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a

aLet A be the atomic mass of the atom; it is (roughly) the number of pro-
tons and neutrons in the nucleus. Although A is called a mass, it is
dimensionless. Each atom occupies a cube of side length a ∼ 3 Å, and
has mass Amproton. The density of the substance is

ρ =
mass

volume
∼

Amproton

(3 Å)3
.

You do not need to remember or look up mproton if you multiply this
fraction by unity in the form of NA/NA, where NA is Avogadro’s number:

ρ ∼
AmprotonNA

(3 Å)3 ×NA
.

The numerator is A g, because that is how NA is defined. The denominator is

3 ·10−23 cm3
× 6 ·1023 = 18.

So instead of remembering mproton, you need to remember NA. However, NA is more famil-
iar than mproton because NA arises in chemistry and physics. Using NA also emphasizes the
connection between microscopic and macroscopic values. Carrying out the calculations:

ρ ∼
A
18

g cm−3.

Element ρestimated ρactual

Li 0.39 0.54
H2O 1.0 1.0
Si 1.56 2.4
Fe 3.11 7.9
Hg 11.2 13.5
Au 10.9 19.3
U 13.3 18.7

The table compares the estimate against reality. Most every-
day elements have atomic masses between 15 and 150, so the
density estimate explains why most densities lie between 1 and
10 g cm−3. It also shows why, for materials physics, cgs units
are more convenient than SI units are. A typical cgs density of
a solid is 3 g cm−3, and 3 is a modest number and easy to re-
member and work with. However, a typical SI density of a solid
3000 kg m−3. Numbers such as 3000 are unwieldy. Each time
you use it, you have to think, ‘How many powers of ten were
there again?’ So the table tabulates densities using the cgs units
of g cm−3. I even threw a joker into the pack – water is not an element! – but the density
estimate is amazingly accurate.

7.4.3 Physical interpretation

The previous method, dimensional analysis, is mostly mathematical. As a second computa-
tion of a0, we show you a method that is mostly physics. Besides checking the Bohr radius,
it provides a physical interpretation of it. The Bohr radius is the radius of the orbit with the
lowest energy (the ground state). The energy is a sum of kinetic and potential energy. This
division suggests, again, a divide-and-conquer approach: first the kinetic energy, then the
potential energy.
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What is the origin of the kinetic energy? The electron does not orbit in any classical sense.
If it orbited, it would, as an accelerating charge, radiate energy and spiral into the nucleus.
According to quantum mechanics, however, the proton confines the electron to a region of
size r – still unknown to us – and the electron exists in a so-called stationary state. The na-
ture of a stationary state is mysterious; no one understands quantum mechanics, so no one
understands stationary states except mathematically. However, in an approximate estimate
you can ignore details such as the meaning of a stationary state. The necessary information
here is that the electron is, as the name of the state suggests, stationary: It does not radiate.
The problem then is to find the size of the region to which the electron is confined. In reality
the electron is smeared over the whole universe; however, a significant amount of it lives
within a typical radius. This typical radius we estimate and call a0.

E = 0

− e2/4πε0
2r

− e2/4πε0
r

KE ∼ e2/4πε0
2r

∆x ∼ r

For now let this radius be an unknown r and study how the kinetic en-
ergy depends on r. Confinement gives energy to the electron according
to the uncertainty principle:

∆x∆p ∼ ~,

where ∆x is the position uncertainty and ∆p is the momentum uncer-
tainty of the electron. In this model ∆x ∼ r, as shown in the figure, so
∆p ∼ ~/r. The kinetic energy of the electron is

EKinetic ∼
(∆p)2

me
∼
~2

mer2 .

This energy is the confinement energy or the uncertainty energy. This
idea recurs in the book.

The potential energy is the classical expression

EPotential ∼ −
e2

4πε0r
.

The total energy is the combination

E = EPotential + EKinetic ∼ −
e2

4πε0r
+
~2

mer2 .

The two energies compete. At small r, kinetic energy wins, because of the 1/r2; at large r,
potential energy wins, because it goes to zero less rapidly. Is there a minimum combined
energy at some intermediate value of r? There has to be. At small r, the slope dE/dr is
negative. At large r, it is positive. At an intermediate r, the slope crosses between positive
and negative. The energy is a a minimum there. The location would be easy to estimate if
the energy were written in dimensionless form. Such a rewriting is not mandatory in this
example, but it is helpful in complicated examples and is worth learning in this example.

In constructing the dimensionless group containing a0, we constructed another length:

l =
~2

me(e2/4πε0)
.
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To scale any length – to make it dimensionless – divide it by l. So in the total energy the
scaled radius

r̄ ≡
r
l
.

The other unknown in the total energy is the energy itself. To make it dimensionless, a
reasonable energy scale to use is e2/4πε0l by defining scaled energy as

Ē ≡
E

e2/4πε0l
.

Using the dimensionless length and energy, the total energy

E = EPotential + EKinetic ∼ −
e2

4πε0r
+
~2

mer2

becomes

Ē ∼ −
1
r̄
+

1
r̄2 .

The ugly constants are placed into the definitions of scaled length and energy. This dimen-
sionless energy is easy to think about and to sketch.

Simple calculus: minimizing scaled energy Ē versus scaled bond length r̄. The scaled en-
ergy is the sum of potential and kinetic energy. The shape of this energy illustrates Feyn-
man’s explanation of the atomic hypothesis. At a ‘little distance apart’ – for large r̄ – the
curve slopes upward; to lower their energy, the proton and electron prefer to move closer,
and the resulting force is attractive. ‘Upon being squeezed into one another’ – for small r̄ –
the potential rapidly increases, so the force between the particles is repulsive. Somewhere
between the small and large regions of r̄, the force is zero.

Estimate
Actual Total

KE

−PE

1 2 3 4 5

0

0.5

1

1.5

2

r̄

Ē

Calculus (differentiation) locates this minimum-energy r̄ at r̄min = 2. An alternative method
is cheap minimization: When two terms compete, the minimum occurs when the terms are
roughly equal. This method of minimization is familiar from Section 6.2.2.

Equating the two terms r̄−1 and r̄−2 gives r̄min ∼ 1. This result gives a scaled length. In
actual units, it is
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rmin = lr̄min =
~2

me(e2/4πε0)
,

which is the Bohr radius computed using dimensional analysis. The sloppiness in estimat-
ing the kinetic and potential energies has canceled the error introduced by cheap minimiza-
tion!

Here is how to justify cheap minimization. Consider a reasonable general form for E:

E(r) =
A
rn −

B
rm .

This form captures the important feature of the combined energy

E = EPotential + EKinetic ∼ −
e2

4πε0r
+
~2

mer2 ,

that two terms represent competing physical effects. Mathematically, that physical fact is
shown by the opposite signs.

To find the minimum, solve E′(rmin) = 0 or

−n
A

rn+1
min

+m
B

rm+1
min

= 0.

The solution is

A
rn

min
=

n
m

B
rm

min
(calculus).

This method minimizes the combined energy by equating the two terms A/rn and B/rm:

A
rn

min
=

B
rm

min
.

This approximation lacks the n/m factor in the exact result. The ratio of the two estimates
for rmin is

approximate estimate
calculus estimate

∼

( n
m

)1/(m−n)
,

which is smaller than 1 unless n = m, when there is no maximum or minimum. So the
approximate method underestimates the location of minima and maxima.

To judge the method in practice, apply it to a typical example: the potential between non-
polar atoms or molecules, such as between helium, xenon, or methane. This potential is
well approximated by the so-called Lennard–Jones potential where m = 6 and n = 12:

U(r) ∼
A
r12
−

B
r6 .

The approximate result underestimates rmin by a factor of(12
6

)1/6
∼ 1.15.
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An error of 15 percent is often small compared to the other inaccuracies in an approximate
computation, so this method of approximate minimization is a valuable time-saver.

Now return to the original problem: determining the Bohr radius. The approximate min-
imization predicts the correct value. Even if the method were not so charmed, there is no
point in doing a proper, calculus minimization. The calculus method is too accurate given
the inaccuracies in the rest of the derivation.

Engineers understand this idea of not over-engineering a system. If a bicycle most often
breaks at welds in the frame, there is little point replacing the metal between the welds
with expensive, high-strength aerospace materials. The new materials might last 100 years
instead of 50 years, but such a replacement would be overengineering. To improve a bicy-
cle, put effort into improving or doing without the welds.

In estimating the Bohr radius, the kinetic-energy estimate uses a crude form of the uncer-
tainty principle, ∆p∆x ∼ ~, whereas the true statement is that ∆p∆x ≥ ~/2. The estimate
also uses the approximation EKinetic ∼ (∆p)2/m. This approximation contains m instead of
2m in the denominator. It also assumes that ∆p can be converted into an energy as though
it were a true momentum rather than merely a crude estimate for the root-mean-square
momentum. The potential- and kinetic-energy estimates use a crude definition of position
uncertainty ∆x: that ∆x ∼ r. After making so many approximations, it is pointless to mini-
mize the result using the elephant gun of differential calculus. The approximate method is
as accurate as, or perhaps more accurate than the approximations in the energy.

This method of equating competing terms is balancing. We balanced the kinetic energy
against the potential energy by assuming that they are roughly the same size. The conse-
quence is that

a0 ∼
~2

me(e2/4πε0)
.

Nature could have been unkind: The potential and kinetic energies could have differed by
a factor of 10 or 100. But Nature is kind: The two energies are roughly equal, except for a
constant that is nearly 1. ‘Nearly 1’ is also called of order unity. This rough equality occurs
in many examples, and you often get a reasonable answer by pretending that two energies
(or two quantities with the same units) are equal. When the quantities are potential and
kinetic energy, as they often are, you get extra safety: The so-called virial theorem protects
you against large errors (for more on the virial theorem, see any intermediate textbook on
classical dynamics).

7.5 Bending of light by gravity

Rocks, birds, and people feel the effect of gravity. So why not light? The analysis of that
question is a triumph of Einstein’s theory of general relativity. I can calculate how gravity
bends light by solving the so-called geodesic equations from general relativity:

d2xβ

dλ2 + Γ
β
µν

dxµ

dλ
dxν

dλ
= 0.


