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Back-of-the-envelope numbers

Symbol What Value Units

π pi 3
G Newton’s constant 7 ·10−11 kg−1 m3 s−1

c speed of light 3 ·108 m s−1

kB Boltzmann’s constant 10−4 eV K−1

e electron charge 1.6 ·10−19 C
σ Stefan–Boltzmann constant 6 ·10−8 W m−2 K−4

msun Solar mass 2 ·1030 kg
Rearth Earth radius 6 ·106 m
θmoon/sun angular diameter 10−2

ρair air density 1 kg m−3

ρrock rock density 5 g cm−3

~c 200 eV nm
Lwater

vap heat of vaporization 2 MJ kg−1

γwater surface tension of water 10−1 N m−1

a0 Bohr radius 0.5 Å
a typical interatomic spacing 3 Å
NA Avogadro’s number 6 ·1023

Efat combustion energy density 9 kcal g−1

Ebond typical bond energy 4 eV

e2/4πε0
~c

fine-structure constant α 10−2

p0 air pressure 105 Pa
νair kinematic viscosity of air 1.5 ·10−5 m2 s−1

νwater kinematic viscosity of water 10−6 m2 s−1

day 105 s
year π ·107 s
F solar constant 1.3 kW m−2

AU distance to sun 1.5 ·1011 m
Pbasal human basal metabolic rate 100 W
Kair thermal conductivity of air 2 ·10−2 W m−1 K−1

K . . . of non-metallic solids/liquids 1 W m−1 K−1

Kmetal . . . of metals 102 W m−1 K−1

cair
p specific heat of air 1 J g−1 K−1

cp . . . of solids/liquids 25 J mole−1 K−1
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Chapter 1
Preview

An approximate model can be better than an exact model!

This counterintuitive statement suggests a few questions. First, how can approximate mod-
els be at all useful? Should we not strive for exactness? Second, what makes some models
more useful than others?

On the first question: An approximate answer is all that we can understand because our
minds are a small part of the world itself. So when we represent or model the world, we
have to throw away aspects of the world in order for our minds to contain the model.

On the second question: Making useful models means discarding less important informa-
tion so that our minds may grasp the important features that remains.

I wrote this book to show you how to discard the less important information and thereby to
make the most useful approximate answers. From thinking about and teaching this subject
for many years, I find that the most useful techniques fall into three groups:

1. Divide and conquer (managing complexity)

− Hetrogenous hierarchies

− Homogeneous hierarchies

2. Symmetry and invariance (removing spurious complexity)

− Proportional reasoning

− Conservation/box models

− Dimensionless groups

3. Lying (discarding complexity)

− Special cases

− Spring models

− Fractional changes

− Discretization

The two divide-and-conquer techniques help you manage complexity. The three symmetry
techniques help you remove superfluous complexity. These first two groups do lossless
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compression. The three lying techniques help you discard complexity. This third group
does lossy compression.

Using these techniques, we will explore the natural and manmade worlds. Applications
include:

• turbulent drag: or how falling coffee filters tell us the fuel efficiency of airplanes.

• xylophone acoustics: or why pianos are tuned with the lower notes below the ideal,
equal-tempered frequency and with the higher notes above the ideal, equal-tempered
frequency.

• the design of compact discs: or how Beethoven’s ninth symphony helps you find the
spacing between the pits.

• period of a pendulum as a function of amplitude: or how hard it was to navigate 300
years ago.

• the size distribution of eddies in turbulent flow: or how stars twinkle.

• the bending of starlight by the sun: or the size of a black hole.

• biomechanics: how high an animal jumps as a function of its size.

None of these problems has a simple analytic solution. The world – whether manmade
or natural – rarely offers problems limited to one field of study, let alone problems whose
equations have an analytic solution. To understand aspects of the world even partially, we
need to use the preceding techniques, to make models that keep only the important features
of a problem.

By making such models, we make understanding and designing more enjoyable. So the
hidden although less tangible purpose of this book is to amplify your curiosity about the
world.
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Part 1
Divide and
conquer

2. Assorted subproblems 7
3. Alike subproblems 19

Divide-and-conquer reasoning – breaking large problems into small ones – is useful in
many contexts. Each example of it has unique features, but two broad reasoning cate-
gories stand out. In the first category, you break the large problem into unlike, or assorted
subproblems. An example is estimating the number of piano tuners in New York or, since
this problem was made famous by Fermi, in Chicago, where Fermi spent much of his ca-
reer. You might break it into fragments such as the number of pianos, how often each one
is tuned, and how long it takes to tune a piano.

In the second category, you break the large problem into similar or identical subproblems.
An example is merge sort, which breaks a list to be sorted into two halves, each sorted
using merge sort – an example of recursion.

The next two chapters contain extended examples in each category.
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Chapter 2
Assorted
subproblems

For the first example of dividing into unlike subproblems, we estimate the spacing between
pits on a CD ROM. Then we estimate the amount of oil that the United States imports
annually.

2.1 Pits on a CDROM

Q: What is the spacing between the pits on a CDROM? The pits (indentations) are the
memory elements, each pit storing one bit of information.

A quick estimate comes from turning over a CDROM and enjoying the brilliant colors. The
colors arise because the arrangement of pits diffracts visible light by a significant angle, and
the angle depends strongly on the wavelength (or color). So the pits are spaced comparably
to the wavelength of light, say about 1µm.

A second estimate might come from knowing a bit about the laser in a CD player or in a
CDROM drive. It is a near-infrared laser, so its wavelength – which will be comparable to
the pit size and spacing – is slightly longer than visible-light wavelengths. Since visible-
light wavelengths range from 350 to 700 nm or from 0.4 to 0.8µm, a reasonable estimate for
the pit spacing is again 1µm.

These two estimates agree, which increases our confidence in each estimate. Here is why.
Because the methods are so different, an error in one method is likely to be significantly
different from an error in the second method. Therefore, if the estimates agree, they are
probably both reasonable. The lesson is to use as many diverse methods as you can.

The third method uses divide-and-conquer reasoning. The capacity and area together de-
termine the pit spacing, if we make the useful approximation that the pits are regularly
spaced. [This approximation is an example of discarding information, which is the ex-
tended topic of Part 3.]

The area is A ∼ (10 cm)2.

The capacity is often on the box: 640 MB, which is about 5 gigabits since each byte is 8 bits.
After including error-correcting bits, perhaps the capacity is 6 or 7 gigabits.
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The pit spacing d comes from arranging those N ∼ 10 gigabits into a regular lattice of bits:

d ∼

√
A
N
∼

10 cm
105 ∼ 1µm.

Once again, the estimate is around 1µm. Any result that we derive three times has to be
true!

You do not need to take the capacity figure on faith. Instead, use divide-and-conquer rea-
soning based on how much information would be needed to encode the music on an audio
CD.

The information needed depends on the play time, the sampling rate, and the sample size
(number of bits).

A typical CD holds about 20 popular-music songs, each about 3 minutes long, so it is about
1 hour. An alternative piece of (perhaps bogus) history confirms this estimate: The engi-
neers at Philips who invented the CD format and player allegedly insisted that the format
hold Beethoven’s Ninth Symphony, around 74 minutes.

The sampling rate is 44 kHz. Suppose you had remembered the 44 but did not remember
the units: whether they were kHz or MHz. How do you choose? Human hearing extends
to about 20 kHz. For comparison, the 60 Hz line-voltage hum is quite well into the audible
range. Lossless sampling of sound, according to Shannon’s sampling theorem, needs to
have a rate of at least 2 × 20 kHz. The inventors of the CD format chose a slightly higher
rate, so that one can make a half-decent anti-alias filter. [If you want to know more about
anti-alias filters, let me know!] Even the constraint of an anti-alias filter does not require a
sampling rate of 44 MHz. Indeed, the sampling rate is 44 kHz.

Each sample requires 32 bits: two channels (stereo) each needing 16 bits per sample. The
16 bits is a reasonable compromise between the utopia of exact volume encoding (∞ bits
per sample per channel) and the utopia of minimal storage (1 bit per sample per channel).
Why compromise at 16 bits rather than, say, 50 bits? Because 50 bits, while easy nowadays
to represent digitally, implies absurd analog hardware that has an accuracy of 1 part in 250.

So the capacity is roughly

N ∼ 1 hours ×
3600 s
1 hr

×
4.4 × 104 samples

1 s
×

2 × 16 bits
1 sample

.

First do the important part: the powers of ten. The 3600 contributes three; the 4.4 × 104

contributes four; and the 2 × 16 contributes one; for a total of eight.

The mantissas – the parts in front of the power of ten – contribute 3.6 × 4.4 × 3.3. This
multiplication is simplified if you remember that there are only two numbers in the world:
1 and ‘few’. The only rule to remember is that (few2 = 10, so ‘few’ acts a lot like 3. Then
3.6 × 3.3 is roughly 10, perhaps a bit higher. Then 3.6 × 4.4 × 3.3 ∼ 50.

So the estimate for the capacity is roughly 50 × 108
∼ 5 · 109, which agrees amazingly well

with the figure from a box of CDROM’s. Therefore, the divide-and-conquer estimate for
the capacity gives us even more confidence in our estimate for the pit spacing.
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2.2 Tree representations

The structure of a divide-and-conquer estimate, with the steps of subdividing, is hierarchi-
cal. An ideal representation of hierarchical structure is a tree. Therefore to illustrate this
representation, this section redoes our analysis of the pit spacing using trees.

capacity, area

capacity area

The estimate using the area and capacity of a CDROM is the most elaborate method
in Section 2.1 for finding the pit spacing, so let’s represent it as a tree. The root of
the tree is ‘capacity, area’, a tag that reminds us of the method. As the tag suggests,
to do the estimate requires finding the capacity and area, so the tree starts with two
branches.

The area is easy to estimate, so the next step is to subdivide the capacity into easier parts.
The first method is to look on a CDROM box, which says something like ‘capacity 700MB’.
A second method is to estimate the bits required to store the audio information that fit on
an audio CD, by estimating the playing time, the sampling rate, and the bits per sample,
where here the two channels for stereo are included in the bits per sample.

capacity, area

capacity

look on box audio content

playing time sample rate bits/sample

area

Now fill in the numbers at the leaves and propagate toward the root of the tree. The audio
lasts for about an hour, which we estimated as either 20 popular music songs of 3 minutes
duration or as Beethoven’s Ninth Symphony. The sampling rate is 44 kHz. The samples are
32 bits each including the factor of two for stereo. The tree including these values is:

capacity, area

capacity
5× 1010

look on box
700 MB

audio content

playing time
1 hour

sample rate
44 kHz

bits/sample
32

area

This tree is one subtree of the whole analysis. That analysis included two other methods:
knowledge of the laser inside a CD player, and observing the shimmering colors due to
diffraction. Including those methods – and finding that the three methods agree – makes
the estimate of 1µm robust. In pictorial terms, it makes the tree sturdy:
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pit spacing
1 µm

capacity, area
1 µm

capacity
5× 1010

look on box
700 MB

audio content
5× 1010

playing time
1 hour

sample rate
44 kHz

bits/sample
32

area
(10 cm)2

internal laser
1 µm

diffraction colors
1 µm

A tree is well suited for representing divide-and-conquer reasoning. This tree summarizes
the whole analysis in one figure. This compact representation make it easier to find and fix
mistakes in the numbers or the structure or to see which parts of the estimate are the least
reliable (and probably need more subdividing).

2.3 Oil imports

imports

cars other uses fraction imported

For the next example of divide-and-conquer reasoning, we will
make a tree from the beginning. The problem is to estimate how
much oil the United States imports, in barrels per year. There are
many ways to estimate this number – good news for making ro-
bust estimates. Here I estimate it by estimating how much oil cars use, then adjusting that
number to account for two items: first, that cars are not the only consumer of oil; and sec-
ond, that imports are only a fraction of the oil consumed. The starting tree has just three
leaves.

The rightmost two leaves are hard to guess values for, but dividing and conquering does
not help. So I’ll have to guess them.

Cars are a major consumer of oil, but there are other transport uses (trucks, trains, and
planes), and there is heating and cooling. Given how important these other uses are, per-
haps cars account for one-half of the oil consumption: a significant fraction leaving room
for other significant uses. So I need to double the car result to account for other uses.

Imports are a large fraction of total consumption, otherwise we would not read so much in
the popular press about oil production in other countries, and about our growing depen-
dence on imported oil. Perhaps one-half of the oil usage is imported oil. So I need to halve
the total use to find the imports.

The third leaf, cars, is too complex to guess a number immediately. So divide and conquer.
One subdivision is into number of cars, miles driven by each car, miles per gallon, and
gallons per barrel:
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imports

cars

N miles/year gallons/mile barrels/gallon

other uses fraction imported

Now guess values for the unnumbered leaves. There are 3×108 people in the United States,
and it seems as if even babies own cars. As a guess, then, the number of cars is N ∼ 3× 108.
The annual miles per car is maybe 15,000. But the N is maybe a bit large, so let’s lower the
annual miles estimate to 10,000, which has the additional merit of being easier to handle.
A typical mileage would be 25 miles per gallon. Then comes the tricky part: How large is a
barrel? One method to estimate it is that a barrel costs about $100, and a gallon of gasoline
costs about $2.50, so a barrel is roughly 40 gallons. The tree with numbers is:

imports

cars

N
3× 108

miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The main operation is
multiplication. For the ‘cars’ node:

3 × 108 cars ×
104 miles
1 car–year

×
1 gallon
25 miles

×
1 barrel

40 gallons
∼ 3 × 109 barrels/year.

The two adjustment leaves contribute a factor of 2 × 0.5 = 1, so the import estimate is

3 × 109 barrels/year.

For 2006, the true value (from the US Dept of Energy) is 3.7 × 109 barrels/year!

This result, like the pit spacing, is surprisingly accurate. Why? Section 2.5 explains a
random-walk model for it, which suggests that the more you subdivide, the better.

But before discussing that model, try one more example.

2.4 Gold or bills?

Having broken into a bank vault, should you take the $100 bills or the gold?

The choice depends on how easily and losslessly you can fence the loot and on other issues
outside the scope of this book. But we can study one question: Which choice lets you carry
away the most money? The weight or the volume may limit how much you can carry and,
more importantly for this problem, affect your choice. To make a start, let’s assume that
you are limited by the weight (actually, the mass) that you can carry, The problem then
depends on two subproblems: the value per mass for $100 bills and for gold. In tree form:
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The value per mass of gold might be a familiar figure from the newspaper or from the
financial section of the evening news. It is now (2008) about $800/oz (oz being the abbre-
viation for an ounce). As a rough check on the memory – e.g. should the price be $80/oz
or $8000/oz? – here is another method. When the gold standard was reintroduced as
the dollar standard in 1945, gold was set at $35/oz. Inflation has probably devalued the
dollar by at least a factor of 10 since then, so gold should be around $350/oz now. The
half-remembered figure of $800/oz seems reasonable.

Finding the value per mass of a dollar bill starts with this tree:

value/mass for $100

value mass

The value is specified in the problem as $100, but the mass needs work. It breaks into the
volume times the density, so the value per mass tree becomes:

value/mass for $100

value mass

density volume

The volume breaks into length times width times thickness, so the tree grows:

value/mass for $100

value mass

density volume

length width thickness

To find the length and width of a bill, lay a ruler next to a dollar bill or guess that a bill
measures 2 or 3 inches by 6 inches or 6 cm × 15 cm. To develop a feel for sizes, make a
guess and then, if you feel uneasy, check your answer with a ruler. As your feel for sizes
develops, you will need the ruler less frequently.

Guessing the thickness of a bill is harder than guessing the length or width. However, as
George Washington Plunkitt, onetime boss of Tammany Hall, said: ‘I seen my opportunities
and I took ’em.’ Pretend that a dollar bill is made from ordinary paper. To find its thickness,
look around. Next to the computer used to compose this book sits an inkjet printer; next
to the printer is a ream of printer paper. If we know how thick the ream is and how many
sheets it has, then we know the thickness of one sheet. You might call this technique mul-
tiply and conquer. The general lesson is that tiny values, those much below typical human
experience, need to be magnified to make them easy to estimate. Large values, those much
above typical human experience, need to be broken into smaller parts to make them easy to
estimate. With this last step of magnifying the sheet’s thickness, the full tree for the value
per mass of the bill becomes:
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value/mass for $100

value mass

density volume

length width thickness

sheets in a ream ream thickness

The ream (500 sheets) is roughly 5 cm thick. The only missing leaf value is the density
of a bill. To find the density, use what you know: Money is paper. Paper is wood or
fabric, except for many complex processing stages whose analysis is far beyond the scope
of this book. When a process, here papermaking, looks formidable, forget about it and hope
that you’ll be okay anyway. More important is to get an estimate; correct the egregiously
inaccurate assumptions later (if ever). How dense is wood? Wood barely floats, so its
density is roughly that of water, which is ρ ∼ 1 g cm−3. So the density of a $100 bill is
roughly 1 g cm−3.

Here is a tree including all the leaf values:

value/mass for $100

value
$100

mass

density
1 g cm−3

volume

length
6 cm

width
15 cm

thickness

sheets in a ream
500

ream thickness
5 cm

Now propagate the leaf values upward. The thickness of a bill is roughly 10−2 cm, so the
volume of a bill is roughly

V ∼ 6 cm × 15 cm × 10−2 cm ∼ 1 cm3.

So the mass is

m ∼ 1 cm3
× 1 g cm−3

∼ 1 g.

How simple! Therefore the value per mass of a $100 bill is $100/g. To choose between the
bills and gold, compare that value to the value per mass of gold. Unfortunately our figure
for gold is in dollars per ounce rather than per gram. Fortunately one ounce is roughly 27 g
so $800/oz is roughly $30/g. Moral: Take the $100 bills but leave the $20 bills.

2.5 Random walks
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The estimates in Section 2.1 and Section 2.3 are surprisingly accurate. The true pit spacing
in a CDROM varies from 1µm to 3µm, according to the so-called Red Book where Philips
and Sony give the specification of the CDROM; our estimate of 1µm is not too bad. The
true value for the oil imports is only 10% different from our estimate.

Equally important, the estimates are more accurate after doing divide-and-conquer reason-
ing. My 95% probability interval for oil imports, if I had to guess a value without subdivid-
ing the problem, is say from 106 b/yr to 1012 b/yr. In other words, if someone had claimed
that the value is 10 million barrels per year, it would have seemed low, but I wouldn’t have
bet too much against it. After doing the divide-and-conquer estimate, I’d have been sur-
prised if the true answer were more than a factor of 10 smaller or larger than the estimate.

This section presents a model for guessing in order to explain how divide-and-conquer
reasoning can make estimates more accurate. The idea is that when we guess a value far
outside our intuitive experience – for example, micron-sized distances or gigabarrels – the
error in the exponent will be proportional to the exponent. For example, when guessing a
quantity like 109 in one gulp, I really mean: ‘It could be, say, 106 on the low side or, say,
1012 on the high side.’ And when guessing a quantity like 1030 (the mass of the sun in
kilograms), I would like to hedge my bets with a region like 1020 to 1040. So, in this model
any quantity 10β is really shorthand for

10β → 10β−β/3 . . . 10β+β/3.

Now further simplify the model: Replace the range of values by its endpoints. So, if we try
to guess a quantity whose true value is 10β, we are equally likely to guess 102β/3 or 104β/3.
A more realistic model would include 10β as a likely possibility, but the simplest model is
easy to simulate and to reason with (that justification is a fancy way to say that I am lazy).

To see the consequences of the model, I’ll compare subdividing and not subdividing by
using a numerical example. Suppose that we want to guess a quantity whose true value is
1012. Without subdividing, we might guess 108 or 1016 (adding or subtracting one-third of
the exponent), a wide range.

Compare that range to the range when we subdivide the estimate into 16 equal factors.
Each factor is 1012/16 = 103/4. When guessing each factor, the model says that we would
guess 101/2 or 101 each with p = 0.5. Here is an example of choosing 16 such factors ran-
domly from 101/2 and 101 and multiplying them:

100.5
·100.5

·101
·100.5

·101
·101
·100.5

·101
·100.5

·100.5
·100.5

·100.5
·100.5

·100.5
·101
·100.5 = 1010.5

Here are three other randomly generated examples:

101
· 100.5

· 101
· 101

· 101
· 101

· 100.5
· 101

· 100.5
· 101

· 101
· 100.5

· 100.5
· 101

· 101
· 100.5 = 1013.0

101
· 101

· 100.5
· 100.5

· 101
· 101

· 100.5
· 100.5

· 100.5
· 100.5

· 101
· 101

· 101
· 100.5

· 100.5
· 100.5 = 1011.5

100.5
· 100.5

· 100.5
· 100.5

· 100.5
· 101

· 100.5
· 100.5

· 101
· 101

· 101
· 100.5

· 100.5
· 100.5

· 101
· 100.5 = 1010.5

These estimates are mostly within one factor of 10 from the true answer of 1012, whereas
the one-shot estimate might be off by four factors of 10. What has happened is that the
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errors in the individual pieces are unlikely to point in the same direction. Some pieces will
be underestimates, some will be overestimates, and the product of all the pieces is likely to
be close to the true value.

This numerical example is our first experience with the random walk. Their crucial feature
is that the expected wanderings are significantly smaller than if one walks in a straight line
without switching back and forth. How much smaller is a question that we will answer in
Chapter 8 when we introduce special-cases reasoning.

2.6 The Unix philosophy

Organizing complexity by breaking it into manageable parts is not limited to numerical
estimation; it is a general design principle. It pervades the Unix and its offspring operating
systems such as GNU/Linux and FreeBSD. This section discusses a few examples.

2.6.1 Building blocks and pipelines

Here are a few of Unix’s building-blocks programs:

• head: prints the first n lines from the input; for example, head -15 prints the first 15
lines.

• tail: prints the last n lines from the input; for example, tail -15 prints the last 15
lines.

How can you use these building blocks to print the 23rd line of a file? Divide and conquer!
One solution is to break the problem into two parts: printing the first 23 lines and, from
those lines, printing the last line. The first subproblem is solved with head -23. The
second subproblem is solved with tail -1.

To combine solutions, Unix provides the pipe operator. Denoted by the vertical bar |, it
connects the output of one program to the input of another command. In the numerical
estimation problems, we combined the solutions to the subproblems by using multiplica-
tion. The pipe operator is analogous to multiplication. Both multiplication in numerical
estimation, and pipes in programming, are examples of composition operators, which are
essential to a divide-and-conquer solution.

To print the 23rd line, use this combination:

head -23 | tail -1

To tell the system where to get the input, there are alternatives:

1. Use the preceding combination as is. Then the input comes from the keyboard, and the
combination will read 23 typed lines, print out the final line from those 23 lines, and
then will exit.

2. Tell head to get its input from a file. An example file is the dictionary. On my GNU/Linux
laptop it is the file /usr/share/dict/words, with one word per line. To print the 23rd
line (i.e. the 23rd word):
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head -23 /usr/share/dict/words | tail -1

3. Let head read from its idea of the keyboard, but connect the keyboard to a file. This
method uses the < syntax:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the shell (the Unix command interpreter) to connect /usr/share/dict/words
to the input of head.

4. Like the preceding method, but use the cat program. The cat program copies its input
file(s) to the output. So this extended pipeline has the same effect as the preceding
alternative:

cat /usr/share/dict/words | head -23 | tail -1

It is slightly less efficient than letting the shell redirect the input itself, because the longer
pipeline requires running one extra program (cat).

This example introduced the Unix philosophy: To enable divide-and-conquer reasoning,
provide useful small utilities and ways to combine them. The next section applies this
philosophy to a whimsical example from a scavenger hunt created by Donald Knuth: Find
the next word in the dictionary after ‘angry’, where the dictionary is alphabetized starting
with the last letter, then the second-to-last letter, etc.

2.6.2 Sorting and searching

So, how do you find the next word in the dictionary after ‘angry’, where the dictionary is
alphabetized starting with the last letter, then the second-to-last letter, etc.?

Divide the problem into two parts:

1. Make a reverse dictionary, alphabetized starting with the last letter, then the second-to-
last letter, etc.

2. Printing the line after ‘angry’.

The first problem subdivides into:

1. Reverse each line of a dictionary.

2. Sort the reversed dictionary.

3. Unreverse each line.

Unix provides sort for the second subproblem. For the first and third problems, a search
through the Unix toolbox, using man -k, says:
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$ man -k reverse
build-rdeps (1) - find packages that depend on a specific package to
bui...
col (1) - filter reverse line feeds from input
git-rev-list (1) - Lists commit objects in reverse chronological order
rev (1) - reverse lines of a file or files
tac (1) - concatenate and print files in reverse
xxd (1) - make a hexdump or do the reverse.

Ah! rev is just the program for us. So the first subproblem is solved with this pipeline:

rev < /usr/share/dict/words | sort | rev

The second problem – finding the line after ‘angry’ – is a task for the pattern-finding pro-
gram grep. In the simplest usage, you tell grep a pattern, and it prints every line from its
input that matches the pattern.

The patterns are regular expressions. Their syntax can become arcane, but the most impor-
tant features are simple. For example,

grep ’^angry$’ < /usr/share/dict/words

prints all lines that exactly match angry: The ˆ character matches the beginning of the line,
and the $ character matches the end of the line.

That invocation of grep is not useful except as a spell checker, since it tells us only that
angry is in the dictionary. However, the -A option, you can tell grep how many lines to
print after each matching line. So

grep -A 1 ’^angry$’ < /usr/share/dict/words

will print ‘angry’ and the word after it (in the regular dictionary):

angry
angst

To print just the word after ‘angry’, follow the grep command with tail:

grep -A 1 ’^angry$’ < /usr/share/dict/words | tail -1

Now combine these two solutions into solving the scavenger hunt problem:

rev </usr/share/dict/words | sort | rev | grep -A 1 ’^angry$’ | tail -1

This pipeline fails with the error

rev: stdin: Invalid or incomplete multibyte or wide character
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The rev program is complaining that it doesn’t understand some of the characters in the
dictionary. rev is from the old, ASCII-only days of Unix, whereas the dictionary is modern
and includes non-ASCII characters such as accented letters.

To solve this unexpected problem, clean the dictionary before passing it to rev. The clean-
ing program is again grep, which can allow through only those lines that are pure ASCII.
This command

grep ’^[a-z]*$’ < /usr/share/dict/words

will print a dictionary made up only of unaccented, lowercase letters. In a regular expres-
sion, the * operator means ‘match 0 or more occurrences of the preceding regular expres-
sion’.

The full pipeline is

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^angry$’ | tail -1

where the backslashes at the end of the lines tell the shell to keep reading the command
even though the line ended.

The tree representing this solution is

word after angry in reverse dictionary
grep ’^[a-z]*$’ | rev | sort | rev | grep -A 1 | tail -1

make reverse dictionary
grep ’^[a-z]*$’ | rev | sort | rev

clean dictionary
grep ’^[a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after angry
grep -A 1 | tail -1

select angry and next word
grep -A 1

print last of two words
tail -1

which produces ‘hungry’.

2.6.3 Further reading

To learn more about the principles of Unix, especially how the design facilitates divide-
and-conquer programming, see [1, 2, 3].
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Part 2
Symmetry and
Invariance

4. Symmetry 21
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6. Box models and conservation 40
7. Dimensions 48

The first part of this book discussed how to organize, and therefore how to manage com-
plexity. The second and third parts discuss how to eliminate complexity, with this second
part discussing three methods for finding and removing complexity that is not real.

The three methods are proportional reasoning, conservation, and dimensional analysis,
and are examples of symmetry reasoning. Symmetry is also a powerful technique on its
own, even without using its for the three methods. The next chapter therefore presents
general examples of symmetry reasoning, and the following chapters develop this method
reasoning into the three methods of proportional reasoning, conservation, and dimensional
analysis.
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Chapter 4
Symmetry

Symmetry is often thought of as a purely geometric concept, but it is useful in a wide
variety of problems. Whenver you can use symmetry, use it and will simplify the solution.
The following sections illustrate symmetry in calculus, geometry, and heat transfer.

4.1 Calculus

For what value of x is 3x − x2 a maximum?

The usual method is to take the derivative:

d
dx

(3x − x2) = 3 − 2x = 0,

whereupon xmax = 3/2.

Although differentiating is a general method, its generality comes at a cost: that its results
are often hard to interpret. One does the manipulations, and whatever formulas show up
at the end, so be it. So, if you can find a simplification, you are likely to get a more insight
into why the answer came out the way that it did.

For this problem, symmetry simplifies it enough that nothing remains to do. To see how,
first factor the equation into x(3 − x). Let xmax be where it has its maximum. The factors
x and 3 − x can be swapped using the substitution x′ = 3 − x. In terms of x′, the problem
becomes maximizing (3 − x′)x′. This formula has the same structure as the original one
x(3 − x)! So the symmetry operation preserves this structure. Since the x or x′ location
of the maximum depends only on the structure, the location has the same numerical value
whether in the x or x′ coordinate systems. So it is said to be invariant under the substitution
operation. Therefore, in this problem, the x′ → 3 − x substitution is a symmetry.

Since x′ = 3− x and, as a result of symmetry, x′max = xmax, the only solution is xmax = x′max =

3/2.

A similar, perhaps more telegraphic argument, is that the maximum is halfway between
the two roots x = 0 and x = 3, so the maximum is, again, at xmax = 3/2. This argument
implicitly contains symmetry, which is the justification for saying that the maximum is
midway between the roots.
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The next calculus example, from electrical and mechanical engineering, is to maximize the
response of a second-order system such as a damped spring–mass system or an LRC cir-
cuit. The response depends on the frequency and amplitude of the driving input, and is
measured as the ratio of output to input amplitude. This ratio is the gain A, and a few
applications of Newton’s second law produces

A(ω) =
jω

1 + jω/Q − ω2 ,

where Q is the quality factor of the system (the inverse of the damping), j is
√
−1 and ω is

measured in units of the natural frequency.

The problem is to find the peak response, meaning the frequency ωmax that maximizes the
magnitude of the gain and the gain at that frequency. The magnitude of the gain is

|A(ω)| =
ω√

(1 − ω2)2 + ω2/Q2

Because of the squares and square roots, a brute-force approach by taking the derivative
will generate messy equations. So, use symmetry. What is the symmetry operation? It will
be be a flip of the coordinate system, but around what point? The value ω = 1 is special
because that choice eliminates the denominator term (1 − ω2)2, which helps to minimize
the denominator and maximize the gain. On the other hand, decreasing ω slightly could
increase the gain because, at the cost of increasing (1 − ω2)2, it decreases the ω2/Q2 term
in the denominator. On the other hand, increasing ω slightly might produce a higher gain
because it increases the numerator of the gain.

To summarize: ω = 1 is special but slightly higher or lower than ω = 1 could be optimal
too. Since ω = 1 is special, use it as the point that is preserved by the symmetry operation.
For a symmetry operation, interchange the ω < 1 and ω > 1 ranges. Frequencies mostly
matter as ratios to one another – for example in music – so do the interchange by defining
ω′ = 1/ω rather than ω′ = 1 − ω. With the reciprocal definition, the problem becomes to
maximize the magnitude of A(ω′), where

A(ω′) =
j/ω′

1 + j/ω′Q − 1/ω′2
.

Multiply numerator and denominator by 1 in the form of ω′2/ω′2:

A(ω′) =
jω′

ω′2 + jω/Q − 1
.

Its magnitude is

|A(ω′)| =
ω′√

(1 − ω′2)2 + ω′2/Q2
.

This formula has the same structure as the magnitude in terms of ω itself, and this infor-
mation is enough to solve for ωmax. Because of the isomorphic structure, ω′max = ωmax. But
by construction ω′ = 1/ω, so ω′max is also 1/ωmax. The only solution is ωmax = ±1. Since the
negative root is boring, the relevant solution is ωmax = 1 and the response there is
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A(ωmax) =
j

1/Q
= jQ.

The factor of Q in the maximum response says that a lightly damped system, where Q� 1,
can reach a high amplitude if you push it at the so-called resonant frequency. The j says
that the response at this resonant frequency lags the input by 90 degrees. In other words,
the greatest push happens when the velocity, not the displacement, is a maximum.

4.2 Graphical symmetry

The following pictorial problem illustrates symmetry applied to a geometric problem, the
traditional domain of symmetry:

How do you cut an equilateral triangle into two equal halves using the shortest, not-
necessarily-straight path?

Here are several candidates among the infinite set of possibilities for the path.

l = 1/
√

2 l =
√

3/2 l = 1 l = (a mess)

Let’s compute the lengths of each bisecting path, with length measured in units of the
triangle side. The first candidate encloses an equilateral triangle with one-half the area of
the original triangle, so the sides of the smaller, shaded triangle are smaller by a factor of
√

2. Thus the path, being one of those sides, has length 1/
√

2. In the second choice, the
path is an altitude of the original triangle, which means its length is

√
3/2, so it is longer

than the first candidate. The third candidate encloses a diamond made from two small
equilateral triangles. Each small triangle has one-fourth the area of the original triangle
with side length one, so each small triangle has side length 1/2. The bisecting path is two
sides of a small triangle, so its length is 1. This candidate is longer than the other two.

The fourth candidate is one-sixth of a circle. To find its length, find the radius r of the circle.
One-sixth of the circle has one-half the area of the triangle, so

πr2︸︷︷︸
Acircle

= 6 ×
1
2

Atriangle = 6 ×
1
2
×

1
2
× 1 ×

√
3

2︸ ︷︷ ︸
Atriangle

.

Multiplying the pieces gives

πr2 =
3
√

3
4
,

and
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r =

√
3
√

3
4π
.

The bisection path is one-sixth of a circle, so its length is

l =
2πr

6
=
π
3

√
3
√

3
4π
=

√
π
√

3
12
.

The best previous candidate (the first picture) has length 1/
√

2 = 0.707 . . .. Does the mess of
π and square roots produce a shorter path? Roll the drums. . . :

l = 0.67338 . . . ,

which is less than 1/
√

2. So the circular arc is the best bisection path so far. However, is it
the best among all possible paths? The arc-length calculation for the circle is messy, and
most other paths do not even have a closed form for their arc lengths.

Instead of making elaborate calculations on every path, of which there are many,
try symmetry, which is the mathematical principle for the three methods in this
part of the book. To use symmetry, replicate the triangle six times to make a
hexagon, thereby replicating the candidate path as well.

Here is the result of replicating the first candidate where the bisection line goes
straight across. The original triangle becomes the large hexagon, and the enclosed half-
triangle becomes a smaller hexagon having one-half the area of the large hexagon.

Compare that picture with the result of replicating the circular-arc bisection.
The large hexagon is the same as for the last replication, but now the bisected
area replicates into a circle. Which path has the shorter perimeter, the shaded
hexagon or this circle? The isoperimetric theorem says that among all shapes
with the same area the circle has the smallest perimeter. Since the circle and
the smaller hexagon enclose the same area – which is three times the area of one
triangle – the circle has a smaller perimeter than the hexagon, and it has a smaller perimeter
than the result of replicating any other bisecting path. So the circular arc is the solution.

The lesson of this example is that symmetry can remove complexity. The complexity in this
problem comes from the edges of the triangle: How much of each edge should be part of the
bisected shape? Different paths use different amounts of each edge, and there’s no obvious
way to deduce the correct amounts. After making the figure symmetric by replicating the
triangle into a hexagon, the edges become irrelevant. In the symmetric figure, the question
simplifies to finding the shortest path that encloses one-half of the hexagon.

4.3 Heat flow
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10◦

10
◦

10◦
10
◦

80 ◦

T =?

Here is a metal sheet in the shape of a regular pentagon with the sides held at
fixed temperatures. What is the temperature at the center of the pentagon?

This problem is difficult to solve analytically because heat flow is described by
a second-order partial differential equation, and this equation has simple solu-
tions only for a few simple boundaries. A pentagon is, alas, not one of those
boundaries. Symmetry, however, makes the solution flow.

The symmetry operation is rotation because the pentagon’s orientation is an arbitrary choice.
Nature, in the person of the heat equation, does not care how we point our coordinate sys-
tems. So these five orientations of the sheet behave the same:

10◦

10
◦

10◦
10
◦

80 ◦

T =?

10
◦

10◦
10
◦

10 ◦

80◦

T
=

?

10
◦

10◦
10
◦

10 ◦

80◦

T
=

?

10
◦

10◦
10
◦

10 ◦

80◦

T
=

?

10
◦

10◦
10
◦

10 ◦

80◦

T
=

?

Now stack these sheets (mentally), adding their temperatures that lie on top of each other
to get the temperature profile of a new metal sheet. For the new sheet, each edge has
temperature

Tedge = 80◦ + 10◦ + 10◦ + 10◦ + 10◦ = 120◦.

Therefore, the entire sheet is at 120◦.

Since the symmetry operation is a rotation (by 72◦) about the center, the centers overlap
when the plates are (mentally) stacked one on top of the other. Furtherfore, heat flow is
proportional to temperature difference – i.e. heat flow is a linear process – so the temper-
ature in the interior of the combined plate is the sum of the five corresponding interior
temperatures. Since the stacked plate has a temperature of 120◦ throughout it, and the
centers of the five subsheets align on top of each other, each center is at T = 120◦/5 = 24◦.

4.4 Looking forward

The next three chapters use this aspect of symmetry – finding and removing fake complex-
ity – to develop three techniques: proportional reasoning, conservation, and dimensional
analysis.
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Chapter 5
Proportional reasoning

Symmetry wrings out excess, irrelevant complexity, and proportional reasoning in one im-
plementation of that philosophy. If an object moves with no forces on it (or if you walk
steadily), then moving for twice as long means doubling the distance traveled. Having two
changing quantities contributes complexity. However, the ratio distance/time, also known
as the speed, is independent of the time. It is therefore simpler than distance or time. This
conclusion is perhaps the simplest example of proportional reasoning, where the propor-
tional statement is

distance ∝ time.

Using symmetry has mitigated complexity. Here the symmetry operation is ‘change for
how long the object move (or how long you walk)’. This operation should not change con-
clusions of an analysis. So, do the analysis using quantities that themselves are unchanged
by this symmetry operation. One such quantity is the speed, which is why speed is such a
useful quantity.

Similarly, in random walks and diffusion problems, the mean-square distance traveled is
proportional to the time travelled:

〈x2
〉 ∝ t.

So the interesting quantity is one that does not change when t changes:

interesting quantity ≡
〈x2
〉

t
.

This quantity is so important that it is given a name – the diffusion constant – and is tabu-
lated in handbooks of material properties.

5.1 Period of a spring–mass system

As a first example of proportional reasoning, here is one way to explain a famous result in
physics: that the period of spring–mass system is independent of the amplitude.
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k

x = 0

m

x

So imagine a mass m connected to the wall by a spring with spring constant
k. If disturbed, the mass oscillates. The period of the system is the time for
the mass to make a round trip through the equilibrium position.

Extend the spring by a distance x0; this displacement is the amplitude. To see
how it affects the period, make an approximation, which will be an example
of throwing away information (the topic of Part 3). The approximation is to pretend that
the pendulum moves with a constant speed v. Then the period is

T ∼
distance
speed v

,

and the distance that the mass travels in one period is 4x0. Ignore the factor of 4:

T ∼
x0

v
.

Proportional reasoning helps us estimate v by an energy argument. The initial potential
energy is PE ∼ kx2

0 or

PE ∝ x2
0.

The maximum kinetic energy, which we use as a proxy for the typical kinetic energy, is the
initial potential energy, so

KEtypical ∝ x2
0

as well. The typical velocity is
√

KEtypical, so

vtypical ∝ x0.

That result is great news because it means that the period is proportional to 1:

T ∝
x0

x0
= x0

0.

In other words, the period is independent of amplitude.

5.2 Mountain heights

The next example of proportional reasoning explains why mountains cannot become too
high. Assume that all mountains are cubical and made of the same material. Making that
assumption discards actual complexity, the topic of Part 3. However, it is a useful approxi-
mation.

To see what happens if a mountain gets too large, estimate the pressure at the base of the
mountain. Pressure is force divided by area, so estimate the force and the area.

The area is the easier estimate. With the approximation that all mountains are cubical and
made of the same kind of rock, the only parameter distinguishing one mountain from an-
other is its side length l. The area of the base is then l2.
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Next estimate the force. It is proportional to the mass:

F ∝ m.

In other words, F/m is independent of mass, and that independence is why the proportion-
ality F ∝ m is useful. The mass is proportional to l3:

m ∝ volume ∼ l3.

In other words, m/l3 is independent of l; this independence is why the proportionality
m ∝ l3 is useful. Therefore

F ∝ l3.

pressure
∝ l

force
∝ l3

mass
∝ l3

volume
∝ l3

area
∝ l2

The force and area results show that the pressure is proportional to l:

p ∼
F
A
∝

l3

l2
= l.

With a large-enough mountain, the pressure is larger than the maximum pressure
that the rock can withstand. Then the rock flows like a liquid, and the mountain
cannot grow taller.

This estimate shows only that there is a maximum height but it does not compute the
maximum height. To do that next step requires estimating the strength of rock. Later
in this book when we estimate the strength of materials, I revisit this example.

This estimate might look dubious also because of the assumption that mountains are cu-
bical. Who has seen a cubical mountain? Try a reasonable alternative, that mountains are
pyramidal with a square base of side l and a height l, having a 45◦ slope. Then the volume
is l3/3 instead of l3 but the factor of one-third does not affect the proportionality between force and
length. Because of the factor of one-third, the maximum height will be higher for a pyrami-
dal mountain than for a cubical mountain. However, there is again a maximum size (and
height) of a mountain. In general, the argument for a maximum height requires only that
all mountains are similar – are scaled versions of each other – and does not depend on the
shape of the mountain.

5.3 Animal jump heights

We next use proportional reasoning to understand how high animals jump, as a function
of their size. Do kangaroos jump higher than fleas? We study a jump from standing (or
from rest, for animals that do not stand); a running jump depends on different physics.
This problem looks underspecified. The height depends on how much muscle an animal
has, how efficient the muscles are, what the animal’s shape is, and much else. The first
subsection introduces a simple model of jumping, and the second refines the model to
consider physical effects neglected in the crude approximations.
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5.3.1 Simple model

We want to determine only how jump height varies with body mass. Even this problem
looks difficult; the height still depends on muscle efficiency, and so on. Let’s see how far
we get by just plowing along, and using symbols for the unknown quantities. Maybe all
the unknowns cancel.

We want an equation for the height h in the form h ∼ mβ, where m is the animal’s mass and
β is the so-called scaling exponent.

m

m

h

Jumping requires energy, which must be provided by muscles. This first, simplest model
equates the required energy to the energy supplied by the animal’s muscles.

The required energy is the easier estimation: An animal of mass m jumping to a height
h requires an energy Ejump ∝ mh. Because all animals feel the same gravity, this relation
does not contain the gravitational acceleration g. You could include it in the equation,
but it would just carry through the equations like unused baggage on a trip.

The available energy is the harder estimation. To find it, divide and conquer. It is the
product of the muscle mass and of the energy per mass (the energy density) stored in mus-
cle.

To approximate the muscle mass, assume that a fixed fraction of an animals mass is muscle,
i.e. that this fraction is the same for all animals. If α is the fraction, then

mmuscle ∼ αm

or, as a proportionality,

mmuscle ∝ m,

where the last step uses the assumption that all animals have the same α.

For the energy per mass, assume again that all muscle tissues are the same: that they store
the same energy per mass. If this energy per mass is E, then the available energy is

Eavail ∼ Emmuscle

or, as a proportionality,

Eavail ∝ mmuscle,

where this last step uses the assumption that all muscle has the same energy density E.

Here is a tree that summarizes this model:

jump height h

energy required

h m g

energy available

muscle mass

animal’s mass m muscle fraction

energy density
in muscle
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Now finish propagating toward the root. The available energy is

Eavail ∝ m.

So an animal with three times the mass of another animal can store roughly three times the
energy in its muscles, according to this simple model.

Now compare the available and required energies to find how the jump height as a function
of mass. The available energy is

Eavail ∝ m

and the required energy is

Erequired ∝ mh.

Equate these energies, which is an application of conservation of energy. Then mh ∝ m or

h ∝ m0.

In other words, all animals jump to the same height.

Flea

Click beetle

Locust
Human

10−3 101 105
10

30

60

Mass (g)

h (cm)

The result, that all animals jump to the same height, seems
surprising. Our intuition tells us that people should be able
to jump higher than locusts. The graph shows jump heights
for animals of various sizes and shapes [source: Scaling: Why
Animal Size is So Important [4, p. 178]. Here is the data:

Animal Mass (g) Height (cm)
Flea 5 ·10−4 20
Click beetle 4 ·10−2 30
Locust 3 59
Human 7 ·104 60

The height varies almost not at all when compared to variation in mass, so our result is
roughly correct! The mass varies more than eight orders of magnitude (a factor of 108), yet
the jump height varies only by a factor of 3. The predicted scaling of constant h (h ∝ 1) is
surprisingly accurate.

5.3.2 Power limits

Power production might also limit the jump height. In the preceding analysis, energy is
the limiting reagent: The jump height is determined by the energy that an animal can store
in its muscles. However, even if the animal can store enough energy to reach that height,
the muscles might not be able to deliver the energy rapidly enough. This section presents
a simple model for the limit due to limited power generation.

Once again we’d like to find out how power P scales (varies) with the size l Power is energy
per time, so the power required to jump to a height h is
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P ∼
energy required to jump to height h

time over which the energy is delivered
.

The energy required is E ∼ mgh. The mass is m ∝ l3. The gravitational acceleration is inde-
pendent of l. And, in the energy-limited model, the height h is independent of l. Therefore
E ∝ l3.

The delivery time is how long the animal is in contact with the ground, because only during
contact can the ground exert a force on the animal. So, the animal crouches, extends up-
ward, and finally leaves the ground. The contact time is the time during which the animal
extends upward. Time is length over speed, so

tdelivery ∼
extension distance

extension speed
.

The extension distance is roughly the animal’s size l. The extension speed is roughly the
takeoff velocity. In the energy-limited model, the takeoff velocity is the same for all animals:

vtakeoff ∝ h1/2
∝ l0.

So

tdelivery ∝ l.

The power required is P ∝ l3/l = l2.

That proportionality is for the power itself, but a more interesting scaling is for the specific
power: the power per mass. It is

P
m
∝

l2

l3
= l−1.

Ah, smaller animals need a higher specific power!

A model for power limits is that all muscle can generate the same maximum power den-
sity (has the same maximum specific power). So a small-enough animal cannot jump to
its energy-limited height. The animal can store enough energy in its muscles, but cannot
release it quickly enough.

More precisely, it cannot do so unless it finds an alternative method for releasing the energy.
The click beetle, which is toward the small end in the preceding graph and data set, uses
the following solution. It stores energy in its shell by bending the shell, and maintains the
bending like a ratchet would (holding a structure motionless does require energy). This
storage can happen slowly enough to avoid the specific-power limit, but when the beetle
releases the shell and the shell snaps back to its resting position, the energy is released
quickly enough for the beetle to rise to its energy-limited height.

But that height is less than the height for locusts and humans. Indeed, the largest deviations
from the constant-height result happen at the low-mass end, for fleas and click beetles. To
explain that discrepancy, the model needs to take into account another physical effect: drag.
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5.4 Drag

This section section contains a proportional-reasoning analysis of drag – using a home ex-
periment – and then applies the results to jumping fleas.

5.4.1 Home experiment using falling cones

Here is a home experiment for understanding drag. Photocopy this page and cut out these
templates, then tape the edges together to make a cone:

r = 1 in

cu
to

ut
=

90
◦ r = 2 in

cu
to

ut
=

90
◦

If you drop the small cone and the big cone, which falls faster? In particular, what is the
ratio of their fall times tbig/tsmall? The large cone, having a large area, feels more drag
than the small cone does. On the other hand, the large cone has a higher driving force (its
weight) than the small cone has. To decide whether the extra weight or the extra drag wins
requires finding how drag depends on the parameters of the situation.

However, finding the drag force is a very complicated calculation. The full calculation
requires solving the Navier–Stokes equations:

(v·O)v +
∂v
∂t
= −

1
ρ
Op + νO2v.

And the difficulty does not end with this set of second-order, coupled, nonlinear partial-
differential equations. The full description of the situation includes a fourth equation, the
continuity equation:

O·v = 0.
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One imposes boundary conditions, which include the motion of the object and the require-
ment that no fluid enters the object – and solves for the pressure p and the velocity gradient
at the surface of the object. Integrating the pressure force and the shear force gives the drag
force.

In short, solving the equations analytically is difficult. I could spend hundreds of pages
describing the mathematics to solve them. Even then, solutions are known only in a few
circumstances, for example a sphere or a cylinder moving slowly in a viscous fluid or a
sphere moving at any speed in an zero-viscosity fluid. But an inviscid fluid – what Feyn-
man calls ‘dry water’ – is particularly irrelevant to real life since viscosity is the reason
for drag, so an inviscid solution predicts zero drag! Proportional reasoning, supplemented
with judicious lying, is a simple and quick alternative.

The proportional-reasoning analysis imagines an object of cross-sectional area A moving
through a fluid at speed v for a distance d:

A volume ∼ Ad

distance ∼ d

The drag force is the energy consumed per distance. The energy is consumed by imparting
kinetic energy to the fluid, which viscosity eventually removes from the fluid. The kinetic
energy is mass times velocity squared. The mass disturbed is ρAd, where ρ is the fluid
density (here, the air density). The velocity imparted to the fluid is roughly the velocity of
the disturbance, which is v. So the kinetic energy imparted to the fluid is ρAv2d, making
the drag force

F ∼ ρAv2.

The analysis has a divide-and-conquer tree:

force ∼ E/d
ρAv2

energy imparted, ∼ mv2

ρAv2d

mass disturbed
ρAd

density
ρ

volume
Ad

velocity imparted
∼ v

distance d

The result that Fdrag ∼ ρv2A is enough to predict the result of the cone experiment. The
cones reach terminal velocity quickly – a result discussed later in the book in Part 3 – so
the relevant quantity in finding the fall time is the terminal velocity. From the drag-force
formula, the terminal velocity is
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v ∼

√
Fdrag

ρA
.

Since the air density ρ is the same for the large and small cone, the relation simplifies to

v ∝

√
Fdrag

A
.

The cross-sectional areas are easy to measure with a ruler, and the ratio between the small-
and large-cone terminal velocities is even easier. The experiment is set up to make the drag
force easy to measure: Since the cones fall at their respective terminal velocities, the drag
force equals the weight. So

v ∝

√
W
A
.

Each cone’s weight is proportional to its cross-sectional area, because they are geometri-
cally similar and made out of the same piece of paper. With W ∝ A, the terminal velocity
becomes

v ∝

√
A
A
= A0.

In other words, the terminal velocity is independent of A, so the small and large cones
should fall at the same speed. To test this prediction, I stood on a handy table and dropped
the two cones. The fall lasted about two seconds, and they landed within 0.1 s of one an-
other!

5.4.2 Effect of drag on fleas jumping

The drag force

F ∼ ρAv2

affects the jumps of small animals more than it affects the jumps of people. A comparison
of the energy required for the jump with the energy consumed by drag explains why.

The energy that the animal requires to jump to a height h is mgh, if we use the gravitational
potential energy at the top of the jump; or it is ∼ mv2, if we use the kinetic energy at takeoff.
The energy consumed by drag is

Edrag ∼ ρv2A︸︷︷︸
Fdrag

×h.

The ratio of these energies measures the importance of drag. The ratio is

Edrag

Erequired
∼
ρv2Ah

mv2 =
ρAh

m
.
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Since A is the cross-sectional area of the animal, Ah is the volume of air that it sweeps out
in the jump, and ρAh is the mass of air swept out in the jump. So the relative importance of
drag has a physical interpretation as a ratio of the mass of air displaced to the mass of the
animal.

To find how this ratio depends on animal size, rewrite it in terms of the animal’s side length
l. In terms of side length, A ∼ l2 and m ∝ l3. What about the jump height h? The simplest
analysis predicts that all animals have the same jump height, so h ∝ l0. Therefore the
numerator ρAh is ∝ l1, the denominator m is ∝ l3, and

Edrag

Erequired
∝

l2

l3
= l−1.

So, small animals have a large ratio, meaning that drag affects the jumps of small animals
more than it affects the jumps of large animals. The missing constant of proportionality
means that we cannot say at what size an animal becomes ‘small’ for the purposes of drag.
So the calculation so far cannot tell us whether fleas are included among the small animals.

The jump data, however, substitutes for the missing constant of proportionality. The ratio
is

Edrag

Erequired
∼
ρAh

m
∼
ρl2h
ρanimall3

.

It simplifies to

Edrag

Erequired
∼

ρ

ρanimal

h
l
.

As a quick check, verify that the dimensions match. The left side is a ratio of energies, so
it is dimensionless. The right side is the product of two dimensionless ratios, so it is also
dimensionless. The dimensions match.

Now put in numbers. A density of air is ρ ∼ 1 kg m−3. The density of an animal is roughly
the density of water, so ρanimal ∼ 103 kg m−3. The typical jump height – which is where the
data substitutes for the constant of proportionality – is 60 cm or roughly 1 m. A flea’s length
is about 1 mm or l ∼ 10−3 m. So

Edrag

Erequired
∼

1 kg m−3

103 kg m−3
1 m

10−3 m
∼ 1.

The ratio being unity means that if a flea would jump to 60 cm, overcoming drag would
require roughly as much as energy as would the jump itself in vacuum.

Drag provides a plausible explanation for why fleas do not jump as high as the typical
height to which larger animals jump.

5.4.3 Cycling
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This section discusses cycling as an example of how drag affects the performance of people
as well as fleas. Those results will be used in the analysis of swimming, the example of the
next section.

What is the world-record cycling speed? Before looking it up, predict it using armchair
proportional reasoning. The first task is to define the kind of world record. Let’s say that
the cycling is on a level ground using a regular bicycle, although faster speeds are possible
using special bicycles or going downhill.

To estimate the speed, make a model of where the energy goes. It goes into rolling resis-
tance, into friction in the chain and gears, and into drag. At low speeds, the rolling resis-
tance and chain friction are probably important. But the importance of drag rises rapidly
with speed, so at high-enough speeds, drag is the dominant consumer of energy.

For simplicity, assume that drag is the only consumer of energy. The maximum speed
happens when the power supplied by the rider equals the power consumed by drag. The
problem therefore divides into two estimates: the power consumed by drag and the power
that an athlete can supply.

The drag power Pdrag is related to the drag force:

Pdrag = Fdragv ∼ ρv3A.

It indeed rises rapidly with velocity, supporting the initial assumption that drag is the im-
portant effect at world-record speeds.

Setting Pdrag = Pathlete gives

vmax ∼

(
Pathlete

ρA

)1/3

To estimate how much power an athlete can supply, I ran up one flight of stairs leading
from the MIT Infinite Corridor. The Infinite Corridor, being an old building, has spacious
high ceilings, so the vertical climb is perhaps h ∼ 4 m (a typical house is 3 m per storey).
Leaping up the stairs as fast as I could, I needed t ∼ 5 s for the climb. My mass is 60 kg, so
my power output was

Pauthor ∼
potential energy supplied

time to deliver it

=
mgh

t
∼

60 kg × 10 m s−2
× 4 m

5 s
∼ 500 W.

Pathlete should be higher than this peak power since most authors are not Olympic athletes.
Fortunately I’d like to predict the endurance record. An Olympic athlete’s long-term power
might well be comparable to my peak power. So I use Pathlete = 500 W.

The remaining item is the cyclist’s cross-sectional area A. Divide the area into width and
height. The width is a body width, perhaps 0.4 m. A racing cyclist crouches, so the height
is maybe 1 m rather than a full 2 m. So A ∼ 0.4 m2.

Here is the tree that represents this analysis:
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vmax

Pathlete ∼ Estairs/tstairs

Estairs
2400 J

m
60 kg

g
10 m s−2

h
4 m

tstairs
5 s

Pdrag ∼ ρv3A

ρ
1 kg m−3

v A
0.4 m2

Now combine the estimates to find the maximum speed. Putting in numbers gives

vmax ∼

(
Pathlete

ρA

)1/3

∼

(
500 W

1 kg m−3 × 0.4 m2

)1/3

.

The cube root might suggest using a calculator. However, massaging the numbers simpli-
fies the arithmetic enough to do it mentally. If only the power were 400 W or, instead, if the
area were 0.5 m! Therefore, in the words of Captain Jean-Luc Picard, ‘make it so’. The cube
root becomes easy:

vmax ∼∼

(
400 W

1 kg m−3 × 0.4 m2

)1/3

∼ (1000 m3 s−3)1/3 = 10 m s−1.

So the world record should be, if this analysis has any correct physics in it, around 10 m s−1

or 22 mph.

The world one-hour record – where the contestant cycles as far as possible in one hour – is
49.7 km or 30.9 mi. The estimate based on drag is reasonable!

5.4.4 Swimming

The last section’s analysis of cycling helps predict the world-record speed for swimming.
The last section showed that

vmax ∼

(
Pathlete

ρA

)1/3

.

To evaluate the maximum speed for swimming, one could put in a new ρ and A directly
into that formula. However, that method replicates the work of multiplying, dividing, and
cube-rooting the various values.

Instead it is instructive to scale the numerical result for cycling by looking at how the maxi-
mum speed depends on the parameters of the situation. In other words, I’ll use the formula
for vmax to work out the ratio vswimmer/vcyclist, and then use that ratio along with vcyclist to
work out vswimmer.

The speed vmax is

vmax ∼

(
Pathlete

ρA

)1/3

.
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So the ratio of swimming and cycling speeds is

vswimmer

vcyclist
∼

(
Pswimmer

Pcyclist

)1/3

×

(
ρswimmer

ρcyclist

)−1/3

×

(
Aswimmer

Acyclist

)−1/3

.

Estimate each factor in turn. The first factor accounts for the relative athletic prowess of
swimmers and cyclists. Let’s assume that they generate equal amounts of power; then the
first factor is unity. The second factor accounts for the differing density of the mediums
in which each athlete moves. Roughly, water is 1000 times denser than air. So the second
factor contributes a factor of 0.1 to the speed ratio. If the only factors were the first two,
then the swimming world record would be about 1 m s−1.

Let’s compare with reality. The actual world record for a 1500-m freestyle (in a 50-m pool) is
14m34.56s set in July 2001 by Grant Hackett. That speed is 1.713 m s−1, significantly higher
than the prediction of 1 m s−1.

The third factor comes to the rescue by accounting for the relative profile of a cyclist and
a swimmer. A swimmer and a cyclist probably have the same width, but the swimmer’s
height (depth in the water) is perhaps one-sixth that of a crouched cyclist. So the third
factor contributes 61/3 to the predicted speed, making it 1.8 m s−1.

This prediction is close to the actual record, closer to reality than one might expect given
the approximations in the physics, the values, and the arithmetic. However, the accuracy
is a result of the form of the estimate, that the maximum speed is proportional to the cube
root of the athlete’s power and the inverse cube root of the cross-sectional area. Errors in
either the power or area get compressed by the cube root. For example, the estimate of
500 W might easily be in error by a factor of 2 in either direction. The resulting error in the
maximum speed is 21/3 or 1.25, an error of only 25%. The cross-sectional area of a swimmer
might be in error by a factor of 2 as well, and this mistake would contribute only a 25%
error to the maximum speed. [With luck, the two errors would cancel!]

5.4.5 Flying

In the next example, I scale the drag formula to estimate the fuel efficiency of a jumbo
jet. Rather than estimating the actual fuel consumption, which would produce a large,
meaningless number, it is more instructive to estimate the relative fuel efficiency of a plane
and a car.

Assume that jet fuel goes mostly to fighting drag. This assumption is not quite right, so at
the end I’ll discuss it and other troubles in the analysis. The next step is to assume that the
drag force for a plane is given by the same formula as for a car:

Fdrag ∼ ρv2A.

Then the ratio of energy consumed in travelling a distance d is

Eplane

Ecar
∼
ρup−high

ρlow
×

(vplane

vcar

)2
×

Aplane

Acar
×

d
d
.
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Estimate each factor in turn. The first factor accounts for the lower air density at a plane’s
cruising altitude. At 10 km, the density is roughly one-third of the sea-level density, so
the first factor contributes 1/3. The second factor accounts for the faster speed of a plane.
Perhaps vplane ∼ 600 mph and vcar ∼ 60 mph, so the second factor contributes a factor of 100.
The third factor accounts for the greater cross-sectional area of the plane. As a reasonable
estimate

Aplane ∼ 6 m × 6 m = 36 m2,

whereas

Acar ∼ 2 m × 1.5 m = 3 m2,

so the third factor contributes a factor of 12. The fourth factor contributes unity, since we
are analyzing the plane and car making the same trip (New York to Los Angeles, say).

The result of the four factors is

Eplane

Ecar
∼

1
3
× 100 × 12 ∼ 400.

A plane looks incredibly inefficient. But I neglected the number of people. A jumbo jet
takes carries 400 people; a typical car, at least in California, carries one person. So the plane
and car come out equal!

This analysis leaves out many effects. First, jet fuel is used to generate lift as well as to
fight drag. However, as a later analysis will show, the energy consumed in generating lift is
comparable to the energy consumed in fighting drag. Second, a plane is more streamlined
than a car. Therefore the missing constant in the drag force Fdrag ∼ ρv2A is smaller for a
plane than for a car. our crude analysis of drag has not included this effect. Fortunately
this error compensates, or perhaps overcompensates, for the error in neglecting lift.

5.5 Analysis of algorithms

Proportional reasoning is the basis of an entire subject of the analysis of algorithms, a core
part of computer science. How fast does an algorithm run? How much space does it re-
quire? A proportional-reasoning analysis helps you decide which algorithms to use. This
section discusses these decisions using the problem of how to square very large numbers.

Squaring numbers is a special case of multiplication, but the algebra is simpler for squaring
than for multiplying since having only one number as the input means there are fewer
variables in the analysis.

Here is a divide-and-conquer version of the standard school multiplication algorithm.
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Chapter 6
Box models and conservation

6.1 Cube solitaire

1 0

00

0 0

00Here is a game of solitaire that illustrates the theme of this chapter. The following
cube starts in the configuration in the margin; the goal is to make all vertices be
multiples of three simultaneously. The moves are all of the same form: Pick any
edge and increment its two vertices by one. For example, if I pick the bottom
edge of the front face, then the bottom edge of the back face, the configuration
becomes the first one in this series, then the second one:

2 1

00

0 0

00

2 1

00

1 1

00

Alas, neither configuration wins the game.

Can I win the cube game? If I can win, what is a sequence of moves ends in all vertices
being multiples of 3? If I cannot win, how can that negative result be proved?

Brute force – trying lots of possibilities – looks overwhelming. Each move requires choosing
one of 12 edges, so there are 1210 sequences of ten moves. That number is an overestimate
because the order of the moves does not affect the final state. I could push that line of
reasoning by figuring out how many possibilities there are, and how to list and check them
if the number is not too large. But that approach is specific to this problem and unlikely to
generalize to other problems.

1 0

00Instead of that specific approach, make the generic observation that this problem is
difficult because each move offers many choices. The problem would be simpler
with fewer edges: for example, if the cube were a square. Can this square be turned
into one where the four vertices are multiples of 3? This problem is not the original
problem, but solving it might teach me enough to solve the cube. This hope motivates
the following advice: When the going gets tough, the tough lower their standards.
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a = 1

b = 0The square is easier to analyze than is the cube, but standards can be lowered still more
by analyzing the one-dimensional analog, a line. Having only one edge means that there
is only one move: incrementing the top and bottom vertices. The vertices start with a
difference of one, and continue with that difference. So they cannot be multiples of 3
simultaneously. In symbols: a− b = 1. If all vertices were multiples of 3, then a− b would
also be a multiple of 3. Since a − b = 1, it is also true that

a − b ≡ 1 (mod 3),

where the mathematical notation x ≡ y (mod 3) means that x and y have the same remain-
der (the same modulus) when dividing by 3. In this one-dimensional version of the game,
the quantity a − b is an invariant: It is unchanged after the only move of increasing each
vertex on an edge.

a = 1 b = 0

c = 0d = 0Perhaps a similar invariant exists in the two-dimensional version of the game.
Here is the square with variables to track the number at each vertex. The one-
dimensional invariant a − b is sometimes an invariant for the square. If my move
uses the bottom edge, then a and b increase by 1, so a − b does not change. If my
move uses the top edge, then a and b are individually unchanged so a − b is again
unchanged. However, if my move uses the left or right edge, then either a or b
changes without a compensating change in the other variable. The difference d − c has a
similar behavior in that it is changed by some of the moves. Fortunately, even when a − b
and d− c change, they change in the same way. A move using the left edge increments a− b
and d − c; a move using the right edge decrements a − b and d − c. So (a − b) − (d − c) is
invariant! Therefore for the square,

a − b + c − d ≡ 1 (mod 3),

so it is impossible to get all vertices to be multiples of 3.

a = 1 b = 0

c = 0d = 0

e = 0 f = 0

g = 0h = 0The original, three-dimensional solitaire game is also likely to be impossible
to win. The correct invariant shows this impossibility. The quantity a − b + c −
d+ f − g+ h− e generalizes the invariant for the square, and it is preserved by
all 12 moves. So

a − b + c − d + f − g + h − e ≡ 1 (mod 3),

which shows that all vertices cannot be made multiples of 3 simultaneously.

Invariants – quantities that remain unchanged – are a powerful tool for solving problems.
Physics problems are also solitaire games, and invariants (conserved quantities) are essen-
tial in physics. Here is an example: In a frictionless world, design a roller-coaster track so
that an unpowered roller coaster, starting from rest, rises above its starting height. Perhaps
a clever combination of loops and curves could make it happen.

The rules of the physics game are that the roller coaster’s position is determined by New-
ton’s second law of motion F = ma, where the forces on the roller coaster are its weight and
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the contact force from the track. In choosing the shape of the track, you affect the contact
force on the roller coaster, and thereby its acceleration, velocity, and position. There are an
infinity of possible tracks, and we do not want to analyze each one to find the forces and
acceleration. An invariant, energy, simplifies the analysis. No matter what tricks the track
does, the kinetic plus potential energy

1
2

mv2 +mgh

is constant. The roller coaster starts with v = 0 and height hstart; it can never rise above
that height without violating the constancy of the energy. The invariant – the conserved
quantity – solves the problem in one step, avoiding an endless analysis of an infinity of
possible paths.

The moral of this section is: When there is change, look for what does not change.

6.2 Flight

How far can birds and planes fly? The theory of flight is difficult and involves vortices,
Bernoulli’s principle, streamlines, and much else. This section offers an alternative ap-
proach: use conservation estimate the energy required to generate lift, then minimize the
lift and drag contributions to the energy to find the minimum-energy way to make a trip.

6.2.1 Lift

Instead of wading into the swamp of vortices, study what does not change. In this case, the
vertical component of the plane’s momentum does not change while it cruises at constant
altitude.

Because of momentum conservation, a plane must deflect air downward. If it did not, grav-
ity would pull the plane into the ground. By deflecting air downwards – which generates
lift – the plane gets a compensating, upward recoil. Finding the necessary recoil leads to
finding the energy required to produce it.

Imagine a journey of distance s. I calculate the energy to produce lift in three steps:

1. How much air is deflected downward?

2. How fast must that mass be deflected downward in order to give the plane the needed
recoil?

3. How much kinetic energy is imparted to that air?

The plane is moving forward at speed v, and it deflects air over an area L2 where L is the
wingspan. Why this area L2, rather than the cross-sectional area, is subtle. The reason is that
the wings disturb the flow over a distance comparable to their span (the longest length). So
when the plane travels a distance s, it deflects a mass of air

mair ∼ ρL2s.
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The downward speed imparted to that mass must take away enough momentum to com-
pensate for the downward momentum imparted by gravity. Traveling a distance s takes
time s/v, in which time gravity imparts a downward momentum Mgs/v to the plane. There-
fore

mairvdown ∼
Mgs

v

so

vdown ∼
Mgs
vmair

∼
Mgs
ρvL2s

=
Mg
ρvL2 .

The distance s divides out, which is a good sign: The downward velocity of the air should
not depend on an arbitrarily chosen distance!

The kinetic energy required to send that much air downwards is mairv2
down. That energy

factors into (mairvdown)vdown, so

Elift ∼ mairvdown︸ ︷︷ ︸
Mgs/v

vdown ∼
Mgs

v
Mg
ρvL2︸︷︷︸
vdown

=
(Mg)2

ρv2L2 s.

Check the dimensions: The numerator is a squared force since Mg is a force, and the de-
nominator is a force, so the expression is a force times the distance s. So the result is an
energy.

Interestingly, the energy to produce lift decreases with increasing speed. Here is a scaling
argument to make that result plausible. Imagine doubling the speed of the plane. The fast
plane makes the journey in one-half the time of the original plane. Gravity has only one-
half the time to pull the plane down, so the plane needs only one-half the recoil to stay
aloft. Since the same mass of air is being deflected downward but with half the total recoil
(momentum), the necessary downward velocity is a factor of 2 lower for the fast plane than
for the slow plane. This factor of 2 in speed lowers the energy by a factor of 4, in accordance
with the v−2 in Elift.

6.2.2 Optimization including drag

The energy required to fly includes the energy to generate lift and to fight drag. I’ll add the
lift and drag energies, and choose the speed that minimizes the sum.

The energy to fight drag is the drag force times the distance. The drag force is usually
written as

Fdrag ∼ ρv2A,

where A is the cross-sectional area. The missing dimensionless constant is cd/2:

Fdrag =
1
2

cdρv2A,
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where cd is the drag coefficient.

However, to simplify comparing the energies required for lift and drag, I instead write the
drag force as

Fdrag = Cρv2L2,

where C is a modified drag coefficient, where the drag is measured relative to the squared
wingspan rather than to the cross-sectional area. For most flying objects, the squared
wingspan is much larger than the cross-sectional area, so C is much smaller than cd.

With that form for Fdrag, the drag energy is

Edrag = Cρv2L2s,

and the total energy to fly is

E ∼
(Mg)2

ρv2L2 s︸ ︷︷ ︸
Elift

+ Cρv2L2s︸ ︷︷ ︸
Edrag

.

voptimum

Edrag ∝ v2

Elift ∝ v−2

Etotal

E

A sketch of the total energy versus velocity shows interesting
features. At low speeds, lift is the dominant consumer because
of its v−2 dependence. At high speeds, drag is the dominant
consumer because of its v2 dependence. In between these ex-
tremes is an optimum speed voptimum: the speed that minimizes
the energy consumption for a fixed journey distance s. Go-
ing faster or slower than the optimum speed means consum-
ing more energy. That extra consumption cannot always be
avoided. A plane is designed so that its cruising speed is its
minimum-energy speed. So at takeoff and landing, when its speed is much less than the
minimum-energy speed, a plane requires a lot of power to stay aloft, which is one reason
that the engines are so loud at takeoff and landing (another reason is probably that the
engine noise reflects off the ground and back to the plane).

The constraint, or assumption, that a plane travels at the minimum-energy speed simplifies
the expression for the total energy. At the minimum-energy speed, the drag and lift energies
are equal. So

(Mg)2

ρv2L2 s ∼ Cρv2L2s,

or

Mg ∼ C1/2ρv2L2.

This constraint simplifies the total energy. Instead of simplifying the sum, simplify just
the drag, which neglects only a factor of 2 since drag and lift are roughly equal at the
minimum-energy speed. So
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E ∼ Edrag ∼ Cρv2L2s ∼ C1/2Mgs.

This result depends in reasonable ways upon M, g, C, and s. First, lift overcomes gravity,
and gravity produces the plane’s weight Mg. So Mg should show up in the energy, and
the energy should, and does, increase when Mg increases. Second, a streamlined plane
should use less energy than a bluff, blocky plane, so the energy should, and does, increase
as the modified drag coefficient C increases. Third, since the flight is at a constant speed,
the energy should be, and is, proportional to the distance traveled s.

6.2.3 How the maximum range depends on size

Before calculating a range for a particular plane or bird, evaluate the scaling: How does the
range depend on the size of the plane? As for the mountain-height analysis (Section 5.2),
assume that all planes are geometrically similar (have the same shape) and therefore differ
only in size.

Since the energy required to fly a distance s is E ∼ C1/2Mgs, a tank of fuel gives a range of

s ∼
Etank

C1/2Mg
.

Let β be the fuel fraction: the fraction of the plane’s mass taken up by fuel. Then Mβ is
the fuel mass, and MβE is the energy contained in the fuel, where E is the energy density
(energy per mass) of the fuel. With that notation, Etank ∼MβE and

s ∼
MβE

C1/2Mg
=
βE

C1/2g
.

Since all planes, at least in this analysis, have the same shape, their modified drag coefficient
C is also the same. And all planes face the same gravitational field strength g. So the
denominator is the same for all planes. The numerator contains β and E. Both parameters
are the same for all planes. So the numerator is the same for all planes. Therefore

s ∝ 1.

All planes can fly the same distance!

Even more surprising is to apply this reasoning to migrating birds. Here is the ratio of
ranges:

splane

sbird
∼
βplane

βbird

Eplane

Ebird

(
Cplane

Cbird

)−1/2

.

Take the factors in turn. First, the fuel fraction βplane is perhaps 0.3 or 0.4. The fuel fraction
βbird is probably similar: A well-fed bird having fed all summer is perhaps 30 or 40% fat. So
βplane/βbird ∼ 1. Second, jet fuel energy density is similar to fat’s energy density, and plane
engines and animal metabolism are comparably efficient (about 25%). So Eplane/Ebird ∼ 1.
Finally, a bird has a similar shape to a plane – it is not a great approximation, but it has the
virtue of simplicity. So Cbird/Cplane ∼ 1.
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Therefore, planes and well-fed, migrating birds should have the same maximum range!
Let’s check. The longest known nonstop flight by an animal is 11, 570 km, made by a bar-
tailed godwit from Alaska to New Zealand (tracked by satellite). The maximum range for
a 747-400 is 13, 450 km, only slightly longer than the godwit’s range.

6.2.4 Explicit computations

To get an explicit range, not only how the range scales with size, estimate the fuel fraction β,
the energy density E, and the drag coefficient C. For the fuel fraction I’ll guess β ∼ 0.4. For
E, look at the nutrition label on the back of a pack of butter. Butter is almost all fat, and one
serving of 11 g provides 100 Cal (those are ‘big calories’). So its energy density is 9 kcal g−1.
In metric units, it is 4 ·107 J kg−1. Including a typical engine efficiency of one-fourth gives

E ∼ 107 J kg−1.

The modified drag coefficient needs converting from easily available data. According to
Boeing, a 747 has a drag coefficient of C′ ≈ 0.022, where this coefficient is measured using
the wing area:

Fdrag =
1
2

C′Awingρv2.

Alas, this formula is a third convention for drag coefficients, depending on whether the
drag is referenced to the cross-sectional area A, wing area Awing, or squared wingspan L2.

It is easy to convert between the definitions. Just equate the standard definition

Fdrag =
1
2

C′Awingρv2.

to our definition

Fdrag = CL2ρv2

to get

C =
1
2

Awing

L2 C′ =
1
2

l
L

C′,

since Awing = Ll where l is the wing width. For a 747, l ∼ 10 m and L ∼ 60 m, so C ∼ 1/600.

Combine the values to find the range:

s ∼
βE

C1/2g
∼

0.4 × 107 J kg−1

(1/600)1/2 × 10 m s−2
∼ 107 m = 104 km.

The maximum range of a 747-400 is 13, 450 km. The maximum known nonstop flight by a
bird – indeed, by any animal – is 11, 570 km: A female bar-tailed godwit tracked by satellite
migrated between Alaska and New Zealand. The approximate analysis of the range is
unreasonably accurate.

Next I estimate the minimum-energy speed and compare it to the cruising speed of a 747.
The sum of drag and lift energies is a minimum when the speed is given by
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Mg ∼ C1/2ρv2L2.

The speed is

v ∼
(

Mg
C1/2ρL2

)1/2

.

A fully loaded 747 has M ∼ 4 ·105 kg. The drag coefficient is again C ∼ 1/600, the wingspan
is L ∼ 60 m, and the air density up high is ρ ∼ 0.5 kg m−3. So

v ∼
(

4 ·105 kg × 10 m s−2

(1/600)1/2 × 0.5 kg m−3 × 3.6 ·103 m2

)1/2

.

Do the arithmetic mentally. The
√

1/600 in the denominator becomes a 25 in the numerator.
Combined with the 4·105, it becomes 107. Including the 10 from g, the numerator is 108 and
the denominator is roughly 2 ·103, so

v ∼
(1
2
·105

)1/2
m s−1 = 51/2

× 100 m s−1
∼ 220 m s−1.

That speed is roughly 500 mph, reasonably close to the 747’s maximum speed of 608 mph.
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Chapter 7
Dimensions

The next way to eliminate spurious complexity is the method of dimensional analysis or
dimensionless groups.

The following mathematical problem shows how dimensionless groups are, like propor-
tional reasoning and conservation laws, a form of symmetry reasoning. The problem is to
expand the polynomial (a + b + c)3 into its numerous terms. The school-algebra method is
to multiply a + b + c by a + b + c and then multiply the result by a + b + c.

The school-algebra method is messy prone to mistakes, but symmetry comes to the rescue.
The factor a + b + c is unchanged if a an b, if a and c, or if b and c are swapped. Indeed,
any permutation of a, b, and c leaves a+ b+ c unchanged and leaves (a+ b+ c)3 unchanged.
Therefore, the product can – and should be – built using invariant combinations of a, b, and
c: combinations that are unchanged by permuting a, b, and c.

The product contains a3, but a3 alone is not invariant to a permutation. The invariant ver-
sion of a3 is a3 + b3 + c3, which is one component of the product. The product also contains
terms like a2b, which again is not invariant. The analogous invariant sum comes from
adding all possible permutations of a2b:

(a2b + ab2) + (a2c + ac2) + (b2c + bc2).

The third type of term is abc.

So the product has the form

(a + b + c)3 = A(a3 + b3 + c3) + B(a2b + ab2 + a2c + ac2 + b2c + bc2) + C(abc),

where A, B, and C are for-the-moment-unknown constants.

Here is one way to evaluate the constants. Set a = 1, b = c = 0. Then the equation reduces
to

13 = A · 13,

so A = 1. To get another relation, set a = b = c = 1. Then, using A = 1, the equation reduces
to

27 = 3 + 6B + C.
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To find C, notice that there are six ways to get an abc factor. So C = 6 and then B = 3.

Thus

(a + b + c)3 = (a3 + b3 + c3) + 3(a2b + ab2 + a2c + ac2 + b2c + bc2) + 6abc.

This symmetry solution has several merits. First, it is less prone to mistakes than is multi-
plying by brute force. Second, it produces the answer in a meaningful, low-entropy form.
The chunks in the solution – the terms a3 + b3 + c3 and a2b + ab2 + a2c + ac2 + b2c + bc2 and
abc – each obey the symmetry that nothing important changes if you permute a, b, and c.
Rather than using a brute-force method and then doing hard work to turn the solution into
a meaningful form, use symmetry reasoning: Whenever possible, work with quantities that
obey the symmetries of the problem.

This chapter shows how this idea leads naturally to dimensionless groups, the fundamental
idea of dimensional analysis.

7.1 Power of multinationals

The first example shows what happens when people take no notice of dimensions.

Critics of globalization often make this argument:

In Nigeria, a relatively economically strong country, the GDP [gross domestic prod-
uct] is $99 billion. The net worth of Exxon is $119 billion. ‘When multinationals have
a net worth higher than the GDP of the country in which they operate, what kind of
power relationship are we talking about?’ asks Laura Morosini. [Source: ‘Impunity
for Multinationals’, ATTAC, 11 Sept 2002, [url:nigeria-argument], retrieved 11
Sept 2006]

Before reading further, try to find the most egregious fault in the comparison between
Exxon and Nigeria. It’s a competitive field, but one fault stands out.

The comparison between Exxon and Nigeria has many problems. First, the comparison
exaggerates Exxon’s power by using its worldwide assets (net worth) rather than its as-
sets only in Nigeria. On the other hand, Exxon can use its full international power when
negotiating with Nigeria, so perhaps the worldwide assets are a fair basis for comparison.

A more serious, and less debatable, problem is the comparison with GDP, or gross domestic
product. To see the problem, look at the ingredients in how GDP is usually measured: as
dollars per year. The $99 billion for Nigeria’s GDP is shorthand for $99 billion per year.
A year is an astronomical time, and its use in an economic measurement is arbitrary. Eco-
nomic flows, which are a social phenomenon, should not care about how long the earth
requires to travel around the sun. Suppose instead that the decade was the chosen unit of
time in measuring the GDP. Then Nigeria’s GDP would be roughly $1 trillion per decade
(assuming that the $99 billion per year value held steady) and would be reported as $1 tril-
lion. Now Nigeria towers over the puny Exxon whose assets are a mere one-tenth of this
figure.
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To produce the opposite conclusion, just measure GDP in units of dollars per week: Nige-
ria’s GDP becomes $2 billion per week. Now puny Nigeria stands helpless before the might
of Exxon, 50-fold larger than Nigeria. Either conclusion about the relative powers can be
produced merely by changing the units. This arbitrariness indicates that the comparison is
bogus.

The flaw in the comparison is the theme of this chapter. Assets, or net worth, are an amount
of money – money is its dimensions – and are typically measured in units of dollars. GDP
is defined as the total goods and services sold in one year. It is a rate and has dimensions
of money per time; its typical units are dollars per year. Comparing assets to GDP means
comparing money to money per time. Because the dimensions of these two quantities are not
the same, the comparison is nonsense! A similarly flawed comparison is to compare length per
time (speed) with length. Listen how ridiculous it sounds: ‘I walk 1.5 meters per second,
much smaller than the Empire State building in New York, which is 300 meters high.’ To
produce the opposite conclusion, measure time in hours: ‘I walk 5000 meters per hour,
much larger than the Empire State building at only 300 meters.’ Nonsense all around!

This example illustrates several ideas:

• Dimensions versus units. Dimensions are general and generic, such as money per time or
length per time. Units are the instantiation of dimensions in a system of measurement.
The most complete system of measurement is the System International (SI), where the
unit of mass is the kilogram, the unit of time the second, and the unit of length the
meter. Other examples of units are dollars per year or kilometers per year.

• Necessary condition for a valid comparison. In a valid comparison, the dimensions of the
compared objects be identical. Do not compare apples to oranges (except in questions
of taste, like ‘I prefer apples to oranges.’)

• Rubbish abounds. There’s lots of rubbish out there, so keep your eyes open for it!

• Bad argument, fine conclusion. I agree with the conclusion of the article, that large oil
companies exert massive power over poor countries. However, as a physicist I am em-
barrassed by the reasoning. This example teaches me a valuable lesson about theorems
and proofs: judge the proof not just the theorem. Even if you disagree with the conclu-
sion, remember the general lesson that a correct conclusion does not validate a dubious
argument.

7.2 Pyramid volume

h

b

b

The last example showed the value of dimensions in economics. The next example
shows that dimensions are also useful in mathematics. What is the volume of this
square-based pyramid? Here are several choices:

1.
1
3

bh

2. b3 + h2
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3. b4/h

4. bh2

Let’s take the choices in turn. The first choice, bh/3, has dimensions of area rather than
volume. So it cannot be right. The second choice, b3 + h2, begins with a volume in the b3

term but falls apart with the h2, which has dimensions of area. Since it adds an area to a
volume – the crime of dimension mixing – it cannot be right. The third choice, b4/h, has
dimensions of volume, so it might be correct. It even increases as b increases, which is a
good sign. However, the volume should increase as h increases – a proportional-reasoning
argument – whereas this choice indicates that the volume decreases as h increases! So it
cannot be right.

The final choice, bh2, has correct dimensions and increases as h or b increases. Does it
increase by the right amounts? Imagine drilling into the pyramid from the top and dividing
it into thin cores or volume elements. If the height of the pyramid doubles, then each
vertical volume element doubles in volume; so the volume of the pyramid should double.
In symbols, V ∝ h. But bh2 quadruples when h doubles, so that choice cannot be right.

The requirement that V ∝ h together with the requirement that V have dimensions of length
cubed means that the missing item in V ∝ h is an area. The only way to make an area from
b is to make b2 perhaps times a dimensionless constant. So

V ∼ hb2.

The missing dimensionless constant is hidden in the twiddle ∼ sign. Alternatively, the ratio
V/hb2 is dimensionless.

This method of deducing the volume requires remembering hardly any arbitrary data. It
requires these ingredients:

1. Using vertical volume elements to find out that V ∝ h.

2. Using dimensions along with V ∝ h to show that V ∼ hb2.

3. Remembering the correct dimensionless constant.

The first two steps are logic and do not require arbitrary data. Instead they use reasoning
methods that you use elsewhere (so there’s no marginal cost to remember them). The third
step requires seemingly arbitrary data. However, in Chapter 8 on special cases, I’ll show
you how to determine the constant elegantly without even needing an integral.

Then the volume requires no memory. Arbitrary data is, by definition, impossible to com-
press. Dimensions, and more generally our techniques for handling complexity, are a form
of data compression or entropy reduction [5]. One way to look at learning is as data com-
pression. So dimensions, and our other techniques, enhance learning.

There’s an old saying: Tell the truth; there’s less to remember. The similar moral here is:
Use dimensions (and proportional reasoning); there’s less to remember!
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7.3 Dimensionless groups

Dimensionless ratios are useful. For example, in the oil example, the ratio of the two quan-
tities has dimensions; in that case, the dimensions of the ratio are time (or one over time).
If the authors of the article had used a dimensionless ratio, they might have made a valid
comparison.

This section explains why dimensionless ratios are the only quantities that you need to
think about; in other words, that there is no need to think about quantities with dimensions.

To see why, take a concrete example: computing the energy E to produce lift as a function
of distance traveled s, plane speed v, air density ρ, wingspan L, plane mass m, and strength
of gravity g. Any true statement about these variables looks like

mess + mess = mess ,

where the various messes mean ’a horrible combination of E, s, v, ρ, L, and m.

As horrible as that true statement is, it permits the following rewriting: Divide each term
by the first one (the triangle). Then

mess

mess

+

mess

mess

=

mess

mess

,

The first ratio is 1, which has no dimensions. Without knowing the individual messes, we
don’t know the second ratio; but it has no dimensions because it is being added to the first
ratio. Similarly, the third ratio, which is on the right side, also has no dimensions.

So the rewritten expression is dimensionless. Nothing in the rewriting depended on the
particular form of the true statement, except that each term has the same dimensions.

Therefore, any true statement can be rewritten in dimensionless form.

Dimensionless forms are made from dimensionless ratios, so all you need are dimension-
less ratios, and you can do all your thinking with them. Here is a familiar example to show
how this change simplifies your thinking. This example uses familiar physics so that you
can concentrate on the new idea of dimensionless ratios.

k

x = 0

m

x

The problem is to find the period of an oscillating spring–mass system given
an initial displacement x0, then allowed to oscillate freely. Section 5.1 gave
a proportional-reasoning analysis of this system. The relevant variables that
determine the period T are mass m, spring constant k, and amplitude x0.
Those three variables completely describe the system, so any true statement
about period needs only those variables.
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Var Dim What
T T period
m M mass
k MT−2 spring constant
x0 L amplitude

Since any true statement can be written in dimensionless form,
the next step is to find all dimensionless forms that can be
constructed from T, m, k, and x0. A table of dimensions is
helpful. The only tricky entry is the dimensions of a spring
constant. Since the force from the spring is F = kx, where x
is the displacement, the dimensions of a spring constant are
the dimensions of force divided by the dimensions of x. It is
convenient to have a notation for the concept of ‘the dimensions of’. In that notation,

[k] =
[F]
[x]
,

where
[
quantity

]
means the dimensions of the quantity. Since [F] =MLT−2 and [x] = L,

[k] =MT−2,

which is the entry in the table.

These quantities combine into many – infinitely many – dimensionless combinations or
groups:

kT2

m
,

m
kT2 ,

(
kT2

m

)25

, π
m

kT2 , , . . . .

The groups are redundant. You can construct them from only one group. In fancy terms,
all the dimensionless groups are formed from one independent dimensionless group. What
combination to use for that one group is up to you, but you need only one group. I like
kT2/m.

So any true statement about the period can be written just using kT2/m. That requirement
limits the possible statements to

kT2

m
= C,

where C is a dimensionless constant. This form has two important consequences:

1. The amplitude x0 does not affect the period. This independence is also known as simple
harmonic motion. The analysis in Section 5.1 gave an approximate argument for why
the period should be independent of the amplitude. So that approximate argument
turns out to be an exact argument.

2. The constant C is independent of k and m. So I can measure it for one spring–mass
system and know it for all spring–mass systems, no matter the mass or spring constant.
The constant is a universal constant.

The requirement that dimensions be valid has simplified the analysis of the spring–mass
system. Without using dimensions, the problem would be to find (or measure) the three-
variable function f that connects m, k, and x0 to the period:

T = f (m, k, x0).
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Whereas using dimensions reveals that the problem is simpler: to find the function h such
that

kT2

m
= h().

Here h() means a function of no variables. Why no variables? Because the right side con-
tains all the other quantities on which kT2/m could depend. However, dimensional analysis
says that the variables appear only through the combination kT2/m, which is already on the
left side. So no variables remain to be put on the right side; hence h is a function of zero
variables. The only function of zero variables is a constant, so kT2/m = C.

This pattern illustrates a famous quote from the statistician and physicist Harold Jeffreys
[6, p. 82]:

A good table of functions of one variable may require a page; that of a function of
two variables a volume; that of a function of three variables a bookcase; and that of
a function of four variables a library.

Use dimensions; avoid tables as big as a library!

7.4 Hydrogen atom

Hydrogen is the simplest atom, and studying hydrogen is the simplest way to understand
the atomic theory. Feynman has explained the importance of the atomic theory in his
famous lectures on physics [7, p. 1-2]:

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only
one sentence passed on to the next generations of creatures, what statement would
contain the most information in the fewest words? I believe it is the atomic hypothesis
(or the atomic fact, or whatever you wish to call it) that all things are made of atoms
– little particles that move around in perpetual motion, attracting each other when they
are a little distance apart, but repelling upon being squeezed into one another. In that one
sentence, you will see, there is an enormous amount of information about the world. . .

The atomic theory was first stated by Democritus. (Early Greek science and philosophy
is discussed with wit, sympathy, and insight in Bertrand Russell’s History of Western Phi-
losophy [8].) Democritus could not say much about the properties of atoms. With modern
knowledge of classical and quantum mechanics, and dimensional analysis, you can say
more.

7.4.1 Dimensional analysis

The next example of dimensional reasoning is the hydrogen atom in order to answer two
questions. The first question is how big is it. That size sets the size of more complex atoms
and molecules. The second question is how much energy is needed to disassemble hy-
drogen. That energy sets the scale for the bond energies of more complex substances, and
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those energies determine macroscopic quantities like the stiffness of materials, the speed of
sound, and the energy content of fat and sugar. All from hydrogen!

The first step in a dimensional analysis is to choose the relevant variables. A simple model
of hydrogen is an electron orbiting a proton. The orbital force is provided by electrostatic
attraction between the proton and electron. The magnitude of the force is

e2

4πε0
1
r2 ,

where r is the distance between the proton and electron. The list of variables should include
enough variables to generate this expression for the force. It could include q, ε0, and r
separately. But that approach is needlessly complex: The charge q is relevant only because
it produces a force. So the charge appears only in the combined quantity e2/4πε0. A similar
argument applies to ε0.

Var Dim What ω
T−1 f requency k
L−1 wavenumber g

LT−2 gravity h
L depth ρ

ML−3 density γ

MT−2 sur f acetension

Therefore rather than listing q and ε0 separately, list only
e2/4πε0. And rather than listing r, list a0, the common no-
tation for the Bohr radius (the radius of ideal hydrogen).
The acceleration of the electron depends on the electrosta-
tic force, which can be constructed from e2/4πε0 and a0, and
on its mass me. So the list should also include me. To find
the dimensions of e2/4πε0, use the formula for force

F =
e2

4πε0
1
r2 .

Then [
e2

4πε0

]
=

[
r2
]
× [F] =ML3T−2.

The next step is to make dimensionless groups. However, no combination of these three
items is dimensionless. To see why, look at the time dimension because it appears in only
one quantity, e2/4πε0. So that quantity cannot occur in a dimensionless group: If it did,
there would be no way to get rid of the time dimensions. From the two remaining quanti-
ties, a0 and me, no dimensionless group is possible.

The failure to make a dimensionless group means that hydrogen does not exist in the simple
model as we have formulated it. I neglected important physics. There are two possibilities
for what physics to add.

One possibility is to add relativity, encapsulated in the speed of light c. So we would add c
to the list of variables. That choice produces a dimensionless group, and therefore produces
a size. However, the size is not the size of hydrogen. It turns out to be the classical electron
radius instead. Fortunately, you do not have to know what the classical electron radius is
in order to understand why the resulting size is not the size of hydrogen. Adding relativity
to the physics – or adding c to the list – allows radiation. So the orbiting, accelerating
electron would radiate. As radiation carries energy away from the electron, it spirals into
the proton, meaning that in this world hydrogen does not exist, nor do other atoms.
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The other possibility is to add quantum mechanics, which was developed to solve funda-
mental problems like the existence of matter. The physics of quantum mechanics is com-
plicated, but its effect on dimensional analyses is simple: It contributes a new constant of
nature ~ whose dimensions are those of angular momentum. Angular momentum is mvr,
so

[~] =ML2T−1.

Var Dim What
a0 L size

e2/4πε0 ML3T−2

me M electron mass
~ ML2T−1 quantum

The ~ might save the day. There are now two quantities
containing time dimensions. Since e2/4πε0 has T−2 and
~ has T−1, the ratio ~2/(e2/4πε0) contains no time dimen-
sions. Since [

~2

e2/4πε0

]
=ML,

a dimensionless group is

~2

a0me(e2/4πε0)

It turns out that all dimensionless groups can be formed from this group. So, as in the
spring–mass example, the only possible true statement involving this group is

~2

a0me(e2/4πε0)
= dimensionless constant.

Therefore, the size of hydrogen is

a0 ∼
~2

me(e2/4πε0)
.

Putting in values for the constants gives

a0 ∼ 0.5Å = 0.5 ·10−10 m.

It turns out that the missing dimensionless constant is 1, so the dimensional analysis has
given the exact answer.

7.4.2 Atomic sizes and substance densities

Hydrogen has a diameter of 1Å. A useful consequence is the rule of thumb is that a typical
interatomic spacing is 3Å. This approximation gives a reasonable approximation for the
densities of substances, as this section explains.
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a

aLet A be the atomic mass of the atom; it is (roughly) the number of pro-
tons and neutrons in the nucleus. Although A is called a mass, it is
dimensionless. Each atom occupies a cube of side length a ∼ 3 Å, and
has mass Amproton. The density of the substance is

ρ =
mass

volume
∼

Amproton

(3 Å)3
.

You do not need to remember or look up mproton if you multiply this
fraction by unity in the form of NA/NA, where NA is Avogadro’s number:

ρ ∼
AmprotonNA

(3 Å)3 ×NA
.

The numerator is A g, because that is how NA is defined. The denominator is

3 ·10−23 cm3
× 6 ·1023 = 18.

So instead of remembering mproton, you need to remember NA. However, NA is more famil-
iar than mproton because NA arises in chemistry and physics. Using NA also emphasizes the
connection between microscopic and macroscopic values. Carrying out the calculations:

ρ ∼
A
18

g cm−3.

Element ρestimated ρactual

Li 0.39 0.54
H2O 1.0 1.0
Si 1.56 2.4
Fe 3.11 7.9
Hg 11.2 13.5
Au 10.9 19.3
U 13.3 18.7

The table compares the estimate against reality. Most every-
day elements have atomic masses between 15 and 150, so the
density estimate explains why most densities lie between 1 and
10 g cm−3. It also shows why, for materials physics, cgs units
are more convenient than SI units are. A typical cgs density of
a solid is 3 g cm−3, and 3 is a modest number and easy to re-
member and work with. However, a typical SI density of a solid
3000 kg m−3. Numbers such as 3000 are unwieldy. Each time
you use it, you have to think, ‘How many powers of ten were
there again?’ So the table tabulates densities using the cgs units
of g cm−3. I even threw a joker into the pack – water is not an element! – but the density
estimate is amazingly accurate.

7.4.3 Physical interpretation

The previous method, dimensional analysis, is mostly mathematical. As a second computa-
tion of a0, we show you a method that is mostly physics. Besides checking the Bohr radius,
it provides a physical interpretation of it. The Bohr radius is the radius of the orbit with the
lowest energy (the ground state). The energy is a sum of kinetic and potential energy. This
division suggests, again, a divide-and-conquer approach: first the kinetic energy, then the
potential energy.
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What is the origin of the kinetic energy? The electron does not orbit in any classical sense.
If it orbited, it would, as an accelerating charge, radiate energy and spiral into the nucleus.
According to quantum mechanics, however, the proton confines the electron to a region of
size r – still unknown to us – and the electron exists in a so-called stationary state. The na-
ture of a stationary state is mysterious; no one understands quantum mechanics, so no one
understands stationary states except mathematically. However, in an approximate estimate
you can ignore details such as the meaning of a stationary state. The necessary information
here is that the electron is, as the name of the state suggests, stationary: It does not radiate.
The problem then is to find the size of the region to which the electron is confined. In reality
the electron is smeared over the whole universe; however, a significant amount of it lives
within a typical radius. This typical radius we estimate and call a0.

E = 0

− e2/4πε0
2r

− e2/4πε0
r

KE ∼ e2/4πε0
2r

∆x ∼ r

For now let this radius be an unknown r and study how the kinetic en-
ergy depends on r. Confinement gives energy to the electron according
to the uncertainty principle:

∆x∆p ∼ ~,

where ∆x is the position uncertainty and ∆p is the momentum uncer-
tainty of the electron. In this model ∆x ∼ r, as shown in the figure, so
∆p ∼ ~/r. The kinetic energy of the electron is

EKinetic ∼
(∆p)2

me
∼
~2

mer2 .

This energy is the confinement energy or the uncertainty energy. This
idea recurs in the book.

The potential energy is the classical expression

EPotential ∼ −
e2

4πε0r
.

The total energy is the combination

E = EPotential + EKinetic ∼ −
e2

4πε0r
+
~2

mer2 .

The two energies compete. At small r, kinetic energy wins, because of the 1/r2; at large r,
potential energy wins, because it goes to zero less rapidly. Is there a minimum combined
energy at some intermediate value of r? There has to be. At small r, the slope dE/dr is
negative. At large r, it is positive. At an intermediate r, the slope crosses between positive
and negative. The energy is a a minimum there. The location would be easy to estimate if
the energy were written in dimensionless form. Such a rewriting is not mandatory in this
example, but it is helpful in complicated examples and is worth learning in this example.

In constructing the dimensionless group containing a0, we constructed another length:

l =
~2

me(e2/4πε0)
.
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To scale any length – to make it dimensionless – divide it by l. So in the total energy the
scaled radius

r̄ ≡
r
l
.

The other unknown in the total energy is the energy itself. To make it dimensionless, a
reasonable energy scale to use is e2/4πε0l by defining scaled energy as

Ē ≡
E

e2/4πε0l
.

Using the dimensionless length and energy, the total energy

E = EPotential + EKinetic ∼ −
e2

4πε0r
+
~2

mer2

becomes

Ē ∼ −
1
r̄
+

1
r̄2 .

The ugly constants are placed into the definitions of scaled length and energy. This dimen-
sionless energy is easy to think about and to sketch.

Simple calculus: minimizing scaled energy Ē versus scaled bond length r̄. The scaled en-
ergy is the sum of potential and kinetic energy. The shape of this energy illustrates Feyn-
man’s explanation of the atomic hypothesis. At a ‘little distance apart’ – for large r̄ – the
curve slopes upward; to lower their energy, the proton and electron prefer to move closer,
and the resulting force is attractive. ‘Upon being squeezed into one another’ – for small r̄ –
the potential rapidly increases, so the force between the particles is repulsive. Somewhere
between the small and large regions of r̄, the force is zero.

Estimate
Actual Total

KE

−PE

1 2 3 4 5

0

0.5

1

1.5

2

r̄

Ē

Calculus (differentiation) locates this minimum-energy r̄ at r̄min = 2. An alternative method
is cheap minimization: When two terms compete, the minimum occurs when the terms are
roughly equal. This method of minimization is familiar from Section 6.2.2.

Equating the two terms r̄−1 and r̄−2 gives r̄min ∼ 1. This result gives a scaled length. In
actual units, it is



60 60

60 60

6.055 / Art of approximation 60

2008-01-14 22:31:34 / rev 55add9943bf1

rmin = lr̄min =
~2

me(e2/4πε0)
,

which is the Bohr radius computed using dimensional analysis. The sloppiness in estimat-
ing the kinetic and potential energies has canceled the error introduced by cheap minimiza-
tion!

Here is how to justify cheap minimization. Consider a reasonable general form for E:

E(r) =
A
rn −

B
rm .

This form captures the important feature of the combined energy

E = EPotential + EKinetic ∼ −
e2

4πε0r
+
~2

mer2 ,

that two terms represent competing physical effects. Mathematically, that physical fact is
shown by the opposite signs.

To find the minimum, solve E′(rmin) = 0 or

−n
A

rn+1
min

+m
B

rm+1
min

= 0.

The solution is

A
rn

min
=

n
m

B
rm

min
(calculus).

This method minimizes the combined energy by equating the two terms A/rn and B/rm:

A
rn

min
=

B
rm

min
.

This approximation lacks the n/m factor in the exact result. The ratio of the two estimates
for rmin is

approximate estimate
calculus estimate

∼

( n
m

)1/(m−n)
,

which is smaller than 1 unless n = m, when there is no maximum or minimum. So the
approximate method underestimates the location of minima and maxima.

To judge the method in practice, apply it to a typical example: the potential between non-
polar atoms or molecules, such as between helium, xenon, or methane. This potential is
well approximated by the so-called Lennard–Jones potential where m = 6 and n = 12:

U(r) ∼
A
r12
−

B
r6 .

The approximate result underestimates rmin by a factor of(12
6

)1/6
∼ 1.15.
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An error of 15 percent is often small compared to the other inaccuracies in an approximate
computation, so this method of approximate minimization is a valuable time-saver.

Now return to the original problem: determining the Bohr radius. The approximate min-
imization predicts the correct value. Even if the method were not so charmed, there is no
point in doing a proper, calculus minimization. The calculus method is too accurate given
the inaccuracies in the rest of the derivation.

Engineers understand this idea of not over-engineering a system. If a bicycle most often
breaks at welds in the frame, there is little point replacing the metal between the welds
with expensive, high-strength aerospace materials. The new materials might last 100 years
instead of 50 years, but such a replacement would be overengineering. To improve a bicy-
cle, put effort into improving or doing without the welds.

In estimating the Bohr radius, the kinetic-energy estimate uses a crude form of the uncer-
tainty principle, ∆p∆x ∼ ~, whereas the true statement is that ∆p∆x ≥ ~/2. The estimate
also uses the approximation EKinetic ∼ (∆p)2/m. This approximation contains m instead of
2m in the denominator. It also assumes that ∆p can be converted into an energy as though
it were a true momentum rather than merely a crude estimate for the root-mean-square
momentum. The potential- and kinetic-energy estimates use a crude definition of position
uncertainty ∆x: that ∆x ∼ r. After making so many approximations, it is pointless to mini-
mize the result using the elephant gun of differential calculus. The approximate method is
as accurate as, or perhaps more accurate than the approximations in the energy.

This method of equating competing terms is balancing. We balanced the kinetic energy
against the potential energy by assuming that they are roughly the same size. The conse-
quence is that

a0 ∼
~2

me(e2/4πε0)
.

Nature could have been unkind: The potential and kinetic energies could have differed by
a factor of 10 or 100. But Nature is kind: The two energies are roughly equal, except for a
constant that is nearly 1. ‘Nearly 1’ is also called of order unity. This rough equality occurs
in many examples, and you often get a reasonable answer by pretending that two energies
(or two quantities with the same units) are equal. When the quantities are potential and
kinetic energy, as they often are, you get extra safety: The so-called virial theorem protects
you against large errors (for more on the virial theorem, see any intermediate textbook on
classical dynamics).

7.5 Bending of light by gravity

Rocks, birds, and people feel the effect of gravity. So why not light? The analysis of that
question is a triumph of Einstein’s theory of general relativity. I can calculate how gravity
bends light by solving the so-called geodesic equations from general relativity:

d2xβ

dλ2 + Γ
β
µν

dxµ

dλ
dxν

dλ
= 0.
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To compute the Christoffel symbols Γβµν requires solving for the metric tensor gµν, which
requires solving the curvature equations Rµν = 0.

The curvature equations are a shorthand for ten partial-differential equations. The equa-
tions are rich in mathematical interest but are a nightmare to solve. The equations are nu-
merous – that’s one problem – but worse, they are not linear. So the standard trick, which
is to guess a type of solution and form new solutions by combining the basic types, does
not work. You can spend a decade learning advanced mathematics to solve the equations
exactly. Or you can accept the great principle of analysis: When the going gets tough, lower
your standards. If I sacrifice accuracy, I can explain light bending in less than one thousand
pages using mathematics and physics that you (and I!) already know.

The simpler method is dimensional analysis, in the usual three steps:

1. Find the relevant parameters.

2. Find dimensionless groups.

3. Use the groups to make the most general dimensionless statement.

4. Add physical knowledge to narrow the possibilities.

The following sections do each step.

7.5.1 Finding parameters

The first step in a dimensional analysis is to decide what physical parameters the bending
angle can depend on. An unlabeled diagram prods me into thinking of labels, many of
which are parameters of the problem:

sun

Here are reasons to include various parameters:

1. The list has to include the quantity to solve for. So the angle θ is the first item in the list.

2. The mass of the sun, m, has to affect the angle. Black holes greatly deflect light, probably
because of their huge mass.

3. A faraway sun or black hole cannot strongly affect the path (near the earth light seems
to travel straight, in spite of black holes all over the universe); therefore r, the distance
from the center of the mass, is a relevant parameter. The phrase ‘distance from the
center’ is ambiguous, since the light is at various distances from the center. Let r be the
distance of closest approach.

4. The dimensional analysis needs to know that gravity produces the bending. The para-
meters listed so far do not create any forces. So include Newton’s gravitational constant
G.

Here is the same diagram with important parameters labeled:
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sun
mass m

θ

r

Here is a table of the parameters and their dimensions:

Parameter Meaning Dimensions
θ angle –
m mass of sun M
G Newton’s constant L3T−2M−1

r distance from center of sun L

where, as you might suspect, L, M, and T represent the dimensions of length, mass, and
time, respectively.

7.5.2 Dimensionless groups

What are the dimensionless groups? The parameter θ is an angle, which is already dimen-
sionless. The other variables, G, m, and r, cannot form a second dimensionless group. To
see why, following the dimensions of mass. It appears only in G and m, so a dimensionless
group would contain the product Gm, which has no mass dimensions in it. But Gm and
r cannot get rid of the time dimensions. So there is only one independent dimensionless
group, for which θ is the simplest choice.

I want a second dimensionless group because otherwise my analysis seems like nonsense.
Any physical solution can be written in dimensionless form; this idea is the foundation
of dimensional analysis. With only one dimensionless group, θ, I have to conclude that θ
depends on no variables at all:

θ = function of other dimensionless groups,

but there are no other dimensionless groups, so

θ = constant.

This conclusion is crazy! The angle must depend on at least one of m and r. My physical
picture might be confused, but it’s not so confused that neither variable is relevant. So I
need to make another dimensionless group on which θ can depend. Therefore, I return to
Step 1: Finding parameters.

The list so far lacks a crucial parameter.

What physics have I neglected? Free associating often suggests the missing parameter.
Unlike rocks, light is difficult to deflect, otherwise humanity would not have waited until



64 64

64 64

6.055 / Art of approximation 64

2008-01-14 22:31:34 / rev 55add9943bf1

the 1800s to study the deflection, whereas the path of rocks was studied at least as far back
as Aristotle and probably for millions of years beforehand. Light travels much faster than
rocks, which may explain why light is so difficult to deflect: The gravitational field ‘gets
hold of it’ only for a short time. But none of my parameters distinguish between light
and rocks. Therefore I should include c, the speed of light. It introduces the fact that I’m
studying light, and it does so with a useful distinguishing parameter, the speed.

Here is the latest table of parameters and dimensions:

Parameter Meaning Dimensions
θ angle –
m mass of sun M
G Newton’s constant L3T−2M−1

r distance from center of sun L
c speed of light LT−1

Length is strewn all over the parameters (it’s in G, r, and c). Mass, however, appears in only
G and m, so I already know I need a combination such as Gm to cancel out mass. Time also
appears in only two parameters: G and c. To cancel out time, I need to form Gm/c2. This
combination has one length in it, so a dimensionless group is Gm/rc2.

7.5.3 Drawing conclusions

The most general relation between the two dimensionless groups is

θ = f
(Gm

rc2

)
.

Dimensional analysis cannot tell me the correct function f .

Physical reasoning and symmetry narrow the possibilities. First, strong gravity – from a
large G or m – should increase the angle. So f should be an increasing function. Now try
symmetry: Imagine a world where gravity is repulsive or, equivalently, the gravitational
constant is negative. Then the angle should also be negative, so f should be an odd func-
tion. This symmetry argument eliminates choices like f (Gm/rc2) ∼ (Gm/rc2)2.

The simplest guess is that f is the identity function. Then the bending angle is

θ =
Gm
rc2 .

There is likely a dimensionless constant in f :

θ = 7
Gm
rc2

or

θ = 0.3
Gm
rc2

are also possible. This freedom means
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θ ∼
Gm
rc2 .

7.5.4 Comparison with exact calculations

Different theories of gravity give the same result

θ ∼
Gm
rc2 ;

the only variation is in the value for the missing dimensionless constant. Here are those
values from exact calculation:

θ =
Gm
rc2 ×


1 (simplest guess);
2 (Newtonian gravity);
4 (Einstein’s theory).

Here is a rough explanation of the origin of those constants. The 1 for the simplest guess
is just that. The 2 for Newtonian gravity is from integrating angular factors like cosine and
sine that determine the position of the photon as it moves toward and past the sun.

The most interesting constant is the 4 for general relativity, which is twice the Newtonian
value because light moves at the speed of light. The extra bending is a consequence of Ein-
stein’s theory of special relativity putting space and time on the same level. The theory of
general relativity then formulates gravity in terms of the curvature of spacetime. Newton’s
theory is the limit of general relativity that considers only time curvature; general relativ-
ity itself also calculates the space curvature. Since most objects move much slower than the
speed of light, meaning that they travel much farther in time than in space, they feel mostly
the time curvature. The Newtonian analysis is fine for those objects. Since light moves at
the speed of light, it sees equal amounts of space and time curvature, so it bends twice as
far as the Newtonian theory would predict.

7.5.5 Numbers!

At the surface of the Earth, the strength is

Gm
rc2 ∼

6.7 ·10−11 m3 s−2 kg−1
× 6.0 ·1024 kg

6.4 ·106 m × 3.0 ·108 m s−1 × 3.0 ·108 m s−1
∼ 10−9.

This miniscule value is the bending angle (in radians). So if physicists want to show that
light bends, they had better look beyond the earth! That statement is based on another
piece of dimensional analysis and physical reasoning, whose result I quote without proof:
A telescope with mirror of diameter d can resolve angles roughly as small as λ/d, where
λ is the wavelength of light. One way to measure the bending of light is to measure the
change in position of the stars. A lens that could resolve an angle of 10−9 has a diameter of
at least

d ∼ λ/θ ∼
0.5 ·10−6 m

10−9 ∼ 500 m.
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Large lenses warp and crack; one of the largest lenses made is 6 m. So there is no chance of
detecting an angle of 10−9.

Physicists therefore searched for another source of light bending. In the solar system, the
largest mass is the sun. At the surface of the sun, the field strength is

Gm
rc2 ∼

6.7 ·10−11 m3 s−2 kg−1
× 2.0 ·1030 kg

7.0 ·108 m × 3.0 ·108 m s−1 × 3.0 ·108 m s−1
∼ 2.1 ·10−6

≈ 0.4′′.

This angle, though small, is possible to detect: The required lens diameter is roughly

d ∼ λ/θ ∼
0.5 ·10−6 m

2.1 ·10−6 ∼ 20 cm.

The eclipse expedition of 1919, led by Arthur Eddington of Cambridge, tried to measure
exactly this effect.

For many years Einstein believed that his theory of gravity would predict the Newton-
ian value, which turns out to be 0.87 arcseconds for light just grazing the surface of the
sun. The German mathematician, Soldner, derived the same result in 1803. Fortunately
for Einstein’s reputation, the eclipse expeditions that went to test his (and Soldner’s) pre-
diction got rained or clouded out. By the time an expedition got lucky with the weather
(Eddington’s in 1919), Einstein had invented a new theory of gravity, which predicted 1.75
arcseconds. The goal of Eddington’s expedition was to decide between the Newtonian and
general relativity values. The measurements are difficult, and the results were not accurate
enough to decide which theory was right. But 1919 was the first year after the World War, in
which Germany and Britain had fought each other almost to oblivion. A theory invented
by a German, confirmed by an Englishman (from Newton’s university, no less) – such a
picture was comforting after the trauma of war, so the world press and scientific commu-
nity saw what they wanted to: Einstein vindicated! A proper confirmation of Einstein’s
prediction came only with the advent of radio astronomy, which could measure small de-
flections accurately. I leave you with this puzzle: If the accuracy of a telescope is λ/d, how
could radio telescopes be more accurate than optical ones, since radio waves have a longer
wavelength than light has?!

7.6 Buckingham Pi theorem

The second step is in a dimensional analysis is to make dimensionless groups. That task is
simpler by knowing in advance how many groups to look for. The Buckingham Pi theorem
provides that number. I derive it with a series of examples.

Here is a possible beginning of the theorem statement: The number of dimensionless groups
is. . . . Try it on the light-bending example. How many groups can the variables θ, G, m, r,
and c produce? The possibilities include θ, θ2, Gm/rc2, θGm/rc2, and so on. The possibilities
are infinite! Now apply the theorem statement to estimating the size of hydrogen, before
including quantum mechanics in the list of variables. That list is a0 (the size), e2/4πε0, and
me. That list produces no dimensionless groups. So it seems that the number of groups
would be zero – if no groups are possible – or infinity, if even one group is possible.
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Here is an improved theorem statement taking account of the redundancy: The number of
independent dimensionless groups is. . . . To complete the statement, try a few examples:

1. Bending of light. The five quantities θ, G, m, r, and c produce two independent groups.
A convenient choice for the two groups is θ and Gm/rc2, but any other independent set
is equally valid, even if not as intuitive.

2. Size of hydrogen without quantum mechanics. The three quantities a0 (the size), e2/4πε0,
and me produce zero groups.

3. Size of hydrogen with quantum mechanics. The four quantities a0 (the size), e2/4πε0,
me, and ~ produce one independent group.

These examples fit a simple pattern:

no. of independent groups = no. of quantities − 3.

The 3 is a bit distressing because it is a magic number with no explanation. It is also the
number of basic dimensions: length, mass, and time. So perhaps the statement is

no. of independent groups = no. of quantities − no. of dimensions.

Test this statement with additional examples:

1. Period of a spring–mass system. The quantities are T (the period), k, m, and x0 (the
amplitude). These four quantities form one independent dimensionless group, which
could be kT2/m. This result is consistent with the proposed theorem.

2. Period of a spring–mass system (without x0). Since the amplitude x0 does not affect
the period, the quantities could have been T (the period), k, and m. These three quan-
tities form one independent dimensionless group, which again could be kT2/m. This
result is also consistent with the proposed theorem, since T, k, and m contain only two
dimensions (mass and time).

The theorem is safe until we try to derive Newton’s second law. The force F depends on
mass m and acceleration a. Those three quantities contain three dimensions – mass, length,
and time. Three minus three is zero, so the proposed theorem predicts zero independent
dimensionless groups. Whereas F = ma tells me that F/ma is a dimensionless group.

Var Dim What
F MLT−2 force
m M mass
a LT−2 acceleration

This problem can be fixed by adding one word. Look at the
dimensions of F, m, and a. All the dimensions – M or MLT−2

or LT−2 – can be constructed from only two dimensions: M and
LT−2. The key idea is that the original set of three dimensions
are not independent, whereas the pair M and LT−2 are indepen-
dent. So:

no. of independent groups = no. of quantities − no. of independent dimensions.

And that statement is the Buckingham Pi theorem [9].
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Chapter 8
Special cases

8.1 Pyramid volume

I have been promising to explain the factor of one-third in the volume of a pyramid:

V =
1
3

hb2.

Although the method of special cases mostly cannot explain a dimensionless constant, the
volume of a pyramid provides a rare counterexample.

b

h = b

I first explain the key idea in fewer dimensions. So, instead of immediately
explaining the one-third in the volume of a pyramid, which is a difficult three-
dimensional problem, first find the corresponding constant in a two-dimensional
problem. That problem is the area of a triangle with base b and height h: The
area is A ∼ bh. What is the constant? Choose a convenient triangle, perhaps a
45-degree right triangle where h = b. Two of those triangles form a square with
area b2, so A = b2/2 when h = b. The constant in A ∼ bh is therefore 1/2 no matter what b and
h are, so A = bh/2.

Now use the same construction in three dimensions. What square-based pyra-
mid, when combined with itself perhaps several times, makes a familiar shape?
Only the aspect ratio h/b matters in the following discussion. So choose b con-
veniently, and then choose h to make a pyramid with the clever aspect ratio.
The goal shape is suggested by the square pyramid base. Another solid with
the same base is a cube.

Perhaps several pyramids can combine into a cube of side b. To simplify the
upcoming arithmetic, I choose b = 2. What should the height h be? To decide, imagine how
the cube will be constructed. Each cube has six faces, so six pyramids might make a cube
where each pyramid base forms one face of the cube, and each pyramid tip faces inward,
meeting in the center of the cube. For the tips to meet in the center of the cube, the height
must be h = 1. So six pyramids with b = 2, and h = 1 make a cube with side length 2.

The volume of one pyramid is one-sixth of the volume of the cube:

V =
cube volume

6
=

8
6
=

4
3
.
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The volume of the pyramid is V ∼ hb2, and the missing constant must make volume 4/3.
Since hb2 = 4 for these pyramids, the missing constant is 1/3. Voilà:

V =
1
3

hb2 =
4
3
.

8.2 Mechanics

8.2.1 Atwood machine

The next problem illustrates dimensional analysis and special cases in a physical problem.
Many of the ideas and methods from the geometry example transfer to this problem, and
it introduces more methods and ways of reasoning.

m1

m2

The problem is a staple of first-year physics: Two masses, m1 and m2, are connected and,
thanks to a pulley, are free to move up and down. What is the acceleration of the masses
and the tension in the string? You can solve this problem with standard methods from
first-year physics, which means that you can can check the solution that we derive using
dimensional analysis, educated guessing, and a feel for functions.

The first problem is to find the acceleration of, say, m1. Since m1 and m2 are connected
by a rope, the acceleration of m2 is, depending on your sign convention, either equal to
m1 or equal to −m1. Let’s call the acceleration a and use dimensional analysis to guess its
form. The first step is to decide what variables are relevant. The acceleration depends on
gravity, so g should be on the list. The masses affect the acceleration, so m1 and m2 are on
the list. And that’s it. You might wonder what happened to the tension: Doesn’t it affect
the acceleration? It does, but it is itself a consequence of m1, m2, and g. So adding tension to
the list does not add information; it would instead make the dimensional analysis difficult.

Var Dim What
a LT−2 accel. of m1

g LT−2 gravity
m1 M block mass
m2 M block mass

These variables fall into two pairs where the variables in each pair
have the same dimensions. So there are two dimensionless groups
here ripe for picking: G1 = m1/m2 and G2 = a/g. You can make
any dimensionless group using these two obvious groups, as ex-
perimentation will convince you. Then, following the usual pat-
tern,

a
g
= f

(m1

m2

)
,

where f is a dimensionless function.

Pause a moment. The more thinking that you do to choose a clean representation, the less
algebra you do later. So rather than find f using m1/m2 as the dimensionless group, first
choose a better group. The ratio m1/m2 does not respect the symmetry of the problem in
that only the sign of the acceleration changes when you interchange the labels m1 and m2.
Whereas m1/m2 turns into its reciprocal. So the function f will have to do lots of work to
turn the unsymmetric ratio m1/m2 into a symmetric acceleration.
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Back to the drawing board for how to fix G1. Another option is to use m1 − m2. Wait, the
difference is not dimensionless! I fix that problem in a moment. For now observe the virtue
of m1−m2. It shows a physically reasonable symmetry under mass interchange: G1 → −G1.
To make it dimensionless, divide it by another mass. One candidate is m1:

G1 =
m1 +m2

m1
.

That choice, like dividing by m2, abandons the beloved symmetry. But dividing by m1 +m2

solves all the problems:

G1 =
m1 −m2

m1 +m2
.

This group is dimensionless and it respects the symmetry of the problem.

Using this G1, the solution becomes

a
g
= f

(m1 −m2

m1 +m2

)
,

where f is another dimensionless function.

m1

To guess f (x), where x = G1, try special cases. First imagine that m1 becomes huge. A
quantity with mass cannot be huge on its own, however. Here huge means huge relative
to m2, whereupon x ≈ 1. In this thought experiment, m1 falls as if there were no m2 so
a = −g. Here we’ve chosen a sign convention with positive acceleration being upward.
If m2 is huge relative to m1, which means x = −1, then m2 falls like a stone pulling m1

upward with acceleration a = g. A third limiting case is m1 = m2 or x = 0, whereupon the
masses are in equilibrium so a = 0.

Here is a plot of our knowledge of f :

x

f(x)

1-1

1

-1

The simplest conjecture – an educated guess – is that f (x) = x. Then we have our result:

a
g
=

m1 −m2

m1 +m2
.

Look how simple the result is when derived in a symmetric, dimensionless form using
special cases!
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8.3 Drag

Pendulum motion is not a horrible enough problem to show the full benefit of dimensional
analysis. Instead try fluid mechanics – a subject notorious for its mathematical and physical
complexity; Chandrasekhar’s books [10, 11] or the classic textbook of Lamb [12] show that
the mathematics is not for the faint of heart.

Density ρfl

Viscosity ν

ρobj

R

v

The next examples illustrate two extremes of fluid flow: oozing and turbu-
lent. An example of oozing flow is ions transporting charge in seawater (Section 8.3.6).
An example of turbulent flow is a raindrop falling from the sky after condens-
ing out of a cloud (Section 8.3.7).

To find the terminal velocity, solve the partial-differential equations of fluid
mechanics for the incompressible flow of a Newtonian fluid:

∂v
∂t
+ (v·∇)v = −

1
ρ
∇p + ν∇2v, (3 eqns)

∇·v = 0. (1 eqn)

Here v is the fluid velocity, ρ is the fluid density, ν is the kinematic viscosity,
and p is the pressure. The first equation is a vector shorthand for three equa-
tions, so the full system is four equations.

All the equations are partial-differential equations and three are nonlinear. Worse, they are
coupled: Quantities appear in more than one equation. So we have to solve a system of
coupled, nonlinear, partial-differential equations. This solution must satisfy boundary con-
ditions imposed by the marble or raindrop. As the object moves, the boundary conditions
change. So until you know how the object moves, you do not know the boundary condi-
tions. Until you know the boundary conditions, you cannot find the motion of the fluid
or of the object. This coupling between the boundary conditions and solution compounds
the difficulty of the problem. It requires that you solve the equations and the boundary
conditions together. If you ever get there, then you take the limit t→∞ to find the terminal
velocity.

Sleep easy! I wrote out the Navier–Stokes equations only to scare you into using dimen-
sional analysis and special-cases reasoning. The approximate approach is easier than solv-
ing nonlinear partial-differential equations.

8.3.1 Naive dimensional analysis

To use dimensional analysis, follow the usual steps: Choose relevant variables, form di-
mensionless groups from them, and solve for the terminal velocity. In choosing quantities,
do not forget to include the variable for which you are solving, which here is v. To decide
on the other quantities, split them into three categories (divide and conquer):

1. characteristics of the fluid,

2. characteristics of the object, and

3. characteristics of whatever makes the object fall.
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The last category is the easiest to think about, so deal with it first. Gravity makes the object
fall, so g is on the list.

Consider next the characteristics of the object. Its velocity, as the quantity for which we are
solving, is already on the list. Its mass m affects the terminal velocity: A feather falls more
slowly than a rock does. Its radius r probably affects the terminal velocity. Instead of listing
r and m together, remix them and use r and ρobj. The two alternatives r and m or r and ρobj

provide the same information as long as the object is uniform: You can compute ρobj from
m and r and can compute m from ρobj and r.

Choose the preferable pair by looking ahead in the derivation. The relevant properties of
the fluid include its density ρfl. If the list also includes ρobj, then the results might contain
pleasing dimensionless ratios such as ρobj/ρfl (a dimensionless group!). The ratio ρobj/ρfl

has a more obvious physical interpretation than a combination such as m/ρflr3, which, ex-
cept for a dimensionless constant, is more obscurely the ratio of object and fluid densities.
So choose ρobj and r over m and r.

Scaling arguments also favor the pair ρobj and r. In a scaling argument you imagine varying,
say, a size. Size, like heat, is an extensive quantity: a quantity related to amount of stuff.
When you vary the size, you want as few other variables as possible to change so that those
changes do not obscure the effect of changing size. Therefore, whenever possible replace
extensive quantities with intensive quantities like temperature or density. The pair m and
r contains two extensive quantities, whereas the preferable pair ρobj and r contains only one
extensive quantity.

Now consider properties of the fluid. Its density ρfl affects the terminal velocity. Perhaps
its viscosity is also relevant. Viscosity measures the tendency of a fluid to reduce velocity
differences in the flow. You can observe an analog of viscosity in traffic flow on a multilane
highway. If one lane moves much faster than another, drivers switch from the slower to
the faster lane, eventually slowing down the faster lane. Local decisions of the drivers
reduce the velocity gradient. Similarly, molecular motion (in a gas) or collisions (in a fluid)
transports speed (really, momentum) from fast- to slow-flowing regions. This transport
reduces the velocity difference between the regions. Oozier (more viscous) fluids probably
produce more drag than thin fluids do. So viscosity belongs on the list of relevant variables.

Fluid mechanicians have defined two viscosities: dynamic viscosity η and kinematic vis-
cosity ν. [Sadly, we could not use the mellifluous term fluid mechanics to signify a host of
physicists agonizing over the equations of fluid mechanics; it would not distinguish the
toilers from their toil.] The two viscosities are related by η = ρflν. Life in Moving Fluids [13,
pp. 23–25] discusses the two types of viscosity in detail. For the analysis of drag force, you
need to know only that viscous forces are proportional to viscosity. Which viscosity should
we use? Dynamic viscosity hides ρfl inside the product νρfl; a ratio of ρobj and η then looks
less dimensionless than it is because ρobj’s partner ρfl is buried inside η. Therefore the kine-
matic viscosity ν usually gives the more insightful results. Summarizing the discussion, the
table lists the variables by category.
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Var Dim What
ν L2T−1 kinematic viscosity
ρfl ML−3 fluid density
r L object radius
v LT−1 terminal velocity
ρobj ML−3 object density

g LT−2 gravity

The next step is to find dimensionless groups. The Buck-
ingham Pi theorem (Section 7.6) says that the six vari-
ables and three independent dimensions result in three
dimensionless groups.

Before finding the groups, consider the consequences of
three groups. Three?! Three dimensionless groups pro-
duce this form for the terminal velocity v:

group with v = f (other group 1, other group 2).

To deduce the properties of f requires physics knowledge. However, studying a two-
variable function is onerous. A function of one variable is represented by a curve and
can be graphed on a sheet of paper. A function of two variables is represented by a sur-
face. For a complete picture it needs three-dimensional paper (do you have any?); or you
can graph many slices of it on regular two-dimensional paper. Neither choice is appeal-
ing. This brute-force approach to the terminal velocity produces too many dimensionless
groups.

If you simplify only after you reach the complicated form

group with v = f (other group 1, other group 2),

you carry baggage that you eventually discard. When going on holiday to the Caribbean,
why pack skis that you never use but just cart around everywhere? Instead, at the be-
ginning of the analysis, incorporate the physics knowledge. That way you simplify the
remainder of the derivation. To follow this strategy of packing light – of packing only what
you need – consider the physics of terminal velocity in order to make simplifications now.

8.3.2 Simpler approach

terminal velocity

weight drag buoyancy

The adjective terminal in the phrase ‘terminal velocity’ hints at the physics
that determines the velocity. Here ‘terminal’ is used in its sense of final,
as in after an infinite time. It indicates that the velocity has become con-
stant, which happens only when no net force acts on the marble. This
line of thought suggests that we imagine the forces acting on the object: gravity, buoyancy,
and drag. The terminal velocity is velocity at which the drag, gravitational, and buoyant
forces combine to make zero net force. Divide-and-conquer reasoning splits the terminal-
velocity problem into three simpler problems.

terminal velocity

weight drag buoyancy

ρspr3g

The gravitational force, also known as the weight, is mg. Instead of m
we use (4π/3)ρobjr3 – for the same reasons that we listed ρobj instead of
m in the table of variables – and happily ignore the factor of 4π/3. With
those choices, the weight is

Fg ∼ ρobjr3g.
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The figure shows the roadmap updated with this information.

higher p

buoyant force

lower p

Sphere

The remaining pieces are drag and buoyancy. Buoyancy is easier, so do it first (the
principle of maximal laziness). It is an upward force that results because gravity
affects the pressure in a fluid. The pressure increases according to p = p0 + ρflgh,
where h is the depth and p0 is the pressure at zero depth (which can be taken to
be at any level in the fluid). The pressure difference between the top and bottom
of the object, which are separated by a distance ∼ r, is ∆p ∼ ρflgr. Pressure is
force per area, and the pressure difference acts over an area A ∼ r2. Therefore the
buoyant force created by the pressure difference is

Fb ∼ A∆p ∼ ρflr3g.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3g

As a check on this result, Archimedes’s principle says that the buoyant
force is the ‘weight of fluid displaced’. This weight is

mass︷ ︸︸ ︷
ρfl

4π
3
πr3︸︷︷︸

volume

g.

Except for the factor of 4π/3, it matches the buoyant force so Archimedes’s principle con-
firms our estimate for Fb. That result updates the roadmap. The main unexplored branch
is the drag force, which we solve using dimensional analysis.

8.3.3 Dimensional analysis for the drag force

The weight and buoyancy were solvable without dimensional analysis, but we still need
to use dimensional analysis to find the drag force. The purpose of breaking the problem
into parts was to simplify this dimensional analysis relative to the brute-force approach in
Section 8.3.1. Let’s see how the list of variables changes when computing the drag force
rather than the terminal velocity. The drag force Fd has to join the list: not a promising
beginning when trying to eliminate variables. Worse, the terminal velocity v remains on
the list, even though we are no longer computing it, because the drag force depends on the
velocity of the object.

However, all is not lost. The drag force has no idea what is inside the sphere. Picture the
fluid as a huge computer that implements the laws of fluid dynamics. From the viewpoint
of this computer, the parameters v and r are the only relevant attributes of a moving sphere.
What lies underneath the surface does not affect the fluid flow: Drag is only skin deep. The
computer can determine the flow (if it has tremendous processing power) without knowing
the sphere’s density ρobj, which means it vanishes from the list. Progress!
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Var Dim What
Fd MLT−2 drag force
ν L2T−1 kinematic viscosity
ρfl ML−3 fluid density
r L object radius
v LT−1 terminal velocity

Now consider the characteristics of the fluid. The fluid
supercomputer still needs the density and viscosity of
the fluid to determine how the pieces of fluid move in
response to the object’s motion. So ρfl and ν remain on
the list. What about gravity? It causes the object to fall,
so it is responsible for the terminal velocity v. However,
the fluid supercomputer does not care how the object
acquired this velocity; it cares only what the velocity is.
So g vanishes from the list. The updated tabled shows the new, shorter list.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

The five variables in the list are composed of three basic dimensions.
From the Buckingham Pi theorem (Section 7.6), we expect two dimen-
sionless groups. We find one group by dividing and conquering. The
list already includes a velocity (the terminal velocity). If we can con-
coct another quantity V with dimensions of velocity, then v/V is a di-
mensionless group. The viscosity ν is almost a velocity. It contains one
more power of length than velocity does. Dividing by r eliminates the
extra length: V ≡ ν/r. A dimensionless group is then

G1 ≡
v
V
=

vr
ν
.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

vR

ν

Our knowledge, including this group, is shown in the figure. This
group is so important that it has a name, the Reynolds number, which
is abbreviated Re. It is important because it is a dimensionless mea-
sure of flow speed. The velocity, because it contains dimensions, can-
not distinguish fast from slow flows. For example, 1000 m s−1 is slow
for a planet, whose speeds are typically tens of kilometers per second,
but fast for a pedestrian. When you hear that a quantity is small, fast,
large, expensive, or almost any adjective, your first reaction should be
to ask, ‘compared to what?’ Such a comparison suggests dividing v by
another velocity; then we get a dimensionless quantity that is propor-
tional to v. The result of this division is the Reynolds number.

Low values of Re indicate slow, viscous flow (cold honey oozing out of a jar). High values
indicate turbulent flow (a jet flying at 600 mph). The excellent Life in Moving Fluids [13]
discusses many more dimensionless ratios that arise in fluid mechanics.

The Reynolds number looks lonely in the map. To give it company, find a second dimen-
sionless group. The drag force is absent from the first group so it must live in the second;
otherwise we cannot solve for the drag force.

Instead of dreaming up the dimensionless group in one lucky guess, we construct it in
steps (divide-and-conquer reasoning). Examine the variables in the table, dimension by
dimension. Only two (Fd and ρfl) contain mass, so both or neither appear in the group.
Because Fd has to appear, ρfl must also appear. Each variable contains a first power of
mass, so the group contains the ratio Fd/ρfl. A simple choice is
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G2 ∝
Fd

ρfl
.

The dimensions of Fd/ρfl are L4T−2, which is the square of L2T−1. Fortune smiles on us, for
L2T−1 are the dimensions of ν. So

Fd

ρflν2

is a dimensionless group.

This choice, although valid, has a defect: It contains ν, which already belongs to the first
group (the Reynolds number). Of all the variables in the problem, ν is the one most likely
to be found irrelevant based on a physical argument (as will happen in Section 8.3.7, when
we specialize to high-speed flow. If ν appears in two groups, eliminating it requires recom-
bining the two groups into one that does not contain ν. However, if ν appears in only one
group, then eliminating it is simple: eliminate that group. Simpler mathematics – eliminat-
ing a group rather than remixing two groups to get one group – requires simpler physical
reasoning. Therefore, isolate ν in one group if possible.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

vR

ν

Fd

ρflr2v2

To remove ν from the proposed group Fd/ρflν2 notice that the product
of two dimensionless groups is also dimensionless. The first group
contains ν−1 and the proposed group contains ν−2, so the ratio

group proposed
(first group)2 =

Fd

ρflr2v2

is not only dimensionless but it also does not contain ν. So the analysis
will be easy to modify when we try to eliminate ν. With this revised
second group, our knowledge is now shown in this figure:

This group, unlike the the proposal Fd/ρflν2, has a plausible physical
interpretation. Imagine that the sphere travels a distance l, and use l to
multiply the group by unity:

Fd

ρflr2v2︸︷︷︸
group 1

×
l
l︸︷︷︸
1

=
Fdl
ρfllr2v2 .

The numerator is the work done against the drag force over the distance l. The denominator
is also an energy. To interpret it, examine its parts (divide and conquer). The product lr2 is,
except for a dimensionless constant, the volume of fluid swept out by the object. So ρfllr2 is,
except for a constant, the mass of fluid shoved aside by the object. The object moves fluid
with a velocity comparable to v, so it imparts to the fluid a kinetic energy

EK ∼ ρfllr2v2.

Thus the ratio, and hence the group, has the following interpretation:

work done against drag
kinetic energy imparted to the fluid

.
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In highly dissipative flows, when energy is burned directly up by viscosity, the numerator
is much larger than the denominator, so this ratio (which will turn out to measure drag) is
much greater than 1. In highly streamlined flows (a jet wing), the the work done against
drag is small because the fluid returns most of the imparted kinetic energy to the object. So
in the ratio, the numerator will be small compared to the denominator.

To solve for Fd, which is contained in G2, use the form G2 = f (G1), which becomes

Fd

ρflr2v2 = f
(vr
ν

)
.

The drag force is then

Fd = ρflr2v2 f
(vr
ν

)
.

The function f is a dimensionless function: Its argument is dimensionless and it returns a
dimensionless number. It is also a universal function. The same f applies to spheres of any
size, in a fluid of any viscosity or density! Although f depends on r, ρfl, ν, and v, it depends
on them only through one combination, the Reynolds number. A function of one variable
is easier to study than is a function of four variables:

A good table of functions of one variable may require a page; that of a function of
two variables a volume; that of a function of three variables a bookcase; and that of
a function of four variables a library.

—Harold Jeffreys [6, p. 82]

Dimensional analysis cannot tell us the form of f . To learn its form, we specialize to two
special cases:

1. viscous, low-speed flow (Re � 1), the subject of Section 8.3.4; and

2. turbulent, high-speed flow (Re � 1), the subject of Section 8.3.7.

8.3.4 Viscous limit

As an example of the low-speed limit, consider a marble falling in vegetable oil or glycerin.
You may wonder how often marbles fall in oil, and why we bother with this example. The
short answer to the first question is ‘not often’. However, the same physics that determines
the fall of marbles in oil also determines, for example, the behavior of fog droplets in air,
of bacteria swimming in water [14], or of oil drops in the Millikan oil-drop experiment.
The marble problem not only illustrates the physical principles, but also we can check our
results with a home experiment.

In slow, viscous flows, the drag force comes directly from – surprise! – viscous forces. These
forces are proportional to viscosity because viscosity is the constant of proportionality in
the definition of the viscous force. Therefore

Fd ∝ ν.
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The viscosity appears exactly once in the drag result, repeated here:

Fd = ρflr2v2 f
(vr
ν

)
.

To flip ν into the numerator and make Fd ∝ ν, the function f must have the form f (x) ∼ 1/x.
With this f (x) the result is

Fd ∼ ρflr2v2 ν
vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic dimensionless con-
stant. A fluid mechanician must do a messy and difficult calculation. Her burden is light
now that we have worked out the solution except for this one constant. The British mathe-
matician Stokes, the first to derive its value, found that

Fd = 6πρflνvr.

In honor of Stokes, this result is called Stokes drag.

Let’s sanity check the result. Large or fast marbles should feel a lot of drag, so r and v
should be in the numerator. Viscous fluids should produce a lot of drag, so ν should be the
numerator. The proposed drag force passes these tests. The correct location of the density
– in the numerator or denominator – is hard to judge.

You can make an educated judgment by studying the Navier–Stokes equations. In those
equations, when v is ‘small’ (small compared to what?) then the (v·∇)v term, which con-
tains two powers of v, becomes tiny compared to the viscous term ν∇2v, which contains
only one power of v. The second-order term arises from the inertia of the fluid, so this
term’s being small says that the oozing marble does not experience inertial effects. So per-
haps ρfl, which represents the inertia of the fluid, should not appear in the Stokes drag.
On the other hand, viscous forces are proportional to the dynamic viscosity η = ρflν, so ρfl

should appear even if inertia is unimportant. The Stokes drag passes this test. Using the
dynamic instead of kinematic viscosity, the Stokes drag is

Fd = 6πηvr,

often a convenient form because many tables list η rather than ν.

This factor of 6π comes from doing honest calculations. Here, it comes from solving the
Navier–Stokes equations. In this book we wish to teach you how not to suffer, so we do
not solve such equations. We usually quote the factor from honest calculation to show you
how accurate (or sloppy) the approximations are. The factor is often near unity, although
not in this case where it is roughly 20! In fancy talk, it is usually ‘of order unity’. Such
a number suits our neural hardware: It is easy to remember and to use. Knowing the
approximate derivation and remembering this one number, you reconstruct the exact result
without solving difficult equations.

Now use the Stokes drag to estimate the terminal velocity in the special case of low Reynolds
number.
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8.3.5 Terminal velocity for low Reynolds number

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

vR

ν

Fd

ρflr2v2

Having assembled all the pieces in the roadmap, we now return to the
original problem of finding the terminal velocity. Since no net force
acts on the marble (the definition of terminal velocity), the drag force
plus the buoyant force equals the weight:

νρflvr︸︷︷︸
Fd

+ ρflgr3︸︷︷︸
Fb

∼ ρobjgr3︸︷︷︸
Fg

.

After rearranging:

νρflvr ∼ (ρobj − ρfl)gr3.

The terminal velocity is then

v ∼
gr2

ν

(
ρobj

ρfl
− 1

)
.

In terms of the dynamic viscosity η, it is

v ∼
gr2

η
(ρobj − ρfl).

This version, instead of having the dimensionless factor ρobj/ρfl − 1 that appears in the
version with kinematic viscosity, has a dimensional ρobj − ρfl factor. Although it is less
aesthetic, it is often more convenient because tables often list dynamic viscosity η rather
than kinematic viscosity ν.

We can increase our confidence in this expression by checking whether the correct variables
are upstairs (a picturesque way to say ‘in the numerator’) and downstairs (in the denomina-
tor). Denser marbles should fall faster than less dense marbles, so ρobj should live upstairs.
Gravity accelerates marbles, so g should live upstairs. Viscosity slows marbles, so ν should
live downstairs. The terminal velocity passes these tests. We therefore have more confi-
dence in our result, although the tests did not check the location of r or any exponents: For
example, should ν appear as ν2? Who knows, but if viscosity matters, it mostly appears as
a square root or as a first power.

To check r, imagine a large marble. It will experience a lot of drag and fall slowly, so r
should appear downstairs. However, large marbles are also heavy and fall rapidly, which
suggests that r should appear upstairs. Which effect wins is not obvious, although after
you have experience with these problems, you can make an educated guess: weight scales
as r3, a rapidly rising function r, whereas drag is probably proportional to a lower power
of r. Weight usually wins such contents, as it does here, leaving r upstairs. So the terminal
velocity also passes the r test.

Let’s look at the dimensionless ratio in parentheses: ρobj/ρfl − 1. Without buoyancy the −1
disappears, and the terminal velocity would be
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v ∝ g
ρobj

ρfl
.

We retain the g in the proportionality for the following reason: The true solution returns if
we replace g by an effective gravity g′ where

g′ ≡ g
(
1 −
ρfl

ρobj

)
.

So, one way to incorporate the effect of the buoyant force is to solve the problem without
buoyancy but with the reduced g.

Check this replacement in two limiting cases: ρfl = 0 and ρfl = ρobj. When ρobj = ρfl gravity
vanishes: People, whose density is close to the density of water, barely float in swimming
pools. Then g′ should be zero. When ρfl = 0, buoyancy vanishes and gravity retains its full
effect. So g′ should equal g. The effective gravity definition satisfies both tests. Between
these two limits, the effective g should vary linearly with ρfl because buoyancy and weight
superpose linearly in their effect on the object. The effective g passes this test as well.

Another test is to imagine ρfl > ρobj. Then the relation correctly predicts that g′ is negative:
helium balloons rise. This alternative to using buoyancy explicitly is often useful. If, for
example you forget to include buoyancy (which happened in the first draft of this chapter),
you can correct the results later by replacing g with the g′.

If we carry forward the constants of proportionality, starting with the magic 6π in the Stokes
drag and including the 4π/3 that belongs in the weight, we find

v ∼
2
9

gr2

ν

(
ρobj

ρfl
− 1

)
.

8.3.6 Conductivity of seawater

σ = 1
ρ

ρ

R = V

I
block geometry

V = El I = qnvA

E l n v A

Fq Fd

As an application of Stokes drag and a rare example of a realis-
tic situation with low Reynolds numbers, let’s estimate the elec-
trical conductivity of seawater. Solving this problem is hopeless
without breaking it into pieces. Conductivity σ is the reciprocal
of resistivity ρ. (Apologies for the convention that overloads the
density symbol with yet another meaning.) Resistivity, as its name
suggests, is related to resistance R. Why have both ρ and R? Re-
sistance is a useful measure for a particular wire, but not for wires
in general because it depends on the diameter and cross-sectional
area of the wire. It is not an intensive quantity. Before examin-
ing the relationship between resistivity and resistance, let’s finish
sketching the solution tree, leaving ρ as depending on R plus geometry. We can find R by
placing a voltage V across a block of seawater and measuring the current I; then R = V/I.

To find V or I we need a physical model. First, why does seawater conduct at all? Con-
duction requires the transport of charge, which is produced by an electric field. Seawater
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is mostly water and table salt (NaCl). The ions that arise from dissolving salt can transport
charge. The resulting current is

I = qnvA,

where A is the cross-sectional area of the block, q is the ion charge, n is the ion concentration,
and v is its terminal speed.

To understand, and be able to rederive this formula, first check its dimensions. Current is
charge per time. Is the right side also charge per time? Yes: q takes care of the charge; and
vA has dimensions of L3T−1 so nvA, which has dimensions of T−1, takes care of the time.

As a second check, watch a cross-section of the block for a time ∆t. How much charge flows
in that time? The charges move at speed v, so all charges in block of width v∆t and area
A cross the cross-section. This block has volume vA∆t. The ion concentration is n, so the
block contains nvA∆t charges. If each ion has charge q, then the total charge on the ions is
Q = qnvA∆t. It took a time ∆t for this charge to flow, so the current is I = Q/∆t = qnvA. The
terminal speed v depends on the applied force Fq and on the drag force Fd, just as for the
falling marble but with an electrical force instead of a gravitational force. The result of this
subdividing is the preceding map.

A

l

Now let’s find expressions for the unknown nodes. Only three remain: ρ,
v, and n. The figure illustrates the relation between ρ and R:

ρ =
RA

l
.

To find v we follow the same procedure as for the marble. The applied force is Fq = qE,
where q is the ion charge and E is the electric field. The electric field produced by the
voltage V is E = V/l, where l is the length of the block, so

Fq =
qV
l
,

an expression in terms only of known quantities. The drag is Stokes drag. Equating this
drag to the applied force gives the terminal velocity v in terms of known quantities:

v ∼
qV

6πηlr
,

where r is the radius of the ion.

Only the number density n remains unknown. We estimate it after getting a symbolic result
for σ, which you can do by climbing up the solution tree. First, find the current in terms of
the terminal velocity:

I = qnvA ∼
q2nAV
6πηlr

.

Use the current to find the resistance:

R ∼
V
I
∼

6πηlr
q2nA

.
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The voltage V has vanished, which is encouraging: In most circuits the conductivity (and
resistance) is independent of voltage. Use the resistance to find the resistivity:

ρ = R
A
l
∼

6πηr
q2n
.

The expression simplifies as we rise up the tree: The geometric parameters l and A have
also vanished, which is also encouraging: The purpose of evaluating resistivity rather than
resistance is that resistivity is independent of geometry.

Use resistivity to find conductivity:

σ =
1
ρ
∼

q2n
6πηr

.

Here q is the electron charge e or its negative, depending on whether a sodium or a chloride
ion is the charge carrier, so

σ =
1
ρ
∼

e2n
6πηr

.

To find σ still requires the ion concentration n, which we can find from the concentration of
salt in seawater. This value I estimate with a kitchen-sink experiment: Add table salt to a
glass of water until it tastes as salty as seawater. I just tried it. In a glass of water, I found
that a teaspoon of salt tastes very salty, like drinking seawater. A glass of water may have
a volume of 0.3 ` or a mass of 300 g. A flat teaspoon of salt has a volume of about 5 m`.
For those who live in metric countries, a teaspoon is an archaic measure used in Britain and
especially the United States, which has no nearby metric country to which it pays attention.
A teaspoon is about 4 cm long by 2 cm wide by 1 cm thick at its deepest point; let’s assume
0.5 cm on average. Its volume is therefore

teaspoon ∼ 4 cm × 2 cm × 0.5 cm ∼ 4 cm3.

The density of salt is maybe twice the density of water, so a flat teaspoon has a mass of
∼ 10 g. The mass fraction of salt in seawater is, in this experiment, roughly 1/30. The true
value is remarkably close: 0.035. A mole of salt, which provides two charges per NaCl
‘molecule’, has a mass of 60 g, so

n ∼
1
30
× 1 g cm−3︸ ︷︷ ︸

ρwater

×
2 charges
molecule

×
6 ·1023 molecules mole−1

60 g mole−1

∼ 7 ·1020 charges cm−3.

With n evaluated, the only remaining mysteries in the conductivity

σ =
1
ρ
∼

q2n
6πηr

are the ion radius r and the dynamic viscosity η.

Do the easy part first. The dynamic viscosity is
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η = ρwaterν ∼ 103 kg m−3
× 10−6 m2 s−1 = 10−3 kg m−1 s−1.

Here I switched to SI (mks) units. Although most calculations are easier in cgs units – also
known as God’s units – than they are in SI units, the one exception is electromagnetism,
which is represented by the e2 in the conductivity. Electromagnetism is conceptually eas-
ier in cgs units – which needs no ghastly µ0 or 4πε0, for example – than it is in SI units.
However, the cgs unit of charge, the electrostatic unit, is unfamiliar. So, for numerical cal-
culations, use SI units.

water

water

water

water

The final quantity required is the ion radius. A positive ion (sodium)
attracts an oxygen end of a water molecule; a negative ion (chloride)
attracts the hydrogen end of a water molecule. Either way, the ion, being
charged, is surrounded by one or maybe more layers of water molecules.
As it moves, it drags some of this baggage with it. So rather than use
the bare ion radius you should use a larger radius to include this shell.
But how thick is the shell? As an educated guess, assume that the shell
includes one layer of water molecules, each with a radius of 1.5 Å. So
for the ion plus shell, r ∼ 2 Å.

With these numbers, the conductivity becomes:

σ ∼

e2︷ ︸︸ ︷
(1.6 ·10−19 C)2

×

n︷ ︸︸ ︷
7 ·1026 m−3

6 × 3︸︷︷︸
6π

× 10−3 kg m−1 s−1︸ ︷︷ ︸
η

× 2 ·10−10 m︸ ︷︷ ︸
r

.

You can do the computation mentally: Take out the big part, apply the principle of maximal
laziness, and divide and conquer by first counting the powers of ten (shown in red) and then
worrying about the small factors. Then divide and conquer again by counting the top and
bottom contributions separately. The top contributes -12 powers of ten: −38 from e2 and
+26 from n. The bottom contributes -13 powers of ten: −3 from η and −10 from r. The
division produces one power of ten.

Now account for the remaining small factors:

1.62
× 7

6 × 3 × 2
.

Slightly overestimate the answer by pretending that the 1.62 on top cancels the 3 on the
bottom. Slightly underestimate the answer – and maybe compensate for the overestimate
– by pretending that the 7 on top cancels the 6 on the bottom. After these lies, only 1/2
remains. Multiplying it by the sole power of ten gives

σ ∼ 5Ω−1 m−1.

Using a calculator to do the arithmetic gives 4.977 . . . Ω−1 m−1, which is extremely close to
the result from mental calculation.



85 85

85 85

8 Special cases 85

2008-01-14 22:31:34 / rev 55add9943bf1

The estimated resistivity is

ρ ∼ σ−1
∼ 0.2Ωm = 20Ω cm,

where we converted to the conventional although not fully SI units of Ω cm. A typical
experimental value for seawater at T = 15 ◦C is 23.3Ω cm (from [15, p. 14-15]), absurdly
close to the estimate!

Probably the most significant error is the radius of the ion-plus-water combination that is
doing the charge transport. Perhaps r should be greater than 2 Å, especially for a sodium
ion, which is smaller than chloride; it therefore has a higher electric field at its surface and
grabs water molecules more strongly than chloride does. In spite of such uncertainties, the
continuum approximation produced more accurate results than it ought to.

At the length scale of a sodium ion, water looks like a collection of spongy boulders more
than it looks like a continuum. Yet Stokes drag worked. It works because the important
length scale is not the size of water molecules, but rather their mean free path between
collisions. Molecules in a liquid are packed to the point of contact, so the mean free path is
much shorter than a molecular (or even ionic) radius, especially compared to an ion with
its shell of water.

The moral of this example, besides illustrating Stokes drag, is to have courage. Approxi-
mate first and ask questions later. Maybe the approximations are correct for reasons that
you do not suspect when you start solving a problem. If you agonize over each approxima-
tion, you will never start a calculation, and then you will not find out that many approxi-
mations would have been fine. . .if only you had had the courage to make them.

8.3.7 Turbulent limit

We now compute drag in the other flow extreme: high-speed, or turbulent, flow. The exam-
ple will be to compute the terminal speed of a raindrop. These results apply to most flows.
For example, when a child rises from a chair, the airflow around her is high-speed flow, as
you can check by computing the Reynolds number. Say that the child is 0.2 m wide, and
that she rises with velocity 0.5 m s−1. Then

Re ∼
vr
νair
∼

0.5 m s−1
× 0.2 m

2 ·10−5 m2 s−1
∼ 5000.

Here viscosity of air is closer to

νair ≈ 1.5 ·10−5 m2 s−1,

than to 2 ·10−5 m2 s−1, but 2 ·10−5 m2 s−1 easily combines with the 0.2 m in the numerator to
allows us to do the calculation mentally. Using either value for the viscosity, the Reynolds
number is much larger than unity, so the flow is turbulent. Larger objects, such as planes,
trains, and automobiles, create turbulence even when they travel even more slowly than
the child. In short, most fluid flow around us is turbulent flow.
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To begin the analysis, we assume that a raindrop is a sphere. It is a convenient lie that
allows us to reuse the general results of Section 8.3.3 and specialize to high-speed flow.
At high speeds (more precisely, at high Reynolds number) the flow is turbulent. Viscosity
– which affects only slow flows but does not directly influence the shearing and whirling
of turbulent flows – becomes irrelevant. Let’s see how much we can understand about
turbulent drag knowing only that turbulent drag is nearly independent of viscosity.

Turbulence is perhaps the main unsolved problem in classical physics. However, you can
still understand a lot about drag using dimensional analysis plus a bit of physical reason-
ing; we do not need a full understanding of turbulence. The world is messy: Do not wait
for a full understanding before you analyze or estimate.

Var Dim What
Fd MLT−2 drag force
ρfl ML−3 fluid density
r L object radius
v LT−1 terminal velocity

In the roadmap for low Reynolds number, the viscosity ap-
pears only in the first group. Because turbulent drag is in-
dependent of the viscosity, the viscosity disappears from
the results and therefore so does that group. This argu-
ment is glib. More precisely, remove ν from the list of vari-
ables and search again for dimensionless groups. The re-
maining four variables, shown in the table, result in one
dimensionless group, which is the second group from the old roadmap.

So the Reynolds number, which was the first group, has disappeared from the analysis. But
why is drag at high speeds independent of Reynolds number? Equivalently, why can we
remove ν from the list of variables and still get the correct form for the drag force? The
answer is not obvious. The explanation of the Reynolds number as a ratio of two speeds
v and V provides a partial answer. A natural length in this problem is r; we can use r to
transform v and V into times:

τv ≡
r
v
,

τV ≡
r
V
∼

r2

ν
.

Note that Re ≡ τV/τv. The quantity τv is the time that fluid takes to travel around the sphere
(apart from constants). Kinematic viscosity is ν/ρ, but its most important interpretation is
as the diffusion coefficient for momentum. So the time for momentum to diffuse a distance
x is

τ ∼
x2

ν
.

This result depends on the mathematics of random walks; you can increase your confidence
in it here, without understanding the theory of random walks, by checking that it has valid
dimensions. And it has: Each side is a time.

So τV is the time that momentum takes to diffuse around an object of size r, such as the
falling sphere in this problem. If τV � τv – in which case Re � 1 – then momentum
diffuses before fluid travels around the sphere. Momentum diffusion equalizes velocities,
if it has time, which it does have in this low-Reynolds-number limit. Momentum diffusion
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therefore prevents flow at the front from being radically different from the flow at the back,
and thereby squelches any turbulence. In the other limit, when τV � τv or Re � 1 –
momentum diffusion is outraced by fluid flow, so the fluid is free to shred itself into a
turbulent mess. Once the viscosity is low enough to allow turbulence, its value does not
affect the drag, which is why we can ignore it for Re � 1. Here Re � 1 means ‘large enough
so that turbulence sets in’, which happens around Re ∼ 1000. A more complete story, which
we discuss as part of boundary layers in Section 9.4, slightly corrects this approximation.
However, it is close enough for our purposes here.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group

Fd

ρflr2v2

Here the important point is that the viscosity vanishes from the analy-
sis and so does group 1. Once it disappears, the dimensionless group
that remains is

G2 =
Fd

ρflr2v2 .

Because it is the only group, the solution is

G2 = dimensionless constant,

or

Fd ∼ ρflr2v2.

h

A

fluid

Vol. = Ah
m = ρflAh

This drag is for a sphere. What about other shapes, which are characterized by
more parameters than a sphere is? So that the drag force generalizes to more com-
plex shapes, we express it using the cross-sectional area of the object. Here A = πr2,
so

Fd ∼ ρflAv2.

This conventional choice has a physical basis. As an object moves, the mass of fluid
that it displaces is proportional to its cross-sectional area:

mfl = ρflAh.

The fluid is given a speed comparable to v, so the fluid’s kinetic energy is

EK ∼
1
2

mflv2
∼

1
2
ρflAhv2.

If all this kinetic energy is dissipated by drag, then the drag force is EK/h or

Fd ∼
1
2
ρflAv2.

In this form with the factor of 1/2, the constant of proportionality is the drag coefficient cd.
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Object cd

Sphere 0.5
Cylinder 1.0
Flat plate 2.0
Car 0.4

Like its close cousin f from the dimensionless drag force, the drag coefficient
is a dimensionless measure of the drag force. It depends on the shape of the
object – on how streamlined it is. The table lists cd for various shapes (at high
Reynolds number). The drag coefficient, being proportional to the function
f (Re) in the general solution, also depends on the Reynolds number. How-
ever, using the reasoning that the flow at high Reynolds number is indepen-
dent of viscosity, the drag coefficient should also be independent of Reynolds
number. Using the drag coefficient instead of f (which implies using cross-sectional area
instead of r2), the turbulent drag force becomes

Fd =
1
2

cdρflv2A.

So we have an expression for the turbulent drag force. The weight and buoyant forces are
the same as in the viscous limit. So we just need to redo the analysis of the viscous limit
but with the new drag force. Because the weight and buoyant forces contain r3, we return
to using r2 instead of A in the drag force. With these results, the terminal velocity v is given
by

ρflr2v2︸︷︷︸
Fd

∼ g(ρobj − ρfl)r3︸ ︷︷ ︸
Fg−Fb

,

so

v ∼

√
gr

(
ρobj

ρfl
− 1

)
.

Pause to sanity check this result: Are the right variables upstairs and downstairs? We
consider each variable in turn.

• ρfl: The terminal velocity is smaller in a denser fluid (try running in a swimming pool),
so ρfl should be in the denominator.

• g: Imagine a person falling on a planet that has a gravitational force stronger than that of
the earth. Gravity partially determines atmospheric pressure and density. Holding the
atmospheric density constant while increasing gravity might be impossible in real life,
but we can do it easily in a thought experiment. The drag force then does not depend
on g, so gravity increases the terminal speed without opposition from the drag force: g
should be upstairs.

• ρobj: Imagine a raindrop made of (very) heavy water. Relative to a standard raindrop,
the gravitational force increases while the drag force remains constant, as shown using
the fluid-is-a-computer argument in ??sec:drag-force-DA. So ρobj should be upstairs.

• r: To determine where the radius lives requires a more subtle argument. Increasing r
increases both the gravitational and drag forces. The gravitational force increases as r3



89 89

89 89

8 Special cases 89

2008-01-14 22:31:34 / rev 55add9943bf1

whereas the drag force increases only as r2. So, for larger raindrops, their greater weight
increases v more than their greater drag decreases v. Therefore r should be live upstairs.

• ν: At high Reynolds number viscosity does not affect drag, at least not in our approxi-
mation. So ν should not appear anywhere.

The terminal velocity passes all tests.

Now we can compute the terminal velocity. The splash spots on the sidewalk made by
raindrops in a recent rain have r ∼ 0.3 cm. Since rain is water, its density is ρobj ∼ 1 g cm−3.
The density of air is ρfl ∼ 1 kg m−3, so ρfl � ρobj: Buoyancy is therefore not an important
effect, and we can replace ρobj/ρfl − 1 by ρobj/ρfl. With this simplification and the estimated
numbers, the terminal velocity is:

v ∼

 1000 cm s−2︸ ︷︷ ︸
g

× 0.3 cm︸︷︷︸
r

×

ρobj︷ ︸︸ ︷
1 g cm−3

10−3 g cm−3︸ ︷︷ ︸
ρfl

1/2

∼ 5 m s−1,

or 10 mph.

This calculation assumed that Re � 1. Check that assumption! You need not calculate Re
from scratch; rather, scale it relative to a previous results. As we worked out earlier, a child
(r ∼ 0.2 m) rising from her chair (v ∼ 0.5 m s−1) creates a turbulent flow with Re ∼ 5000.
The flow created by the raindrop is faster by a factor of 10, but the raindrop is smaller by a
factor of roughly 100. Scaling the Reynolds number for the child gives

Re ∼ Rechild︸︷︷︸
5000

×

(
vdrop

vchild

)
︸ ︷︷ ︸

10

×

(
rdrop

rchild

)
︸ ︷︷ ︸

0.01

∼ 500.

This Reynolds number is also much larger than 1, so the flow produced by the raindrop is
turbulent, which vindicates the initial assumption.

Re � 1

Re ∼ vR

ν

Fd ∼ ρv2R2

v ∼
√

gR
ρobj

ρfl

1

3

4 2

Assume Derive

CalculateCheck

Now that we have found the terminal velocity, let’s extract the pat-
tern of the solution. The order that we followed was assume, derive,
calculate, then check. This order is more fruitful than is the sim-
pler order of derive then calculate. Without knowing whether the
flow is fast or slow, we cannot derive a closed-form expression for
Fd; such a derivation is probably beyond present understanding of
fluids and turbulence. Blocked by this mathematical Everest, we
would remain trapped in the derive box. We would never deter-
mine Fd, so we would never realize that the Reynolds number is large (the assume box);
however, only this assumption makes it possible to eliminate ν and thereby to estimate Fd.
The moral: Assume early and often!
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8.3.8 Combining solutions from the two limits

You know know the drag force in two extreme cases, viscous and turbulent drag. The
results are repeated here:

Fd =

{
6πρflνvr (viscous),
1
2 cdρflAv2 (turbulent).

Let’s compare and combine them by making the viscous form look like the turbulent form.
Compared to the turbulent form, the viscous form lacks one power of r and one power of
v but has an extra power of ν. A combination of variables with a similar property is the
Reynolds number rv/ν. So multiply the viscous drag by a useful form of unity:

Fd =
(rv/ν

Re

)
︸︷︷︸

1

× 6πρflvρflνr︸ ︷︷ ︸
Fd

=
1

Re
6πρflv2r2 (viscous).

This form, except for the 6π and the r2, resembles the turbulent drag Fortunately A = πr2

so

Fd =
6

Re
ρflv2A (viscous),

With

cd =
12
Re

(viscous),

the turbulent drag and this rewritten viscous drag for a sphere have the same form:

Fd =
1
2
ρflAv2

×


12
Re

(Re � 1),

0.5 (Re � 1).

12
Re

0.5

0.01 1 100 104

1

10

100

1000

Re

cdAt high Reynolds number the drag coefficient remains
constant. For a sphere, that constant is cd ∼ 1/2. If the
low-Reynolds-number approximation for cd is valid at
sufficiently high Reynolds numbers, then cd would cross
1/2 near Re ∼ 24, where presumably the high-Reynolds-
number approximation takes over. The crossing point
is a reasonable estimate for the transition between low-
and high-speed flow. Experiment or massive simulation
are the only ways to get a more accurate result. Exper-
imental data place the crossover near Re ∼ 5, at which
point cd ∼ 2. Why can’t you calculate this value analyt-
ically? If a dimensionless variable, such as the Reynolds number, is close to unity, calcu-
lations become difficult. Approximations that depend on a quantity being either huge or
tiny are no longer valid. When all terms in an equation are roughly of the same magnitude,
you cannot get rid of any term without making large errors. To get results in these situa-
tions, you have to do honest work: You must do experiments or solve the Navier–Stokes
equations numerically.
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Chapter 9
Discretization

9.1 Diaper usage

9.2 Pendulum period

9.3 Random walks

Random walks are everywhere. Do you remember the card game War? How long does
it last, on average? A molecule of neurotransmitter is released from a vesicle. Eventually
it binds to the synapse, and your leg twitches. How long does it take to get there? On a
winter day, you stand outside wearing only a thin layer of clothing. Why do you feel cold?

These physical situations are examples of random walks. In a physical random walk, for
example a gas molecule moving and colliding, the walker moves a variable distance and
can move in any direction. This general situation is complicated. Fortunately, the essential
features of the random walk do not depend on these complicated details.

Simplify by discarding the generality. The generality arises from the continuous degrees of
freedom: the direction is continuous and the distance between collisions is continuous. So,
discretize the direction and the distance: Assume that the particle travels a fixed distance
between collisions and that it can move only along the coordinate axes. Furthermore, ana-
lyze the special case of one-dimensional motion before going to the more general cases of
two- and three-dimensional motion.

In this discretized, one-dimensional model, a particle starts at the origin and moves along
a line. At each tick it moves left or right with probability 1/2 in each direction. Let the
position after n steps be xn, and the expected position after n steps be 〈xn〉. Because the
random walk is unbiased – because moving in each direction is equally likely – the expected
position remains constant:

〈xn〉 = 〈xn−1〉 .

So 〈x〉, the so-called first moment of the position, is an invariant. However, it is not a
fascinating invariant because it does not tell us much that we do not already understand
intuitively.
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Given that the first moment is not interesting, try the next-most-complicated moment: the
second moment 〈x2

〉. This analysis is easiest in special cases. Suppose that after a while
wandering, the particle has arrived at 7, i.e. x = 7. At the next tick it will be at either x = 6
or x = 8. Its expected squared position – not its squared expected position! – has become

〈x2
〉 =

1
2

(
62 + 82

)
= 50.

The expected squared position increased by 1.

Let’s check this pattern in a second example. Suppose that the particle is at x = 10, so
〈x2
〉 = 100. After one tick, the new expected squared position is

〈x2
〉 =

1
2

(
92 + 112

)
= 101.

Yet again 〈x2
〉 has increased by 1! Based on those two examples, the conclusion is that

〈x2
n+1〉 = 〈x

2
n〉 + 1.

In other words,

〈x2
n〉 = n.

Since each step takes a constant time, in this discretized analysis, the conclusion is that

〈x2
n〉 ∝ t.

The result that 〈x2
〉 is proportional to time applied to the one-dimensional random walk.

And it works for any dimension. Here’s an example in two dimensions. Suppose that the
particle’s position is (5, 2), so 〈x2

〉 = 29. After one step, it has four equally likely positions:

(0, 0)

(5, 2)

r

Rather than compute the new expected squared distance using all four positions, be lazy
and just look at the two horizontal motions. The two possibilities are (6, 2) and (4, 2). The
expected squared distance is

〈x2
〉 =

1
2

(40 + 20) = 30,

which is one more than the previous value of 〈x2
〉. Since nothing is special about horizontal

motion compared to vertical motion – symmetry! – the same result holds for vertical mo-
tion. So, averaging over the four possible locations produces an expected squared distance
of 30.

For two dimensions, the pattern is:



93 93

93 93

9 Discretization 93

2008-01-14 22:31:34 / rev 55add9943bf1

〈x2
n+1〉 = 〈x

2
n〉 + 1.

No step in the analysis depended on being in only two dimensions. In fancy words, the
derivation and the result are invariant to change of dimensionality. In plain English, this
result also works in three dimensions.

9.3.1 Difference between a random walk and a regular walk

In a standard walk in a straight line, 〈x〉 ∝ time. Note the single power of x. The interesting
quantity in a regular walk is not x itself, since it can grow without limit and is not invariant,
but the ratio x/t, which is invariant to changes in t. This invariant is also known as the
speed.

In a random walk, where 〈x2
〉 ∝ t, the interesting quantity is 〈x2

〉/t. The expected squared
position is not invariant to changes in t, but the ratio 〈x2

〉/t is an invariant. This invari-
ant is, except for a dimensionless constant, the diffusion constant often denoted D. It has
dimensions of L2T−1.

The difference between a random and a regular walk makes intuitive sense. A random
walker, for example a gas molecule or a very drunk person, moves back and forth, some-
times making progress in one direction, and other times undoing that progress. So a ran-
dom walker should take longer than a regular walker would take to travel the same dis-
tance. The relation 〈x2

〉/t ∼ D confirms and sharpens this intuition. The time for a random
walker to travel a distance l is t ∼ l2/D, which grows quadratically rather than linearly with
distance.

9.3.2 Diffusion equation

The discretized model of a random explains where the diffusion equation comes from.
Imagine a gas of particles with each particle doing a random walk in one dimension. How
does the concentration, or number, change with time?

Slice the one-dimensional world into slices of width ∆x, and look at the slices at x − ∆x, x,
and x + ∆x. In every time step, one-half the molecules in each slice move left, and one-half
move right. So the number at x changes from N(x) to

1
2

(N(x − ∆x) +N(x + ∆x)),

for a change of

∆N =
1
2

(N(x − ∆x) +N(x + ∆x)) −N(x)

=
1
2

(N(x − ∆x) − 2N(x) +N(x + ∆x)).

This last relation can be rewritten as

∆N ∼ (N(x + ∆x) −N(x)) − (N(x) −N(x + ∆x)) ,
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which in terms of derivatives is

∆N ∼ (∆x)2∂
2N
∂x2 .

The slices are separated by a distance such that most of the molecules travel from one piece
to the neighboring piece in the time step τ. If τ is the time between collisions – the mean
free time – then the distance is the mean free path λ. Thus

∆N
τ
∼
λ2

τ
∂2N
∂x2 ,

or

Ṅ ∼ D
∂2N
∂x2

where D ∼ λ2/τ is a diffusion constant.

This partial-differential equation has interesting properties. The second spatial derivative
means that a linear spatial concentration gradient remains unchanged: Its second deriva-
tive is zero so its time derivative must be zero. Diffusion smashes only curvature – roughly
speaking, the second derivative – and does not try to change just the gradient. Heat often
diffuses by a random walk, either via phonons (in a liquid or solid) or via molecular ran-
dom walks (in a gas), so if you maintain one end of a bar at T1 and the other end at T2, then
the bar will eventually linearly interpolate between the two temperatures, as long as heat
is fed into the hot end and drawn out of the cold end.

9.3.3 Keeping warm

One consequence of random walks is how to keep warm on a cold day. We need to calculate
the flux of heat: the energy flowing per unit area per unit time. We start from the definition
of flux and reason physically.

Flux of stuff is defined as

flux of stuff =
stuff

area × time
.

The flux depends on the density of stuff and on how fast the stuff travels:

flux of stuff =
stuff

volume
× speed.

You can check that the dimensions are the same on both sides.

For heat flux, the stuff is thermal energy. The specific heat cp is the thermal energy per mass,
and ρcpT is the thermal energy per volume. The speed is the ‘speed’ of diffusion. To diffuse
a distance l takes time t ∼ l2/D, making the speed l/t or D/l. The l in the denominator
indicates that, as expected, diffusion is slow over long distances. For heat diffusion, the
diffusion constant is denoted κ and called the thermal diffusivity. So the speed is l/κ.

Combine the thermal energy per volume with the diffusion speed:



95 95

95 95

9 Discretization 95

2008-01-14 22:31:34 / rev 55add9943bf1

thermal flux = ρcpT ×
κ
l
.

The product ρcpκ occurs so frequently that it is given a name: the thermal conductivity K.
And the ratio T/l is a discretized version of the temperature gradient ∆T/∆x. With those
substitutions, the thermal flux is

F = K
∆T
∆x
.

To estimate how much heat one loses on a cold day, we need to estimate K = ρcpκ. Time to
put all the pieces together for air:

ρ ∼ 1 kg m−3,

cp ∼ 103 J kg−1 K−1,

κ ∼ 1.5 ·10−5 m2 s−1,

where we are guessing that κ = ν, since both are diffusion constants. Then

K = ρcpκ ∼ 0.02 W m−1 K−1.

Now we can estimate the heat loss outside on a cold day. Let’s say that your skin is at 30 ◦C
and the air outside is 0 ◦C, so ∆T = 30 K. A thin T-shirt may have thickness 2 mm, so

F = K
∆T
∆x
∼ 0.02 W m−1 K−1

×
30 K

2 ·10−3 m
∼ 300 W m−2.

Damn, I wanted a power not a power per area. Oh, flux is power per area, so all is well. I
just need to multiply by my surface area. I’m roughly 2 m tall (approximately!) and 0.5 m
wide, so my front and back each have area 1 m2. Then

P ∼ FA = 300 W m−2
× 2 m2 = 600 W.

No wonder it feels so cold! Just sitting around, your body generates 100 W (the basal meta-
bolic rate). So, with 600 W escaping, you lose far more heat more than you generate. After
long enough, your core body temperature drops. Chemical reactions in your body slow
down, because all reactions go slower at lower temperature, and because enzymes lose
their optimized shape. Eventually you die.

One solution is jogging to generate extra heat. That solution indicates that the estimate
of 600 W is plausible. Cycling hard, which generates hundreds of watts of waste heat, is
vigorous enough exercise to keep you warm, even on a winter day in thin clothing.

Another simple solution, as parents repeat to their children: Dress warmly by putting on
thick layers. Let’s recalculate the power loss if you put on a fleece that is 2 cm thick. You
could redo the whole calculation from scratch, but it is simpler is to notice that the thickness
has gone up by a factor of 10. Since F ∝ 1/∆x, the flux and the power drop by a factor of 10.
So, when wearing the fleece,

P ∼ 60 W.
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That heat loss is smaller than the basal metabolic rate, which indicates that you do not
feel too cold. Indeed, when wearing a thick fleece, you feel most cold in your hands and
face. Those regions are exposed to the air, and are protected by only a thin layer of still air.
Because a small ∆x means a large heat flux, the moral is: Listen to your parents, bundle up!

9.4 Boundary layers
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Chapter 10
Springs

Everything is a spring! The main example in this chapter is waves, which illustrate springs,
discretization, and special cases – a fitting, unified way to end the book.

10.1 Waves

Ocean covers most of the earth, and waves roam most of the ocean. Waves also cross pud-
dles and ponds. What makes them move, and what determines their speed? By applying
and extending the techniques of approximation, we analyze waves. For concreteness, this
section refers mostly to water waves but the results apply to any fluid. The themes of
section are: Springs are everywhere and Consider limiting cases.

10.1.1 Dispersion relations

The most organized way to study waves is to use dispersion relations. A dispersion re-
lation states what values of frequency and wavelength a wave can have. Instead of the
wavelength λ, dispersion relations usually connect frequencyω, and wavenumber k, which
is defined as 2π/λ. This preference has an basis in order-of-magnitude reasoning. Wave-
length is the the distance the wave travels in a full period, which is 2π radians of oscillation.
Although 2π is dimensionless, it is not the ideal dimensionless number, which is unity. In
1 radian of oscillation, the wave travels a distance

λ̄ ≡
λ

2π
.

The bar notation, meaning ‘divide by 2π’, is chosen by analogy with h and ~. The one-
radian forms such as ~ are more useful for approximations than the 2π-radian forms. The
Bohr radius, in a form where the dimensionless constant is unity, contains ~ rather than h.
Most results with waves are similarly simpler using λ̄ rather than λ. A further refinement
is to use its inverse, the wavenumber k = 1/λ̄. This choice, which has dimensions of inverse
length, parallels the definition of angular frequency ω, which has dimensions of inverse
time. A relation that connects ω and k is likely to be simpler than one connecting ω and λ̄,
although either is simpler than one connecting ω and λ.

The simplest dispersion relation describes electromagnetic waves in a vacuum. Their fre-
quency and wavenumber are related by the dispersion relation
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ω = ck,

which states that waves travel at velocity ω/k = c, independent of frequency. Dispersion
relations contain a vast amount of information about waves. They contain, for example,
how fast crests and troughs travel: the phase velocity. They contain how fast wave packets
travel: the group velocity. They contain how these velocities depend on frequency: the
dispersion. And they contain the rate of energy loss: the attenuation.

10.1.2 Phase and group velocities

The usual question with a wave is how fast it travels. This question has two answers, the
phase velocity and the group velocity, and both depend on the dispersion relation. To get
a feel for how to use dispersion relations (most of the chapter is about how to calculate
them), we discuss the simplest examples that illustrate these two velocities. These analyses
start with the general form of a traveling wave:

f (x, t) = cos(kx − ωt),

where f is its amplitude.

0

0

1

1
t = t1:

t = t2:

cos(kx− ωt1)

cos(kx− ωt2)

Phase velocity is an easier idea than group
velocity so, as an example of divide-and-
conquer reasoning and of maximal lazi-
ness, study it first. The phase, which is
the argument of the cosine, is kx − ωt. A
crest occurs when the phase is zero. In
the top wave, a crest occurs when x = ωt1/k. In the bottom wave, a crest occurs when
x = ωt2/k. The difference

ω
k

(t2 − t1)

is the distance that the crest moved in time t2−t1. So the phase velocity, which is the velocity
of the crests, is

vph =
distance crest shifted

time taken
=
ω
k
.

To check this result, check its dimensions: ω provides inverse time and 1/k provides length,
so ω/k is a speed.

Group velocity is trickier. The word ‘group’ suggests that the concept involves more than
one wave. Because two is the first whole number larger than one, the simplest illustration
uses two waves. Instead of being a function relating ω and k, the dispersion relation here is
a list of allowed (k, ω) pairs. But that form is just a discrete approximation to an official dis-
persion relation, complicated enough to illustrate group velocity and simple enough to not
create a forest of mathematics. So here are two waves with almost the same wavenumber
and frequency:
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f1 = cos(kx − ωt),

f2 = cos((k + ∆k)x − (ω + ∆ω)t),

where ∆k and ∆ω are small changes in wavenumber and frequency, respectively. Each
wave has phase velocity vph = ω/k, as long as ∆k and ∆ω are tiny. The figure shows their
sum.

x

x

x

A

+
B

=

The point of the figure is that two cosines with almost the same spatial frequency add to
produce an envelope (thick line). The envelope itself looks like a cosine. After waiting a
while, each wave changes because of the ωt or (ω + ∆ω)t terms in their phases. So the sum
and its envelope change to this:

x

x

x

A

+
B

=

The envelope moves, like the crests and troughs of any wave. It is a wave, so it has a phase
velocity, which motivates the following definition:

Group velocity is the phase velocity of the envelope.

With this pictorial definition, you can compute group velocity for the wave f1 + f2. As
suggested in the figures, adding two cosines produces a a slowly varying envelope times a
rapidly oscillating inner function. This trigonometric identity gives the details:

cos(A + B) = 2 cos
(B − A

2

)
︸ ︷︷ ︸

envelope

× cos
(A + B

2

)
︸ ︷︷ ︸

inner

.

If A ≈ B, then A − B ≈ 0, which makes the envelope vary slowly. Apply the identity to the
sum:

f1 + f2 = cos(kx − ωt︸ ︷︷ ︸
A

) + cos((k + ∆k)x − (ω + ∆ω)t︸ ︷︷ ︸
B

).

Then the envelope contains

cos
(B − A

2

)
= cos

(
x∆k − t∆ω

2

)
.

The envelope represents a wave with phase
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∆k
2

x −
∆ω
2

t.

So it is a wave with wavenumber ∆k/2 and frequency ∆ω/2. The envelope’s phase velocity
is the group velocity of f1 + f2:

vg =
frequency

wavenumber
=
∆ω/2
∆k/2

=
∆ω
∆k
.

In the limit where ∆k→ 0 and ∆ω→ 0, the group velocity is

vg =
∂ω
∂k
.

It is usually different from the phase velocity. A typical dispersion relation, which appears
several times in this chapter, is ω ∝ kn. Then vph = ω/k = kn−1 and vg ∝ nkn−1. So their ratio
is

vg

vph
= n. (for a power-law relation)

Only when n = 1 are the two velocities equal. Now that we can find wave velocities from
dispersion relations, we return to the problem of finding the dispersion relations.

10.1.3 Dimensional analysis

A dispersion relation usually emerges from solving a wave equation, which is an unpleas-
ant partial differential equation. For water waves, a wave equation emerges after lineariz-
ing the equations of hydrodynamics and neglecting viscosity. This procedure is mathemat-
ically involved, particularly in handling the boundary conditions. Alternatively, you can
derive dispersion relations using dimensional analysis, then complete and complement the
derivation with physical arguments. Such methods usually cannot evaluate the dimen-
sionless constants, but the beauty of studying waves is that, as in most problems involving
springs and oscillations, most of these constants are unity.

How do frequency and wavenumber connect? They have dimensions of T−1 and L−1, re-
spectively, and cannot form a dimensionless group without help. So include more vari-
ables. What physical properties of the system determine wave behavior? Waves on the
open ocean behave differently from waves in a bathtub, perhaps because of the difference
in the depth of water h. The width of the tub or ocean could matter, but then the prob-
lem becomes two-dimensional wave motion. In a first analysis, avoid that complication
and consider waves that move in only one dimension, perpendicular to the width of the
container. Then the width does not matter.

To determine what other variables are important, use the principle that waves are like
springs, because every physical process contains a spring. This blanket statement cannot be
strictly correct. However, it is useful as a broad generalization. To get a more precise
idea of when this assumption is useful, consider the characteristics of spring motion. First,
springs have an equilibrium position. If a system has an undisturbed, resting state, con-
sider looking for a spring. For example, for waves on the ocean, the undisturbed state is a
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calm, flat ocean. For electromagnetic waves – springs are not confined to mechanical sys-
tems – the resting state is an empty vacuum with no radiation. Second, springs oscillate.
In mechanical systems, oscillation depends on inertia to carry the mass beyond the equi-
librium position. Equivalently, it depends on kinetic energy turning into potential energy,
and vice versa. Water waves store potential energy in the disturbance of the surface and
kinetic energy in the motion of the water. Electromagnetic waves store energy in the elec-
tric and magnetic fields. A magnetic field is generated by moving or spinning charges, so
the magnetic field is a reservoir of kinetic (motion) energy. An electric field is generated
by stationary charges and has an associated potential, so the electric field is the reservoir
of potential energy. With these identifications, the electromagnetic field acts like a set of
springs, one for each radiation frequency. These examples are positive examples. A nega-
tive example – a marble oozing its way through glycerin – illustrates that springs are not
always present. The marble moves so slowly that the kinetic energy of the corn syrup, and
therefore its inertia, is miniscule and irrelevant. This system has no reservoir of kinetic
energy, for the kinetic energy is merely dissipated, so it does not contain a spring.

Waves have the necessary reservoirs to act like springs. The sur-
face of water is flat in its lowest-energy state. Deviations, also
known as waves, are opposed by a restoring force. Distorting
the surface is like stretching a rubber sheet: Surface tension re-
sists the distortion. Distorting the surface also requires raising
the average water level, a change that gravity resists.

The average height of the surface does not change, but the av-
erage depth of the water does. The higher column, under the
crest, has more water than the lower column, under the trough.
So in averaging to find the average depth, the higher column
gets a slightly higher weighting. Thus the average depth increases. This result is consistent
with experience: It takes energy to make waves.

The total restoring force includes gravity and surface tension so, in the list of variables,
include surface tension (γ) and gravity (g).

In a wave, like in a spring, the restoring force fights inertia, represented here by the fluid
density. The gravitational piece of the restoring force does not care about density: Grav-
ity’s stronger pull on denser substances is exactly balanced by their greater inertia. This
exact cancellation is a restatement of the equivalence principle, on which Einstein based
the theory of general relativity [16, 17]. In pendulum motion, the mass of the bob drops out
of the final solution for the same reason. The surface-tension piece of the restoring force,
however, does not change when density changes. The surface tension itself, the fluid prop-
erty γ, depends on density because it depends on the spacing of atoms at the surface. That
dependence affects γ. However, once you know γ you can compute surface-tension forces
without knowing the density. Since ρ does not affect the surface-tension force but affects
the inertia, it affects the properties of waves in which surface tension provides a restoring
force. Therefore, include ρ in the list.
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Var Dim What
ω T−1 frequency
k L−1 wavenumber
g LT−2 gravity
h L depth
ρ ML−3 density
γ MT−2 surface tension

To simplify the analysis, assume that the waves do not lose
energy. This choice excludes viscosity from the set of vari-
ables. To further simplify, exclude the speed of sound. This
approximation means ignoring sound waves, and is valid as
long as the flow speeds are slow compared to the speed of
sound. The resulting ratio,

M ≡
flow speed

sound speed
,

is dimensionless and, because of its importance, is given a name: the Mach number. Fi-
nally, assume that the wave amplitude ξ is small compared to its wavelength and to the
depth of the container. The table shows the list of variables. Even with all these restric-
tions, which significantly simplify the analysis, the results explain many phenomena in the
world.

These six variables built from three fundamental dimensions produce three dimensionless
groups. One group is easy: the wavenumber k is an inverse length and the depth h is a
length, so

Π1 ≡ kh.

This group is the dimensionless depth of the water: Π1 � 1 means shallow and Π1 � 1
means deep water. A second dimensionless group comes from gravity. Gravity, repre-
sented by g, has the same dimensions as ω2, except for a factor of length. Dividing by
wavenumber fixes this deficit:

Π2 =
ω2

gk
.

Without surface tension, Π1 and Π2 are the only dimensionless groups, and neither group
contains density. This mathematical result has a physical basis. Without surface tension,
the waves propagate because of gravity alone. The equivalence principle says that gravity
affects motion independently of density. Therefore, density cannot – and does not – appear
in either group.

Now let surface tension back into the playpen of dimensionless groups. It must belong
in the third (and final) group Π3. Even knowing that γ belongs to Π3 still leaves great
freedom in choosing its form. The usual pattern is to find the group and then interpret it,
as we did for Π1 and Π2. Another option is to begin with a physical interpretation and use
the interpretation to construct the group. Here you can constructΠ3 to measure the relative
importance of surface-tension and gravitational forces. Surface tension γ has dimensions
of force per length, so producing a force requires multiplying by a length. The problem
already has two lengths: wavelength (represented via k) and depth. Which one should you
use? The wavelength probably always affects surface-tension forces, because it determines
the curvature of the surface. The depth, however, affects surface-tension forces only when
it becomes comparable to or smaller than the wavelength, if even then. You can use both



103 103

103 103

10 Springs 103

2008-01-14 22:31:34 / rev 55add9943bf1

lengths to make γ into a force: for example, F ∼ γ
√

h/k. But the analysis is easier if you use
only one, in which case the wavelength is the preferable choice. So Fγ ∼ γ/k. Gravitational
force, also known as weight, is ρg × volume. Following the precedent of using only k to
produce a length, the gravitational force is Fg ∼ ρg/k3. The dimensionless group is then the
ratio of surface-tension to gravitational forces:

Π3 ≡
Fγ
Fg
=
γ/k
ρg/k3 =

γk2

ρg
.

This choice has, by construction, a useful physical interpretation, but many other choices
are possible. You can build a third group without using gravity: for example,Π3 ≡ γk3/ρω2.
With this choice, ω appears in two groups: Π2 andΠ3. So it will be hard to solve for it. The
choice made for P3, besides being physically useful, quarantines ω in one group: a useful
choice since ω is the goal.

Now use the groups to solve for frequency ω as a function of wavenumber k. You can
instead solve for k as a function of ω, but the formulas for phase and group velocity are
simpler with ω as a function of k. Only the group Π2 contains ω, so the general dimension-
less solution is

Π2 = f (Π1,Π3),

or

ω2

gk
= f

(
kh,
γk2

ρg

)
.

Then

ω2 = gk · f (kh,
γk2

ρg
).

This relation is valid for waves in shallow or deep water (small or large Π1); for waves
propagated by gravity or by surface tension (small or large Π3); and for waves in between.
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Π1 ≡ hk
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Π3 ≡
γk2

ρg

Deep water
Surface tension

Deep water
Gravity

Shallow water
Surface tension

Shallow water
Gravity

The figure shows how the two groups
Π1 andΠ3 divide the world of waves
into four regions. We study each re-
gion in turn, and combine the analy-
ses to understand the whole world
(of waves). The group Π1 measures
the depth of the water: Are the waves
moving on a puddle or an ocean? The
group Π3 measures the relative con-
tribution of surface tension and grav-
ity: Are the waves ripples or gravity
waves?

The division into deep and shallow
water (left and right sides) follows
from the interpretation ofΠ1 = kh as
dimensionless depth. The division
into surface-tension- and gravity-dominated
waves (top and bottom halves) is more
subtle, but is a result of how Π3 was
constructed. As a check, look at Π3. Large g or small k result in the same consequence:
small Π3. Therefore the physical consequence of longer wavelength (smaller k) is similar
to that of stronger gravity. So longer-wavelength waves are gravity waves. The large-Π3

portion of the world (top half) is therefore labeled with surface tension.

The next figure shows how wavelength and depth (instead of the dimensionless groups)
partition the world, and plots examples of different types of waves.

Π1 = 1

Π3 = 1

10−4 10−2 102 104
depth (m)

10−4

10−2

102

104

106

wavelength (m)

Tide

Storm wave at sea

Storm wave at shore

Ripple on pondRipple on thin puddle

Deep water
Gravity waves

Shallow water
Gravity waves

Deep water
Ripples

Shallow-water
Ripples

The thick dividing lines are based on the dimensionless groups Π1 = hk and Π3 = γk2/ρg.
Each region contains one or two examples of its kind of waves. With g = 1000 cm s−1
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and ρ ∼ 1 g cm−3, the border wavelength between ripples and gravity waves is just over
λ ∼ 1 cm (the horizontal, Π3 = 1 dividing line).

The magic function f is still unknown to us. To determine its form and to understand its
consequences, study f in limiting cases. Like a jigsaw-puzzle-solver, study first the corners
of the world, where the physics is simplest. Then connect the corner solutions to get solu-
tions valid along an edge, where the physics is the almost as simple as in a corner. Finally,
crawl inward to assemble the complicated, complete solution. This extended example illus-
trates divide-and-conquer reasoning, and using limiting cases to choose pieces into which
you break the problem.

10.1.4 Deep water

10−4 10−2 102 104
Π1 ≡ hk

10−4

10−2

102

104

Π3 ≡
γk2

ρg

Deep water
Surface tension

Deep water
Gravity

Shallow water
Surface tension

Shallow water
Gravity

First study deep water, where kh � 1, as shaded in the map.
Deep water is defined as water sufficiently deep that waves
cannot feel the bottom of the ocean. How deep do waves’
feelers extend? The only length scale in the waves is the wave-
length, λ = 2π/k. The feelers therefore extend to a depth
d ∼ 1/k (as always, neglect constants, such as 2π). This edu-
cated guess has a justification in Laplace’s equation, which is
the spatial part of the wave equation. Suppose that the waves
are periodic in the x direction, and z measures depth below
the surface, as shown in this figure:

y

x

z

w

λ 2λ

h

Then, Laplace’s equation becomes

∂2φ

∂x2 +
∂2φ

∂z2 = 0,

where φ is the velocity potential. The ∂2φ/∂y2 term vanishes because nothing varies along
the width (the y direction).

It’s not important what exactly φ is. You can find out more about it in an excellent fluid-
mechanics textbook, Fluid Dynamics for Physicists [18]; Lamb’s Hydrodynamics [19] is a classic
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but difficult. For this argument, all that matters is that φ measures the effect of the wave
and that φ satisfies Laplace’s equation. The wave is periodic in the x direction, with a form
such as sin kx. Take

φ ∼ Z(z) sin kx.

The function Z(z) measures how the wave decays with depth.

The second derivative in x brings out two factors of k, and a minus sign:

∂2φ

∂x2 = −k2φ.

In order that this φ satisfy Laplace’s equation, the z-derivative term must contribute +k2φ.
Therefore,

∂2φ

∂z2 = k2φ,

so Z(z) ∼ e±kz. The physically possible solution – the one that does not blow up exponen-
tially at the bottom of the ocean – is Z(z) ∼ e−kz. Therefore, relative to the effect of the wave
at the surface, the effect of the wave at the bottom of the ocean is ∼ e−kh. When kh � 1, the
bottom might as well be on the moon because it has no effect. The dimensionless factor kh
– it must be dimensionless to sit alone in an exponent – compares water depth with feeler
depth d ∼ 1/k:

water depth
feeler depth

∼
h

1/k
= hk,

which is the dimensionless group Π1.

In deep water, where the bottom is hidden from the waves, the water depth h does not
affect their propagation, so h disappears from the list of relevant variables. When h goes,
so does Π1 = kh. There is one caveat. If Π1 is the only group that contains k, then you
cannot blithely discard Π1 just because you no longer care about h. If you did, you would
be discarding k and h, and make it impossible to find a dispersion relation (which connects
ω and k). Fortunately, k appears in Π3 = γk2/ρg as well as in Π1. So in deep water it is
safe to discard Π1. This argument for the irrelevance of h is a physical argument. It has a
mathematical equivalent in the language of dimensionless groups and functions. Because
h has dimensions, the statement that ‘h is large’ is meaningless. The question is, ‘large
compared to what length?’ With 1/k as the standard of comparison the meaningless ‘h
is large’ statement becomes ‘kh is large.’ The product kh is the dimensionless group Π1.
Mathematically, you are assuming that the function f (kh, γk2/ρg) has a limit as kh→∞.

Without Π1, the general dispersion relation simplifies to

ω2 = gk fdeep

(
γk2

ρg

)
.

This relation describes the deep-water edge of the world of waves. The edge has two cor-
ners, labeled by whether gravity or surface tension provides the restoring force. Although
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the form of fdeep is unknown, it is a simpler function than the original f , a function of two
variables. To determine the form of fdeep, continue the process of dividing and conquering:
Partition deep-water waves into its two limiting cases, gravity waves and ripples.

10.1.5 Gravity waves on deep water
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Deep water
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Shallow water
Surface tension

Shallow water
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Of the two extremes, gravity waves are the more common.
They include wakes generated by ships and most waves gen-
erated by wind. So specialize to the corner of the wave world
where water is deep and gravity is strong. With gravity much
stronger than surface tension, the dimensionless group Π3 =

γk2/ρg limits to 0. Since Π3 is the product of several factors,
you can achieve the limit in several ways:

1. Increase g (which is downstairs) by moving to Jupiter.

2. Reduce γ (which is upstairs) by dumping soap on the wa-
ter.

3. Reduce k (which is upstairs) by studying waves with a huge wavelength.

In this limit, the general deep-water dispersion relation simplifies to

ω2 = fdeep(0)gk = C1gk,

where fdeep(0) is an as-yet-unknown constant, C1. The use of fdeep(0) assumes that fdeep(x)
has a limit as x→ 0. The slab argument, which follows shortly, shows that it does. For now,
in order to make progress, assume that it has a limit. The constant remains unknown to the
lazy methods of dimensional analysis, because the methods sacrifice evaluation of dimen-
sionless constants to gain comprehension of physics. Usually assume that such constants
are unity. In this case, we get lucky: An honest calculation produces C1 = 1 and

ω2 = 1×gk,

where the red 1× indicates that it is obtained from honest physics.

Such results from dimensional analysis seem like rabbits jumping from a hat. The disper-
sion relation is correct, but your gut may grumble about this magical derivation and ask,
‘But why is the result true?’ A physical model of the forces or energies that drive the waves
explains the origin of the dispersion relation. The first step is to understand the mechanism:
How does gravity make the water level rise and fall? Taking a hint from the Watergate in-
vestigators,1 we follow the water. The water in the crest does not move into the trough.
Rather, the water in the crest, being higher, creates a pressure underneath it higher than
that of the water in the trough, as shown in this figure:

When the reporters Woodward and Bernstein [20] were investigating criminal coverups during the Nixon ad-1

ministration, they received help from the mysterious ‘Deep Throat’, whose valuable advice was to ‘follow the
money.’
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p> ∼ p0 + ρg(z + ξ) p< ∼ p0 + ρg(z − ξ)

z + ξ

z − ξ

Flow===⇒

p0 =
1atm

The higher pressure forces water underneath the crest to flow toward the trough, making
the water level there rise. Like a swing sliding past equilibrium, the surface overshoots the
equilibrium level to produce a new crest and the cycle repeats.

The next step is to quantify the model by estimating sizes, forces, speeds, and energies.
In Section 9.1 we analyzed a messy mortality curve by replacing it with a more tractable
shape: a rectangle. The method of discretization worked there, so try it again. ‘A method
is a trick I use twice.’
—George Polyà. Water just underneath the surface moves quickly because of the pressure
gradient. Farther down, it moves more slowly. Deep down it does not move at all. Replace
this smooth falloff with a step function: Pretend that water down to a certain depth moves
as a block, while deeper water stays still:

w

1/k

1/k

Atop ∼ w/k

Lower
pressure

Higher
pressure

How deep should this slab of water extend? By the Laplace-equation argument, the pres-
sure variation falls off exponentially with depth, with length scale 1/k. So assume that the
slab has a similar length scale, that it has depth 1/k. What choice do you have? On an infi-
nitely deep ocean, the only length scale is 1/k. How long should the slab be? Its length
should be roughly the peak-to-trough distance of the wave because the surface height
changes significantly over that distance. This distance is 1/k. Actually, it is π/k (one-half of
a period), but ignore constants. All the constants combine into a giant constant at the end,
which dimensional analysis cannot determine anyway, so discard it now! The slab’s width
w is arbitrary and cancels by the end of any analysis.
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So the slab of water has depth 1/k, length 1/k, and width w. Estimate the forces acting on
it by estimating the pressure gradients. Across the width of the slab (the y direction), the
water surface is level, so the pressure is constant along the width. Into the depths (the z
direction), the pressure varies because of gravity – the ρgh term from hydrostatics – but that
variation is just sufficient to prevent the slab from sinking. We care about only the pressure
difference across the length, the direction that the wave moves. This pressure difference
depends on the height of the crest, ξ and is ∆p ∼ ρgξ. This pressure difference acts on a
cross-section with area A ∼ w/k to produce a force

F ∼ w/k︸︷︷︸
area

× ρgξ︸︷︷︸
∆p

= ρgwξ/k.

The slab has mass

m = ρ × w/k2︸︷︷︸
volume

,

so the force produces an acceleration

aslab ∼
ρgwξ

k︸︷︷︸
force

/ ρw
k2︸︷︷︸

mass

= gξk.

The factor of g says that the gravity produces the acceleration. Full gravitational accelera-
tion is reduced by the dimensionless factor ξk, which is roughly the slope of the waves.

The acceleration of the slab determines the acceleration of the surface. If the slab moves a
distance x, it sweeps out a volume of water V ∼ xA. This water moves under the trough,
and forces the surface upward a distance V/Atop. Because Atop ∼ A (both are ∼ w/k), the
surface moves the same distance x that the slab moves. Therefore, the slab’s acceleration
aslab equals the acceleration a of the surface:

a ∼ aslab ∼ gξk.

This equivalence of slab and surface acceleration does not hold in shallow water, where the
bottom at depth h cuts off the slab before 1/k; that story is told in Section 10.1.12.

The slab argument is supposed to justify the deep-water dispersion relation derived by
dimensional analysis. That relation contains frequency whereas acceleration relation does
not. So massage it until ω appears. The acceleration relation contains a and ξ, whereas
the dispersion relation does not. An alternative expression for the acceleration might make
the acceleration relation more like the dispersion relation. With luck the expression will
contain ω2, thereby producing the hoped-for ω2; as a bonus, it will contain ξ to cancel the ξ
in the acceleration relation.

In simple harmonic motion (springs!), acceleration is a ∼ ω2ξ, where ξ is the amplitude.
In waves, which behave like springs, a is given by the same expression. Here’s why. In
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time τ ∼ 1/ω, the surface moves a distance d ∼ ξ, so a/ω2
∼ ξ and a ∼ ω2ξ. With this

replacement, the acceleration relation becomes

ω2ξ︸︷︷︸
a

∼ gξk,

or

ω2 = 1×gk,

which is the longed-for dispersion relation with the correct dimensionless constant in red.

An exact calculation confirms the usual hope that the missing dimensionless constants are
close to unity, or are unity. This fortune suggests that the procedures for choosing how to
measure the lengths were reasonable. The derivation depended on two choices:

1. Replacing an exponentially falling variation in velocity potential by a step function with
size equal to the length scale of the exponential decay.

2. Taking the length of the slab to be 1/k instead of π/k. This choice uses only 1 radian of
the cycle as the characteristic length, instead of using a half cycle or π radians. Since 1
is a more natural dimensionless number than π is, choosing 1 radian rather than π or
2π radians often improves approximations.

Both approximations are usually accurate in order-of-magnitude calculations. Rarely, how-
ever, you will get caught by a factor of (2π)6, and wish that you had used a full cycle instead
of only 1 radian.

w

ξ

1/k

The derivation that resulted in the dispersion relation analyzed the motion of the slab using
forces. Another derivation of it uses energy by balancing kinetic and potential energy. To
make a wavy surface requires energy, as shown in the figure. The crest rises a characteristic
height ξ above the zero of potential, which is the level surface. The volume of water moved
upward is ξw/k. So the potential energy is

PEgravity ∼ ρξw/k︸︷︷︸
m

×gξ ∼ ρgwξ2/k.

The kinetic energy is contained in the sideways motion of the slab and in the upward mo-
tion of the water pushed by the slab. The slab and surface move at the same speed; they also
have the same acceleration. So the sideways and upward motions contribute similar ener-
gies. If you ignore constants such as 2, you do not need to compute the energy contributed
by both motions and can do the simpler computation, which is the sideways motion. The
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surface moves a distance ξ in a time 1/ω, so its velocity is ωξ. The slab has the same speed
(except for constants) as the surface, so the slab’s kinetic energy is

KEdeep ∼ ρw/k2︸︷︷︸
mslab

× ω2ξ2︸︷︷︸
v2

∼ ρω2ξ2w/k2.

This energy balances the potential energy

ρω2ξ2w/k2︸ ︷︷ ︸
KE

∼ ρgwξ2/k︸ ︷︷ ︸
PE

.

Canceling the factor ρwξ2 (in red) common to both energies leaves

ω2
∼ gk.

The energy method agrees with the force method, as it should, because energy can be de-
rived from force by integration. The energy derivation gives an interpretation of the di-
mensionless group Π2:

Π2 ∼
kinetic energy in slab

gravitational potential energy
∼
ω2

gk
.

The gravity-wave dispersion relation ω2 = gk is equivalent to Π2 ∼ 1, or to the assertion
that kinetic and gravitational potential energy are comparable in wave motion. This rough
equality is no surprise because waves are like springs. In spring motion, kinetic and poten-
tial energies have equal averages, a consequence of the virial theorem.

The dispersion relation was derived in three ways: by dimensional analysis, energy, and
force. Using multiple methods increases our confidence not only in the result but also in
the methods. ‘I have said it thrice: What I tell you three times is true.’
–Lewis Carroll, Hunting of the Snark.

We gain confidence in the methods of dimensional analysis and in the slab model for waves.
If we study nonlinear waves, for example, where the wave height is no longer infinitesimal,
we can use the same techniques along with the slab model with more confidence.

With reasonable confidence in the dispersion relation, it’s time study its consequences: the
phase and group velocities. The crests move at the phase velocity: vph = w/k. For deep-
water gravity waves, this velocity becomes

vph =

√
g
k
,

or, using the dispersion relation to replace k by ω,

vph =
g
ω
.

Let’s check upstairs and downstairs. Who knows where ω belongs, but g drives the waves
so it should and does live upstairs.
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In an infinite, single-frequency wave train, the crests and troughs move at the phase speed.
However, a finite wave train contains a mixture of frequencies, and the various frequencies
move at different speeds as given by

vph =
g
ω
.

Deep water is dispersive. Dispersion makes a finite wave train travel with the group ve-
locity, given by vg = ∂w/∂k, as explained in Section 10.1.2. The group velocity is

vg =
∂
∂k

√
gk =

1
2

√
g
k
=

1
2

vph.

So the group velocity is one-half of the phase velocity, as the result for power-law dispersion
relation predicts. Within a wave train, the crests move at the phase velocity, twice the group
velocity, shrinking and growing to fit under the slower-moving envelope.

An everyday consequence is that ship wakes trail the ship. A ship moving with velocity
v creates gravity waves with vph = v. The waves combine to produce wave trains that
propagate forward with the group velocity, which is only vph/2 = v/2. From the ship’s
point of view, these gravity waves travel backward. In fact, they form a wedge, and the
opening angle of the wedge depends on the one-half that arises from the exponent.

10.1.6 Surfing

Let’s apply the dispersion relation to surfing. Following one winter storm reported in the
Los Angeles Times – the kind of storm that brings cries of ‘Surf’s up!’ – waves arrived at
Los Angeles beaches roughly every 18 s. How fast were the storm winds that generated
the waves? Wind pushes the crests as long as they move more slowly than the wind. After
a long-enough push, the crests move with nearly the wind speed. Therefore the phase
velocity of the waves is an accurate approximation to the wind speed.

The phase velocity is g/ω. In terms of the wave period T, this velocity is vph = gT/2π, so

vwind ∼ vph ∼

g︷ ︸︸ ︷
10 m s−2

×

T︷︸︸︷
18 s

2 × 3
∼ 30 m s−1.

In units more familiar to Americans, this wind speed is 60 mph, which is a strong storm:
about 10 on the Beaufort wind scale (‘whole gale/storm’). The wavelength is given by

λ = vphT ∼ 30 m s−1
× 18 s ∼ 500 m.

On the open ocean, the crests are separated by half a kilometer. Near shore they bunch up
because they feel the bottom; this bunching is a consequence of the shallow-water disper-
sion relation, the topic of Section 10.1.13.

In this same storm, the waves arrived at 17 s intervals the following day: a small decrease
in the period. Before racing for the equations, first check that this decrease in period is
reasonable. This precaution is a sanity check. If the theory is wrong about a physical effect
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as fundamental as a sign – whether the period should decrease or increase – then it neglects
important physics. The storm winds generate waves of different wavelengths and periods,
and the different wavelengths sort themselves during the trip from the far ocean to Los
Angeles. Group and phase velocity are proportional to 1/ω, which is proportional to the
period. So longer-period waves move faster, and the 18 s waves should arrive before the
17 s waves. They did! The decline in the interval allows us to calculate the distance to the
storm. In their long journey, the 18 s waves raced 1 day ahead of the 17 s waves. The ratio
of their group velocities is

velocity(18 s waves)
velocity(17 s waves)

=
18
17
= 1 +

1
17
.

so the race must have lasted roughly t ∼ 17 days ∼ 1.5 · 106 s. The wave train moves at the
group velocity, vg = vph/2 ∼ 15 m s−1, so the storm distance was d ∼ tvg ∼ 2 · 104 km, or
roughly halfway around the world, an amazingly long and dissipation-free journey.

USA
LA

storm

t ∼ 17 days

10.1.7 Speedboating

Our next application of the dispersion relation is to speedboating: How fast can a boat
travel? We exclude hydroplaning boats from our analysis (even though some speedboats
can hydroplane). Longer boats generally move faster than shorter boats, so it is likely that
the length of the boat, l, determines the top speed. The density of water might matter.
However, v (the speed), ρ, and l cannot form a dimensionless group. So look for another
variable. Viscosity is irrelevant because the Reynolds number for boat travel is gigantic.
Even for a small boat of length 5 m, creeping along at 2 m s−1,

Re ∼
500 cm × 200 cm s−1

10−2 cm2 s−1
∼ 107.

At such a huge Reynolds number, the flow is turbulent and nearly independent of viscosity
(Section 8.3.7). Surface tension is also irrelevant, because boats are much longer than a
ripple wavelength (roughly 1 cm). The search for new variables is not meeting with success.
Perhaps gravity is relevant. The four variables v, ρ, g, and l, build from three dimensions,
produce one dimensionless group: v2/gl, also called the Froude number:

Fr ≡
v2

gl
.
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The critical Froude number, which determines the maximum boat speed, is a dimensionless
constant. As usual, we assume that the constant is unity. Then the maximum boating speed
is:

v ∼
√

gl.

A rabbit has jumped out of our hat. What physical mechanism justifies this dimensional-
analysis result? Follow the waves as a boat plows through water. The moving boat gen-
erates waves (the wake), and it rides on one of those waves. Take the bow wave: It is a
gravity wave with vph ∼ vboat. Because v2

ph = ω
2/k2, the dispersion relation tells us that

v2
boat ∼

ω2

k2 =
g
k
= gλ̄,

whereλ̄ ≡ 1/k = λ/2π. So the wavelength of the waves is roughly v2
boat/g. The other length

in this problem is the boat length; so the Froude number has this interpretation:

Fr =
v2

boat/g

l
∼

wavelength of bow wave
length of boat

.

Why is Fr ∼ 1 the critical number, the assumption in finding the maximum boat speed?
Interesting and often difficult physics occurs when a dimensionless number is near unity. In
this case, the physics is as follows. The wave height changes significantly in a distanceλ̄; if
the boat’s length l is comparable toλ̄, then the boat rides on its own wave and tilts upward.
Tilting upward, it presents a large cross-section to the water, and the drag becomes huge.
[Catamarans and hydrofoils skim the water, so this kind of drag does not limit their speed.
The hydrofoil makes a much quicker trip across the English channel than the ferry makes,
even though the hydrofoil is much shorter.] So the top speed is given by

vboat ∼
√

gl.

For a small motorboat, with length l ∼ 5 m, this speed is roughly 7 m s−1, or 15 mph. Boats
(for example police boats) do go faster than the nominal top speed, but it takes plenty of
power to fight the drag, which is why police boats have huge engines.

The Froude number in surprising places. It determines, for example, the speed at which
an animal’s gait changes from a walk to a trot or, for animals that do not trot, to a run.
In Section 10.1.7 it determines maximum boating speed. The Froude number is a ratio of
potential energy to kinetic energy, as massaging the Froude number shows:

Fr =
v2

gl
=

mv2

mgl
∼

kinetic energy
potential energy

.

Here the massage technique was multiplication by unity (in red). In this example, the
length l is a horizontal length, so gl is not a gravitational energy, but it has a similar structure
and in other examples often has an easy interpretation as gravitational energy.
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10.1.8 Walking

In the Froude number for walking speed, l is leg length, and gl is a potential energy. For
a human with leg length l ∼ 1 m, the condition Fr ∼ 1 implies that v ∼ 3 m s−1 or 6 mph.
This speed is a rough estimate for the top speed for a race walker. The world record for
men’s race walking was once held by Bernado Segura of Mexico. He walked 20 km in
1h:17m:25.6s, for a speed of 4.31 m s−1.

This example concludes the study of gravity waves on deep water, which is one corner of
the world of waves.

10.1.9 Ripples on deep water

10−4 10−2 102 104
Π1 ≡ hk

10−4

10−2

102

104

Π3 ≡
γk2

ρg

Deep water
Surface tension

Deep water
Gravity

Shallow water
Surface tension

Shallow water
Gravity

For small wavelengths (large k), surface tension rather than
gravity provides the restoring force. This choice brings us to
the shaded corner of the figure. If surface tension rather than
gravity provides the restoring force, then g vanishes from the
final dispersion relation. How to get rid of g and find the
new dispersion relation? You could follow the same pattern
as for gravity waves (Section 10.1.5). In that situation, the
surface tension γ was irrelevant, so we discarded the group
Π3 ≡ γk2/ρg. Here, with g irrelevant you might try the same
trick: Π3 contains g so discard it. In that argument lies in-
fanticide, because it also throws out the physical effect that
determines the restoring force, namely surface tension. To re-
trieve the baby from the bathwater, you cannot throw out γk2/ρg directly. Instead you have
to choose the form of the dimensionless function fdeep in so that only gravity vanishes from
the dispersion relation.

The deep-water dispersion relation contains one power of g in front. The argument of fdeep

also contains one power of g, in the denominator. If fdeep has the form fdeep(x) ∼ x, then g
cancels. With this choice, the dispersion relation is

ω2 = 1×
γk3

ρ
.

Again the dimensionless constant from exact calculation (in red) is unity, which we would
have assumed anyway. Let’s reuse the slab argument to derive this relation.

In the slab picture, replace gravitational by surface-tension energy, and again balance po-
tential and kinetic energies. The surface of the water is like a rubber sheet. A wave disturbs
the surface and stretches the sheet. This stretching creates area ∆A and therefore requires
energy γ∆A. So to estimate the energy, estimate the extra area that a wave of amplitude ξ
and wavenumber k creates. The extra area depends on the extra length in a sine wave com-
pared to a flat line. The typical slope in the sine wave ξ sin kx is ξk. Instead of integrating
to find the arc length, you can approximate the curve as a straight line with slope ξk:
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l0 ∼ 1/k

ξ
l ∼ l0(1

+ (ξk)2 )

θ ∼ slope ∼ ξk

Relative to the level line, the tilted line is longer by a factor 1 + (ξk)2.

As before, imagine a piece of a wave, with characteristic length 1/k in the x direction and
width w in the y direction. The extra area is

∆A ∼ w/k︸︷︷︸
level area

× (ξk)2︸︷︷︸
fractional increase

∼ wξ2k.

The potential energy stored in this extra surface is

PEripple ∼ γ∆A ∼ γwξ2k.

The kinetic energy in the slab is the same as it is for gravity waves, which is:

KE ∼ ρω2ξ2w/k2.

Balancing the energies

ρω2ξ2w/k2︸ ︷︷ ︸
KE

∼ γwξ2k︸︷︷︸
PE

,

gives

ω2
∼ γk3/ρ.

This dispersion relation agrees with the result from dimensional analysis. For deep-water
gravity waves, we used both energy and force arguments to re-derive the dispersion rela-
tion. For ripples, we worked out the energy argument, and you are invited to work out the
corresponding force argument.

The energy calculation completes the interpretations of the three dimensionless groups.
Two are already done: Π1 is the dimensionless depth and Π2 is ratio of kinetic energy to
gravitational potential energy. We constructed Π3 as a group that compares the effects of
surface tension and gravity. Using the potential energy for gravity waves and for ripples,
the comparison becomes more precise:

Π3 ∼
potential energy in a ripple

potential energy in a gravity wave

∼
γwξ2k
ρgwξ2/k

∼
γk2

ρg
.
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Alternatively, Π3 compares γk2/ρwith g:

Π3 ≡
γk2/ρ

g
.

This form of Π3 may seem like a trivial revision of γk2/ρg. However, it suggests an inter-
pretation of surface tension: that surface tension acts like an effective gravitational field
with strength

gsurface tension = γk2/ρ,

In a balloon, the surface tension of the rubber implies a higher pressure inside than out-
side. Similarly in wave the water skin implies a higher pressure underneath the crest,
which is curved like a balloon; and a lower pressure under the trough, which is curved op-
posite to a balloon. This pressure difference is just what a gravitational field with strength
gsurface tension would produce. This trick of effective gravity, which we used for the buoyant
force on a falling marble (Section 8.3.4), is now promoted to a method (a trick used twice).

So replace g in the gravity-wave potential energy with this effective g to get the ripple
potential energy:

ρgwξ2/k︸ ︷︷ ︸
PE(gravity wave)

g→γk2/ρ
======⇒ γwξ2k︸︷︷︸

PE(ripple)

.

The left side becomes the right side after making the substitution above the arrow. The
same replacement in the gravity-wave dispersion relation produces the ripple dispersion
relation:

ω2 = gk
g→γk2/ρ
======⇒ ω2 =

γk3

ρ
.

The interpretation of surface tension as effective gravity is useful when we combine our
solutions for gravity waves and for ripples, in Section 10.1.11 and Section 10.1.16. Surface
tension and gravity are symmetric: We could have reversed the analysis and interpreted
gravity as effective surface tension. However, gravity is the more familiar force, so we use
effective gravity rather than effective surface tension.

With the dispersion relation you can harvest the phase and group velocities. The phase
velocity is

vph ≡
ω
k
=

√
γk
ρ
,

and the group velocity is

vg ≡
∂ω
∂k
=

3
2

vph.

The factor of 3/2 is a consequence of the form of the dispersion relation: ω ∝ k3/2; for gravity
waves, ω ∝ k1/2, and the corresponding factor is 1/2. In contrast to deep-water waves, a
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train of ripples moves faster than the phase velocity. So, ripples steam ahead of a boat,
whereas gravity waves trail behind.

10.1.10 Typical ripples

Let’s work out speeds for typical ripples, such as the ripples from dropping a pebble into a
pond. From observation, these ripples have wavelength λ ∼ 1 cm, and therefore wavenum-
ber k = 2π/λ ∼ 6 cm−1. The surface tension of water (??) is γ ∼ 0.07 J m−2. So the phase
velocity is

vph =



γ︷ ︸︸ ︷
0.07 J m−2

×

k︷ ︸︸ ︷
600 m−1

103 kg m−3︸ ︷︷ ︸
ρ



1/2

∼ 21 cm s−1.

According to relation between phase and group velocities, the group velocity is 50 percent
larger than the phase velocity: vg ∼ 30 cm s−1. This wavelength of 1 cm is roughly the
longest wavelength that still qualifies as a ripple, as shown in an earlier figure repeated
here:

Π1 = 1

Π3 = 1

10−4 10−2 102 104
depth (m)

10−4

10−2

102

104

106

wavelength (m)

Tide

Storm wave at sea

Storm wave at shore

Ripple on pondRipple on thin puddle

Deep water
Gravity waves

Shallow water
Gravity waves

Deep water
Ripples

Shallow-water
Ripples

The third dimensionless group, which distinguishes ripples from gravity waves, has value

Π3 ≡
γk2

ρg
∼

γ︷ ︸︸ ︷
0.07 J m−2

×

k2︷ ︸︸ ︷
3.6 ·105 m−2

103 kg m−3︸ ︷︷ ︸
ρ

× 10 m s−2︸ ︷︷ ︸
g

∼ 2.6.

With a slightly smaller k, the value ofΠ3 would slide into the gray zoneΠ3 ≈ 1. If k were yet
smaller, the waves would be gravity waves. Other ripples, with a larger k, have a shorter
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wavelength, and therefore move faster: 21 cm s−1 is roughly the minimum phase velocity
for ripples. This minimum speed explains why we see mostly λ ∼ 1 cm ripples when we
drop a pebble in a pond. The pebble excites ripples of various wavelengths; the shorter
ones propagate faster and the 1 cm ones straggle, so we see the stragglers clearly, without
admixture of other ripples.

10.1.11 Combining ripples and gravity waves on deep water

10−4 10−2 102 104
Π1 ≡ hk

10−4

10−2

102

104

Π3 ≡
γk2

ρg

Deep water
Surface tension

Deep water
Gravity

Shallow water
Surface tension

Shallow water
Gravity

With two corners assembled – gravity waves and ripples in
deep water – you can connect the corners to form the deep-
water edge. The dispersion relations, for convenience restated
here, are

ω2 =

{
gk, gravity waves;
γk3/ρ, ripples.

With a little courage, you can combine the relations in these
two extreme regimes to produce a dispersion relation valid
for gravity waves, for ripples, and for waves in between.

Both functional forms came from the same physical argument
of balancing kinetic and potential energies. The difference was the source of the potential
energy: gravity or surface tension. On the top half of the world of waves, surface tension
dominates gravity; on the bottom half, gravity dominates surface tension. Perhaps in the
intermediate region, the two contributions to the potential energy simply add. If so, the
combination dispersion relation is the sum of the two extremes:

ω2 = gk + γk3/ρ.

This result is exact (which is why we used an equality). When in doubt, try the simplest
solution.

You can increase your confidence in this result by using the effective gravity produced by
surface tension. The two sources of gravity – real and effective – simply add, to make

gtotal = g + gsurface tension = g +
γk2

ρ
.

Replace g by gtotal in ω2 = gk reproduces the deep-water dispersion relation:

ω2 =

(
g +
γk2

ρ

)
k = gk + γk3/ρ.

This dispersion relation tells us wave speeds for all wavelengths or wavenumbers. The
phase velocity is

vph ≡
ω
k
=

√
γk
ρ
+

g
k
.
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Let’s check upstairs and downstairs. Surface tension and gravity drive the waves, so γ
and g should be upstairs. Inertia slows the waves, so ρ should be downstairs. The phase
velocity passes these tests.

As a function of wavenumber, the two terms in the square root compete to increase the
speed. The surface-tension term wins at high wavenumber; the gravity term wins at low
wavenumber. So there is an intermediate, minimum-speed wavenumber, k0, which we can
estimate by balancing the surface tension and gravity contributions:

γk0

ρ
∼

g
k0
.

This computation is an example of order-of-magnitude minimization. The minimum-speed
wavenumber is

k0 ∼

√
ρg
γ
.

Interestingly, 1/k0 is the maximum size of raindrops. At this wavenumber Π3 = 1: These
waves lie just on the border between ripples and gravity waves. Their phase speed is

v0 ∼

√
2g
k0
∼

(
4γg
ρ

)1/4

.

In water, the critical wavenumber is k0 ∼ 4 cm−1, so the critical wavelength is λ0 ∼ 1.5 cm;
the speed is

v0 ∼ 23 cm s−1.

We derived the speed dishonestly. Instead of using the maximum–minimum methods of
calculus, we balanced the two contributions. A calculus derivation confirms the minimum
phase velocity. A tedious calculus calculation shows that the minimum group velocity is

vg ≈ 17.7 cm s−1.

[If you try to reproduce this calculation, be careful because the minimum group velocity is
not the group velocity at k0.]

Let’s do the minimizations honestly. The calculation is not too messy if it’s done with good
formula hygiene plus a useful diagram, and the proper method is useful in many physical
maximum–minimum problems. We illustrate the methods by finding the minimum of the
phase velocity. That equation contains constants – ρ, γ, and g – which carry through all the
differentiations. To simplify the manipulations, choose a convenient set of units in which

ρ = γ = g = 1.

The analysis of waves uses three basic dimensions: mass, length, and time. Choosing three
constants equal to unity uses up all the freedom. It is equivalent to choosing a canonical
mass, length, and time, and thereby making all quantities dimensionless. Don’t worry: The
constants will return at the end of the minimization.
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In addition to constants, the phase velocity also contains a square root. As a first step in
formula hygiene, minimize instead v2

ph. In the convenient unit system, it is

v2
ph = k +

1
k
.

This minimization does not need calculus, even to do it exactly. The two terms are both pos-
itive, so you can use the arithmetic-mean–geometric-mean inequality (affectionately known
as AM–GM) for k and 1/k. The inequality states that, for positive a and b,

(a + b)/2︸ ︷︷ ︸
AM

≥

√

ab︸︷︷︸
GM

,

with equality when a = b.

√
ab

a + b
2

a b

The figure shows a geometric proof of this inequality. You are invited
to convince yourself that the figure is a proof. With a = k and b = 1/k
the geometric mean is unity, so the arithmetic mean is ≥ 1. Therefore

k +
1
k
≥ 2,

with equality when k = 1/k, namely when k = 1. At this wavenum-
ber the phase velocity is

√
2. Still in this unit system, the dispersion

relation is

ω =
√

k3 + k,

and the group velocity is

vg =
∂
∂k

√

k3 + k,

which is

vg =
1
2

3k2 + 1
√

k3 + k
.

At k = 1 the group velocity is also
√

2: These borderline waves have equal phase and group
velocity. This equality is reasonable. In the gravity-wave regime, the phase velocity is
greater than the group velocity. In the ripple regime, the phase velocity is less than the
group velocity. So they must be equal somewhere in the intermediate regime.

To convert k = 1 back to normal units, multiply it by unity in the form of a convenient
product of ρ, γ, and g (which are each equal to 1 for the moment). How do you make a
length from ρ, γ, and g? The form of the result says that

√
ρg/γ has units of L−1. So k = 1

really means k = 1 ×
√
ρg/γ, which is the same as the order-of-magnitude minimization.

This exact calculation shows that the missing dimensionless constant is 1.

The minimum group velocity is more complicated than the minimum phase velocity be-
cause it requires yet another derivative. Again, remove the square root and minimize v2

g.
The derivative is
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∂
∂k

9k4 + 6k2 + 1
k3 + k︸ ︷︷ ︸

v2
g

=
(3k2 + 1)(3k4 + 6k2

− 1)
(k3 + k)2 .

Equating this derivative to zero gives 3k4 + 6k2
− 1 = 0, which is a quadratic in k2, and has

positive solution

k1 =

√
−1 +

√
4/3 ∼ 0.393.

At this k, the group velocity is

vg(k1) ≈ 1.086.

In more usual units, this minimum velocity is

vg ≈ 1.086
(
γg
ρ

)1/4

.

With the density and surface tension of water, the minimum group velocity is 17.7 cm s−1,
as claimed previously.

After dropping a pebble in a pond, you see a still circle surrounding the drop point. Then
the circle expands at the minimum group velocity given. Without a handy pond, try the
experiment in your kitchen sink: Fill it with water and drop in a coin or a marble. The
existence of a minimum phase velocity, is useful for bugs that walk on water. If they move
slower than 23 cm s−1, they generate no waves, which reduces the energy cost of walking.

10.1.12 Shallow water

10−4 10−2 102 104
Π1 ≡ hk

10−4

10−2

102

104

Π3 ≡
γk2

ρg

Deep water
Surface tension

Deep water
Gravity

Shallow water
Surface tension

Shallow water
Gravity

In shallow water, the height h, absent in the deep-water calcu-
lations, returns to complicate the set of relevant variables. We
are now in the shaded region of the figure. This extra length
scale gives too much freedom. Dimensional analysis alone
cannot deduce the shallow-water form of the magic function
f in the dispersion relation. The slab argument can do the job,
but it needs a few modifications for the new physical situa-
tion.

In deep water the slab has depth 1/k. In shallow water, how-
ever, where h � 1/k, the bottom of the ocean arrives before
that depth. So the shallow-water slab has depth h. Its length
is still 1/k, and its width is still w. Because the depth changed, the argument about how the
water flows is slightly different. In deep water, where the slab has depth equal to length,
the slab and surface move the same distance. In shallow water, with a slab thinner by hk,
the surface moves more slowly than the slab because less water is being moved around.
It moves more slowly by the factor hk. With wave height ξ and frequency ω, the surface
moves with velocity ξω, so the slab moves (sideways) with velocity vslab ∼ ξω/hk. The
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kinetic energy in the water is contained mostly in the slab, because the upward motion is
much slower than the slab motion. This energy is

KEshallow ∼ ρwh/k︸︷︷︸
mass

× (ξω/hk)2︸ ︷︷ ︸
v2

∼
ρwξ2ω2

hk3 .

This energy balances the potential energy, a computation we do for the two limiting cases:
ripples and gravity waves.

10.1.13 Gravity waves on shallow water

10−4 10−2 102 104
Π1 ≡ hk

10−4

10−2
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104

Π3 ≡
γk2

ρg

Deep water
Surface tension

Deep water
Gravity

Shallow water
Surface tension

Shallow water
Gravity

We first specialize to gravity waves – the shaded region in the
figure – where water is shallow and wavelengths are long.
These conditions include tidal waves,waves generated by un-
dersea earthquakes, and waves approaching a beach. For grav-
ity waves, the potential energy is

PE ∼ ρgwξ2/k.

This energy came from the distortion of the surface, and it is
the same in shallow water (as long as the wave amplitude is
small compared with the depth and wavelength). [The dom-
inant force (gravity or surface tension) determines the poten-
tial energy. As we see when we study shallow-water ripples, in Section 10.1.15, the water
depth determines the kinetic energy.]

Balancing this energy against the kinetic energy gives:

ρwξ2ω2

hk3︸ ︷︷ ︸
KE

∼ ρgwξ2/k︸ ︷︷ ︸
PE

.

So

ω2 = 1×ghk2.

Once again, the correct, honestly calculated dimensionless constant (in red) is unity. So, for
gravity waves on shallow water, the function f has the form

fshallow(kh,
γk2

ρg
) = kh.

Since ω ∝ k1, the group and phase velocities are equal and independent of frequency:

vph =
ω
k
=

√
gh,

vg =
∂ω
∂k
=

√
gh.
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Shallow water is nondispersive: All frequencies move at the same velocity, so pulses com-
posed of various frequencies propagate without smearing.

10.1.14 Tidal waves

Undersea earthquakes illustrate the danger in such unity. If an earthquake strikes off the
coast of Chile, dropping the seafloor, it generates a shallow-water wave. This wave travels
without distortion to Japan. The wave speed is v ∼

√

4000 m × 10 m s−2 ∼ 200 m s−1: The
wave can cross a 104 km ocean in half a day. As it approaches shore, where the depth
decreases, the wave slows, grows in amplitude, and becomes a large, destructive wave
hitting land.

10.1.15 Ripples on shallow water

10−4 10−2 102 104
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Ripples on shallow water – the shaded region in the figure –
are rare. They occur when raindrops land in a shallow rain
puddle, one whose depth is less than 1 mm. Even then, only
the longest-wavelength ripples, where λ ∼ 1 cm, can feel the
bottom of the puddle (the requirement for the wave to be a
shallow-water wave). The potential energy of the surface is
given by

PEripple ∼ γ∆A ∼ γwξ2k.

Although that formula applied to deep water, the water depth
does not affect the potential energy, so we can use the same
formula for shallow water.

The dominant force – here, surface tension – determines the potential energy. Balancing the
potential energy and the kinetic energy gives:

ρwξ2ω2

hk3︸ ︷︷ ︸
KE

∼
w
k
γ(kξ)2︸ ︷︷ ︸
PE

.

Then

ω2
∼
γhk4

ρ
.

The phase velocity is

vph =
ω
k
=

√
γhk2

ρ
,

and the group velocity is vg = 2vph (the form of the dispersion relation is ω ∝ k2). For
h ∼ 1 mm, this speed is
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v ∼
(

0.07 N m−1
× 10−3 m × 3.6 ·105 m−2

10kg m−3

)1/2

∼ 16 cm s−1.

10.1.16 Combining ripples and gravity waves on shallow water
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This result finishes the last two corners of the world of waves:
shallow-water ripples and gravity waves. Connect the cor-
ners to make an edge by studying general shallow-water waves.
This region of the world of waves is shaded in the figure.
You can combine the dispersion relations for ripples with that
for gravity waves using two equivalent methods. Either add
the two extreme-case dispersion relations or use the effective
gravitational field in the gravity-wave dispersion relation. Ei-
ther method produces

ω2
∼ k2

(
gh +

γhk2

ρ

)
.

10.1.17 Combining deep- and shallow-water gravity waves
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Now examine the gravity-wave edge of the world, shaded in
the figure. The deep- and shallow-water dispersion relations
are:

ω2 = gk ×
{ 1, deep water;

hk, shallow water.

To interpolate between the two regimes requires a function
f (hk) that asymptotes to 1 as hk → ∞ and to hk as hk → 0.
Arguments based on guessing functional forms have an hon-
ored history in physics. Planck derived the blackbody spec-
trum by interpolating between the high- and low-frequency
limits of what was known at the time. We are not deriving
quantum mechanics, but the principle is the same: In new areas, whether new to you or
new to everyone, you need a bit of courage. One simple interpolating function is tanh hk.
Then the one true gravity wave dispersion relation is:

ω2 = gk tanh hk.

This educated guess is plausible because tanh hk falls off exponentially as h→∞, in agree-
ment with the argument based on Laplace’s equation. In fact, this guess is correct.

10.1.18 Combining deep- and shallow-water ripples
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We now examine the final edge: ripples in shallow and deep
water, as shown in the figure. In Section 10.1.17, tanh kh inter-
polated between hk and 1 as hk went from 0 to∞ (as the water
went from shallow to deep). Probably the same trick works
for ripples, because the Laplace-equation argument, which
justified the tanh kh, does not depend on the restoring force.
The relevant dispersion relations:

ω2 =

{
γk3/ρ, if kh� 1;
γhk4/ρ, if kh� 1.

If we factor out γk3/ρ, the necessary transformation becomes
clear:

ω2 =
γk3

ρ
×

{ 1, if kh� 1;
hk, if kh� 1.

This ripple result looks similar to the gravity-wave result, so make the same replacement:{ 1, if kh� 1,
hk, if kh� 1,

becomes tanh kh.

Then you get the general ripple dispersion relation:

ω2 =
γk3

ρ
tanh kh.

This dispersion relation does not have much practical interest because, at the cost of greater
complexity than the deep-water ripple dispersion relation, it adds coverage of only a rare
case: ripples on ponds. We include it for completeness, to visit all four edges of the world,
in preparation for the grand combination coming up next.

10.1.19 Combining all the analyses

Now we can replace g with gtotal, to find the One True Dispersion Relation:

ω2 = (gk + γk3/ρ) tanh kh.
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(

gk + γk3

ρ

)
tanh kh

1

2

3

4

5

6

7

8

9

Each box in the figure represents a special case. The numbers next to the boxes mark the
order in which we studied that limit. In the final step (9), we combined all the analyses
into the superbox in the center, which contains the dispersion relation for all waves: grav-
ity waves or ripples, shallow water or deep water. The arrows show how we combined
smaller, more specialized corner boxes into the more general edge boxes (double ruled),
and the edge regions into the universal center box (triple ruled).

In summary, we studied water waves by investigating dispersion relations. We mapped the
world of waves, explored the corners and then the edges, and assembled the pieces to form
an understanding of the complex, complete solution. The whole puzzle, solved, is shown
in the figure. Considering limiting cases and stitching them together makes the analysis
tractable and comprehensible.

10.1.20 What you have learned

1. Phase and group velocities. Phase velocity says how fast crests in a single wave move. In
a packet of waves (several waves added together), group velocity is the phase velocity
of the envelope.

2. Discretize. A complicated functional relationship, such as a dispersion relation, is easier
to understand in a discrete limit: for example, one that allows only two (ω, k) combina-
tions. This discretization helped explain the meaning of group velocity.

3. Four regimes. The four regimes of wave behavior are characterized by two dimensionless
groups: a dimensionless depth and a dimensionless ratio of surface tension to gravita-
tional energy.

4. Look for springs. Look for springs when a problem has kinetic- and potential-energy
reservoirs and energy oscillates between them. A key characteristic of spring motion is
overshoot: The system must zoom past the equilibrium configuration of zero potential
energy.
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5. Most missing constants are unity. In analyses of waves and springs, the missing dimen-
sionless constants are usually unity. This fortunate result comes from the virial theorem,
which says that the average potential and kinetic energies are equal for a F ∝ r force (a
spring force). So balancing the two energies is exact in this case.

6. Minimum speed. Objects moving below a certain speed (in deep water) generate no
waves. This minimum speed is the result of cooperation between gravity and surface
tension. Gravity keeps long-wavelength waves moving quickly. Surface tension keeps
short-wavelength waves moving quickly.

7. Shallow-water gravity waves are non-dispersive. Gravity waves on shallow water (which
includes tidal waves on oceans!) travel at speed

√
gh, independent of wavelength.

8. Froude number. The Froude number, a ratio of kinetic to potential energy, determines the
maximum speed of speedboats and of walking.

Exercises

AM–GM

Prove the arithmetic mean–geometric mean inequality by another method than the circle
in the text. Use AM–GM for the following problem normally done with calculus. You start
with a unit square, cut equal squares from each corner, then fold the flaps upwards to make
a half-open box. How large should the squares be in order to maximize its volume?

Minima without calculus.

Impossible

How can tidal waves on the ocean (typical depth ∼ 4 km) be considered shallow water?

Oven dish

Partly fill a rectangular glass oven dish with water and play with the waves. Give the dish
a slight slap and watch the wave go back and forth. How does the wave speed time vary
with depth of water? Does your data agree with the theory in this chapter?

Minimum-wave speed

Take a toothpick and move it through a pan of water. By experiment, find the speed at
which no waves are generated. How well does it agree with the theory in this chapter?

Kelvin wedge

Show that the opening angle in a ship wake is 2 sin−1(1/3).
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Chapter 11
Bon voyage!

The theme of this book is how to understand new fields, whether the field is known gen-
erally but is new to you; or the field is new to everyone. In either case, certain ways of
thinking promote understanding and long-term learning. This afterword illustrates these
ways by using an example that has appeared twice in the book – the volume of a pyramid.

11.1 Remember nothing!

The volume is proportional to the height, because of the drilling-core argument. So V ∝ h.
But a dimensionally correct expression for the volume needs two additional lengths. They
can come only from b2. So

V ∼ bh2.

But what is the constant? It turns out to be 1/3.

11.2 Connect to other problems

Is that 3 in the denominator new information to remember? No! That piece of information
also connects to other problems.

First, you can derive it by using special cases, which is the subject of Section 8.1.

Second, 3 is also the dimensionality of space. That fact is not a coincidence. Consider the
simpler but analogous problem of the area of a triangle. Its area is

A =
1
2

bh.

The area has a similar form as the volume of the pyramid: A constant times a factor related
to the base times the height. In two dimensions the constant is 1/2. So the 1/3 is likely to
arise from the dimensionality of space.

That analysis makes the 3 easy to remember and thereby the whole formula for the volume.

But there are two follow-up questions. The first is: Why does the dimensionality of space
matter? The special-cases argument explains it because you need pyramids for each di-
rection of space (I say no more for the moment until we do the special-cases argument in
lecture!).
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The second follow-up question is: Does the 3 occur in other problems and for the same
reason? A related place is the volume of a sphere

V =
4
3
πr3.

The ancient Greeks showed that the 3 in the 4/3 is the same 3 as in the pyramid volume.
To explain their picture, I’ll use method to find the area of a circle then use it to find the
volume of a sphere.

Divide a circle into many pie wedges. To find its area, cut somewhere on the circum-
ference and unroll it into this shape:

Each pie wedge is almost a triangle, so its area is bh/2, where the height h is approximately
r. The sum of all the bases is the circumference 2πr, so A = 2πr × r/2 = πr2.

Now do the same procedure with a sphere: Divide it into small pieces that are almost
pyramids, then unfold it. The unfolded sphere has a base area of 4πr2, which is the surface
area of the sphere. So the volume of all the mini pyramids is

V =
1
3
× height︸︷︷︸

r

× basearea︸ ︷︷ ︸
4πr2

=
4
3
πr3.

Voilà! So, if you remember the volume of a sphere – and most of us have had it etched into
our minds during our schooling – then you know that the volume of a pyramid contains a
factor of 3 in the denominator.

11.3 Percolation model

The moral of the preceding examples is to build connections. A physical illustration of this
process is percolation. Imagine how oil diffuses through rock. The rock has pores through
which oil moves from zone to zone. However, many pores are blocked by mineral deposits.
How does the oil percolate through that kind of rock?
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cluster = 12%
p = 0.40

That question has led to an extensive mathematics research on the follow-
ing idealized model. Imagine an infinite two-dimensional lattice. Now
add bonds between neighbors (horizontal or vertical, not diagonal) with
probability pbond. The figure shows an example of a finite subsection of a
percolation lattice where pbond = 0.4. Its largest cluster – the largest set of
points connected to each other – is marked in red, and contains 13% of the
points.

Here is what happens as pbond increases from 0.40 to 0.50 to 0.55 to 0.60:

cluster = 12%
p = 0.40

cluster = 43%
p = 0.50

cluster = 87%
p = 0.55

cluster = 91%
p = 0.60

The largest cluster occupies more and more of the lattice.

p∞

0 1pc

0

1

pbond

For an infinite lattice, a similar question is: What is the probability p∞ of
finding an infinite connected sublattice? That probability is zero until pbond

reaches a critical probability pc. The critical probability depends on the topol-
ogy (what kind of lattice and how many dimensions) – for the two-dimensional
square lattice, pc = 1/2 – but its existence is independent of topology. When
pbond > pc, the probability of a finding an infinite lattice becomes nonzero
and eventually reaches 1.0.

An analogy to learning is that each lattice point (each dot) is a fact or formula,
and each bond links two facts. For long-lasting learning, you want the facts to support
each other via their connections. Let’s say that you want the facts to become part of an
infinite and therefore self-supporting lattice. However, if your textbooks or way of learning
means that you just add more dots – learn just more facts – then you decrease pbond, so you
decrease the chance of an infinite clusters. If the analogy is more exact than I think it is, you
might even eliminate infinite clusters altogether.

The opposite approach is to ensure that, with each fact, you create links to facts that you
already know. In the percolation model, you add bonds between the dots in order to in-
crease pbond. A famous English writer gave the same advice about life that I am giving
about learning:

Only connect! That was the whole of her sermon. . .Live in fragments no longer!
[E. M. Forster, Howard’s End]

The ways of reasoning presented in this book offer some ways to build those connections.
Bon voyage as you learn and discover new ideas and the links between them!
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