Approximating logarithms using musical intervals

Semitones	Interval	Ratio	Exact Value
2	M 2	$9 / 8$	1.122
3	m 3	$6 / 5$	1.1885
4	M 3	$5 / 4$	1.259
5	P 4	$4 / 3$	1.3335
6	d 5	$\sqrt{2}$	1.4125
7	P 5	$3 / 2$	1.496
8	$\mathrm{~m} 6=\mathrm{P} 8-\mathrm{M} 3$	$8 / 5$	1.585
9	$\mathrm{M} 6=\mathrm{P} 8-\mathrm{m} 3$	$5 / 3$	1.679
10	$\mathrm{P} 5+\mathrm{m} 3$	$9 / 5$	1.7783
	$2 \cdot \mathrm{P} 4$	$16 / 9$	1.7783
11		$17 / 9$	1.8836
12	P 8	2	1.9953
17.4		e	2.718
19	$\mathrm{P} 8+\mathrm{P} 5$	3	2.9854
24	$2 \cdot \mathrm{P} 8$	4	3.981
28	$2 \cdot \mathrm{P} 8+\mathrm{M} 3$	5	5.012
31	$2 \cdot \mathrm{P} 8+\mathrm{P} 5$	6	5.9566
34	$3 \cdot \mathrm{P} 8-\mathrm{M} 2$	$\frac{64}{9} \approx 7$	7.080
36	$3 \cdot \mathrm{P} 8$	8	7.943
38	$2 \cdot(\mathrm{P} 8+\mathrm{P} 5)$	9	8.913
40	$3 \cdot \mathrm{P} 8+\mathrm{M} 3$	10	10.

KEY		
Symbol	Interval	Notes
M2	Major 2nd	C-D
m3	Minor 3rd	C-Eb
M3	Major 3rd	C-E
P4	Perfect 4th	C-F
d5	Diminished 5th	C-Gb
P5	Perfect 5th	C-G
m6	Minor 6th	C-Ab
M6	Major 6th	C-A

The starting point is $2^{10} \approx 10^{3}$, or $2^{1 / 12} \approx 10^{1 / 40}$. By chance $2^{1 / 12}$ is the semitone frequency ratio on the equal-tempered scale. Since we know what Pythagorean ratios the equal-tempered intervals are supposed to approximate, we can approximate logarithms to the base $2^{1 / 12}$, and thereby approximate logarithms to the base $10^{1 / 40}$, which gives us twice the number of decibels. The ratio column indicates the ratios for perfect Pythagorean intervals, and the exact value column shows $10^{\text {semitones } / 40}$, to show the accuracy of the method. Note that 10 semitones has two possible breakdowns into intervals, as $\mathrm{P} 5+\mathrm{m} 3$ or $2 \cdot \mathrm{P} 4$. The second is much more accurate, because in the equal-tempered scale, the perfect intervals come out almost exactly right, at the cost of some error in the major and minor intervals.
To use the table to compute $\log _{10} x$, find x as a product of ratios, add the number of semitones for the ratios, and divide by 40 (divide by 2 to get dB). To calculate 10^{x}, multiply x by 40 , find that value in the semitones column, and read off the corresponding ratio. From a few basic Pythagorean ratios and number of semitones, most of the table is easy to figure out. The most important to remember one is the fifth: 7 semitones corresponds to $3 / 2$. For example, from the fifth we can compute the frequency ratio for a fourth (5 semitones). The two intervals together make an octave, so the product of their frequency ratios is 2 . This means 5 semitones corresponds to $4 / 3$. Many other entries can be worked out similarly.
Some examples (arrows point from the real to the log world):

$$
\begin{gathered}
2 \rightarrow 1 \text { octave }=12 \text { semitones }=6 \mathrm{~dB}=0.3 \text { decades. } \\
\left(\frac{4}{3}\right)^{10} \rightarrow 10 \cdot \mathrm{P} 4=50 \text { semitones }=40 \text { semitones }+2 \cdot \mathrm{P} 4 \leftarrow 10 \cdot \frac{16}{9}=17.78 \text { (exact 17.76). } \\
5=\frac{5}{4} \cdot 2 \cdot 2 \rightarrow \mathrm{M} 3+2 \cdot \mathrm{P} 8=28 \text { semitones }=\frac{28}{40} \text { or } 0.7 \text { decades }(14 \mathrm{~dB}) . \\
3^{10} \rightarrow 10 \cdot(\mathrm{P} 8+\mathrm{P} 5)=190 \text { semitones }=200-2 \cdot \mathrm{P} 4 \leftarrow 10^{200 / 40} \cdot \frac{9}{16}=56250(\text { exact } 59049) . \\
e^{10} \rightarrow 10 \cdot 17.4 \text { semitones }=174 \text { semitones }=160+12+2 \text { semitones } \leftarrow 10^{4} \cdot 2 \cdot \frac{9}{8}=22500 .
\end{gathered}
$$

(This method is due to the statistician I. J. Good, who credits his father.)

