gas molecule or a very drunk person, moves back and forth, some-
times making progress in one direction, and other times undoing that progress. So a ran-
dom walker should take longer than a regular walker would take to travel the same dis-
tance. The relation 〈x2

〉/t ∼ D confirms and sharpens this intuition. The time for a random
walker to travel a distance l is t ∼ l2/D, which grows quadratically rather than linearly with
distance.

9.3.2 Diffusion equation

The discretized model of a random explains where the diffusion equation comes from.
Imagine a gas of particles with each particle doing a random walk in one dimension. How
does the concentration, or number, change with time?

Slice the one-dimensional world into slices of width ∆x, and look at the slices at x − ∆x, x,
and x + ∆x. In every time step, one-half the molecules in each slice move left, and one-half
move right. So the number at x changes from N(x) to

1
2

(N(x − ∆x) +N(x + ∆x)),

for a change of

∆N =
1
2

(N(x − ∆x) +N(x + ∆x)) −N(x)

=
1
2

(N(x − ∆x) − 2N(x) +N(x + ∆x)).

This last relation can be rewritten as

∆N ∼ (N(x + ∆x) −N(x)) − (N(x) −N(x + ∆x)) ,
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which in terms of derivatives is

∆N ∼ (∆x)2∂
2N
∂x2 .

The slices are separated by a distance such that most of the molecules travel from one piece
to the neighboring piece in the time step τ. If τ is the time between collisions – the mean
free time – then the distance is the mean free path λ. Thus

∆N
τ
∼
λ2

τ
∂2N
∂x2 ,

or

Ṅ ∼ D
∂2N
∂x2

where D ∼ λ2/τ is a diffusion constant.

This partial-differential equation has interesting properties. The second spatial derivative
means that a linear spatial concentration gradient remains unchanged: Its second deriva-
tive is zero so its time derivative must be zero. Diffusion smashes only curvature – roughly
speaking, the second derivative – and does not try to change just the gradient. Heat often
diffuses by a random walk, either via phonons (in a liquid or solid) or via molecular ran-
dom walks (in a gas), so if you maintain one end of a bar at T1 and the other end at T2, then
the bar will eventually linearly interpolate between the two temperatures, as long as heat
is fed into the hot end and drawn out of the cold end.

9.3.3 Keeping warm

One consequence of random walks is how to keep warm on a cold day. We need to calculate
the flux of heat: the energy flowing per unit area per unit time. We start from the definition
of flux and reason physically.

Flux of stuff is defined as

flux of stuff =
stuff

area × time
.

The flux depends on the density of stuff and on how fast the stuff travels:

flux of stuff =
stuff

volume
× speed.

You can check that the dimensions are the same on both sides.

For heat flux, the stuff is thermal energy. The specific heat cp is the thermal energy per mass,
and ρcpT is the thermal energy per volume. The speed is the ‘speed’ of diffusion. To diffuse
a distance l takes time t ∼ l2/D, making the speed l/t or D/l. The l in the denominator
indicates that, as expected, diffusion is slow over long distances. For heat diffusion, the
diffusion constant is denoted κ and called the thermal diffusivity. So the speed is l/κ.

Combine the thermal energy per volume with the diffusion speed:
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thermal flux = ρcpT ×
κ
l
.

The product ρcpκ occurs so frequently that it is given a name: the thermal conductivity K.
And the ratio T/l is a discretized version of the temperature gradient ∆T/∆x. With those
substitutions, the thermal flux is

F = K
∆T
∆x
.

To estimate how much heat one loses on a cold day, we need to estimate K = ρcpκ. Time to
put all the pieces together for air:

ρ ∼ 1 kg m−3,

cp ∼ 103 J kg−1 K−1,

κ ∼ 1.5 ·10−5 m2 s−1,

where we are guessing that κ = ν, since both are diffusion constants. Then

K = ρcpκ ∼ 0.02 W m−1 K−1.

Now we can estimate the heat loss outside on a cold day. Let’s say that your skin is at 30 ◦C
and the air outside is 0 ◦C, so ∆T = 30 K. A thin T-shirt may have thickness 2 mm, so

F = K
∆T
∆x
∼ 0.02 W m−1 K−1

×
30 K

2 ·10−3 m
∼ 300 W m−2.

Damn, I wanted a power not a power per area. Oh, flux is power per area, so all is well. I
just need to multiply by my surface area. I’m roughly 2 m tall (approximately!) and 0.5 m
wide, so my front and back each have area 1 m2. Then

P ∼ FA = 300 W m−2
× 2 m2 = 600 W.

No wonder it feels so cold! Just sitting around, your body generates 100 W (the basal meta-
bolic rate). So, with 600 W escaping, you lose far more heat more than you generate. After
long enough, your core body temperature drops. Chemical reactions in your body slow
down, because all reactions go slower at lower temperature, and because enzymes lose
their optimized shape. Eventually you die.

One solution is jogging to generate extra heat. That solution indicates that the estimate
of 600 W is plausible. Cycling hard, which generates hundreds of watts of waste heat, is
vigorous enough exercise to keep you warm, even on a winter day in thin clothing.

Another simple solution, as parents repeat to their children: Dress warmly by putting on
thick layers. Let’s recalculate the power loss if you put on a fleece that is 2 cm thick. You
could redo the whole calculation from scratch, but it is simpler is to notice that the thickness
has gone up by a factor of 10. Since F ∝ 1/∆x, the flux and the power drop by a factor of 10.
So, when wearing the fleece,

P ∼ 60 W.
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That heat loss is smaller than the basal metabolic rate, which indicates that you do not
feel too cold. Indeed, when wearing a thick fleece, you feel most cold in your hands and
face. Those regions are exposed to the air, and are protected by only a thin layer of still air.
Because a small ∆x means a large heat flux, the moral is: Listen to your parents, bundle up!

9.4 Boundary layers


