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The other possibility is to add quantum mechanics, which was developed to solve funda-
mental problems like the existence of matter. The physics of quantum mechanics is com-
plicated, but its effect on dimensional analyses is simple: It contributes a new constant of
nature ~ whose dimensions are those of angular momentum. Angular momentum is mvr,
so

[~] =ML2T−1.

Var Dim What
a0 L size

e2/4πε0 ML3T−2

me M electron mass
~ ML2T−1 quantum

The ~ might save the day. There are now two quantities
containing time dimensions. Since e2/4πε0 has T−2 and
~ has T−1, the ratio ~2/(e2/4πε0) contains no time dimen-
sions. Since [

~2

e2/4πε0

]
=ML,

a dimensionless group is

~2

a0me(e2/4πε0)

It turns out that all dimensionless groups can be formed from this group. So, as in the
spring–mass example, the only possible true statement involving this group is

~2

a0me(e2/4πε0)
= dimensionless constant.

Therefore, the size of hydrogen is

a0 ∼
~2

me(e2/4πε0)
.

Putting in values for the constants gives

a0 ∼ 0.5Å = 0.5 ·10−10 m.

It turns out that the missing dimensionless constant is 1, so the dimensional analysis has
given the exact answer.

7.4.2 Atomic sizes and substance densities

Hydrogen has a diameter of 1Å. A useful consequence is the rule of thumb is that a typical
interatomic spacing is 3Å. This approximation gives a reasonable approximation for the
densities of substances, as this section explains.
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a

aLet A be the atomic mass of the atom; it is (roughly) the number of pro-
tons and neutrons in the nucleus. Although A is called a mass, it is
dimensionless. Each atom occupies a cube of side length a ∼ 3 Å, and
has mass Amproton. The density of the substance is

ρ =
mass

volume
∼

Amproton

(3 Å)3
.

You do not need to remember or look up mproton if you multiply this
fraction by unity in the form of NA/NA, where NA is Avogadro’s number:

ρ ∼
AmprotonNA

(3 Å)3 ×NA
.

The numerator is A g, because that is how NA is defined. The denominator is

3 ·10−23 cm3
× 6 ·1023 = 18.

So instead of remembering mproton, you need to remember NA. However, NA is more famil-
iar than mproton because NA arises in chemistry and physics. Using NA also emphasizes the
connection between microscopic and macroscopic values. Carrying out the calculations:

ρ ∼
A
18

g cm−3.

Element ρestimated ρactual

Li 0.39 0.54
H2O 1.0 1.0
Si 1.56 2.4
Fe 3.11 7.9
Hg 11.2 13.5
Au 10.9 19.3
U 13.3 18.7

The table compares the estimate against reality. Most every-
day elements have atomic masses between 15 and 150, so the
density estimate explains why most densities lie between 1 and
10 g cm−3. It also shows why, for materials physics, cgs units
are more convenient than SI units are. A typical cgs density of
a solid is 3 g cm−3, and 3 is a modest number and easy to re-
member and work with. However, a typical SI density of a solid
3000 kg m−3. Numbers such as 3000 are unwieldy. Each time
you use it, you have to think, ‘How many powers of ten were
there again?’ So the table tabulates densities using the cgs units
of g cm−3. I even threw a joker into the pack – water is not an element! – but the density
estimate is amazingly accurate.

7.4.3 Physical interpretation

The previous method, dimensional analysis, is mostly mathematical. As a second computa-
tion of a0, we show you a method that is mostly physics. Besides checking the Bohr radius,
it provides a physical interpretation of it. The Bohr radius is the radius of the orbit with the
lowest energy (the ground state). The energy is a sum of kinetic and potential energy. This
division suggests, again, a divide-and-conquer approach: first the kinetic energy, then the
potential energy.


