
39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

Global comments 1

Global comments

From the game’s description it doesn’t seem like half the time is a plausible answer. Player
1 definitely has a higer chance of winning...

where did this 1.58 come from?

I was a little confused at this being the school method. Took me a while to realize I
do actually calculation complex multiplication like this but vertically. Maybe it would
be easier to show it the vertical way. Also every multiplication we do as humans is the
recursion or multiplication since build on what we know via our memorization of basic
multiplication (ie. 3*5=15 so 50*3=150).

I really don’t understand how this was derived. Before I checked it, it seemed like you
just split up the numbers and adding/multiplied them around several times. Does this
work for any complex multiplication or is the a special case? Please review in class.

I guess this is similar to when you multiple vertically because we do cross multiply digits
and them sum the results up. It may just seem cooler when its explicitly written out and
shown horizontally.

I don’t understand the subtraction portion.

I think the examples in the chapter did a good job in explaining what recursion is because
initially the definition just sounded like abstraction and divide and conquer.

http://nb.csail.mit.edu/?comment=20226&org=pdf
http://nb.csail.mit.edu/?comment=20226&org=pdf
http://nb.csail.mit.edu/?comment=20230&org=pdf
http://nb.csail.mit.edu/?comment=20546&org=pdf
http://nb.csail.mit.edu/?comment=20546&org=pdf
http://nb.csail.mit.edu/?comment=20546&org=pdf
http://nb.csail.mit.edu/?comment=20546&org=pdf
http://nb.csail.mit.edu/?comment=20546&org=pdf
http://nb.csail.mit.edu/?comment=20550&org=pdf
http://nb.csail.mit.edu/?comment=20550&org=pdf
http://nb.csail.mit.edu/?comment=20550&org=pdf
http://nb.csail.mit.edu/?comment=20554&org=pdf
http://nb.csail.mit.edu/?comment=20554&org=pdf
http://nb.csail.mit.edu/?comment=20554&org=pdf
http://nb.csail.mit.edu/?comment=20555&org=pdf
http://nb.csail.mit.edu/?comment=20568&org=pdf
http://nb.csail.mit.edu/?comment=20568&org=pdf

39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

Comments on page 1 2

Comments on page 1

Read Section 2.2 (memo due Sunday at 10pm).

This is kind of awkward wording. I had to read the sentence a couple of times to figure
out what you mean.

yea, when I think about it I usually think of it as a problem inside a problem, like those
wooden dolls that open up and another little replica is inside and it keeps going until
you get a tiny doll. That example works for me.

It might be useful to include one or two sentences in the beginning explaining how the
coin-flip game applies to recursion. While it is reasonably clear by the end of the section,
a few sentences might do a lot to orient the reader.

I disagree, I think the way this section is structured is perfect and does a good job of
letting the reader discover the idea of recursion on their own without holding their hand
and telling them exactly how the example relates in the beginning.
I disagree and believe it is better this way. It makes the reader think a bit more throughout
the section and is better for learning.

I can appreciate both sides of this discussion. There’s always a tension between
presenting results as in a handbook (i.e. for those who already know a result,
and discussing results so as to help readers best learn them. Mostly I’ve chosen
the learning side, but I sometimes wish there could be a two-layered book: Once
you read it and learn everything in it, it turns into a handbook!

http://nb.csail.mit.edu/?comment=20146&org=pdf
http://nb.csail.mit.edu/?comment=20730&org=pdf
http://nb.csail.mit.edu/?comment=20730&org=pdf
http://nb.csail.mit.edu/?comment=20743&org=pdf
http://nb.csail.mit.edu/?comment=20743&org=pdf
http://nb.csail.mit.edu/?comment=20743&org=pdf
http://nb.csail.mit.edu/?comment=20397&org=pdf
http://nb.csail.mit.edu/?comment=20397&org=pdf
http://nb.csail.mit.edu/?comment=20397&org=pdf
http://nb.csail.mit.edu/?comment=20734&org=pdf
http://nb.csail.mit.edu/?comment=20734&org=pdf
http://nb.csail.mit.edu/?comment=20734&org=pdf
http://nb.csail.mit.edu/?comment=20752&org=pdf
http://nb.csail.mit.edu/?comment=20752&org=pdf
http://nb.csail.mit.edu/?comment=20834&org=pdf
http://nb.csail.mit.edu/?comment=20834&org=pdf
http://nb.csail.mit.edu/?comment=20834&org=pdf
http://nb.csail.mit.edu/?comment=20834&org=pdf
http://nb.csail.mit.edu/?comment=20834&org=pdf

39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

Comments on page 1 3

It is worthwhile to note that the condition is based on whether the first player wins.
Something I took to mean the first "toss", but it actually refers to the *player* who tosses
first. So the condition will still be true if the player wins on the third toss (or fifth, etc.).

I don’t really understand what you found confusing in this little paragraph. Is your
confusion with "first" meaning toss or player actually farther down?

On first read I too thought it meant "what is the liklihood that the first player wins
on the first toss (1/2)" rather than the correct reading of "what is the liklihood that
the player who goes first wins at all?" I think its just a priming thing.

I agree - I got a little confused about it the first time, interpreting it as "first player
winning the first toss" but after reading it again it’s fine.

Yeah I think what this means here is that coins are flipped until someone gets heads.
That player is the winner. Then what is the probability the first player is that winner?

just as a counter-perspective, i really didn’t have any problems understanding this
game set up and all and thought it was very clear.
just as a counter-perspective, i really didn’t have any problems understanding this
game set up and all and thought it was very clear.
just as a counter-perspective, i really didn’t have any problems understanding this
game set up and all and thought it was very clear.
just as a counter-perspective, i really didn’t have any problems understanding this
game set up and all and thought it was very clear.

I also thought it was clearly stated.

this was a little confusing to me. then i realized what it represented.
Agreed. Although I think we’ve all seen this notation before, if you wanted this book
to be accessible by non-math oriented people, then you should probably introduce it as
Tails, Heads before using TH.

Or, it could be stated that T means tails and H means heads, so that it is stated for
the rest of the document.

http://nb.csail.mit.edu/?comment=20147&org=pdf
http://nb.csail.mit.edu/?comment=20147&org=pdf
http://nb.csail.mit.edu/?comment=20147&org=pdf
http://nb.csail.mit.edu/?comment=20151&org=pdf
http://nb.csail.mit.edu/?comment=20151&org=pdf
http://nb.csail.mit.edu/?comment=20154&org=pdf
http://nb.csail.mit.edu/?comment=20154&org=pdf
http://nb.csail.mit.edu/?comment=20154&org=pdf
http://nb.csail.mit.edu/?comment=20177&org=pdf
http://nb.csail.mit.edu/?comment=20177&org=pdf
http://nb.csail.mit.edu/?comment=20197&org=pdf
http://nb.csail.mit.edu/?comment=20197&org=pdf
http://nb.csail.mit.edu/?comment=20421&org=pdf
http://nb.csail.mit.edu/?comment=20421&org=pdf
http://nb.csail.mit.edu/?comment=20422&org=pdf
http://nb.csail.mit.edu/?comment=20422&org=pdf
http://nb.csail.mit.edu/?comment=20423&org=pdf
http://nb.csail.mit.edu/?comment=20423&org=pdf
http://nb.csail.mit.edu/?comment=20424&org=pdf
http://nb.csail.mit.edu/?comment=20424&org=pdf
http://nb.csail.mit.edu/?comment=20662&org=pdf
http://nb.csail.mit.edu/?comment=20534&org=pdf
http://nb.csail.mit.edu/?comment=20615&org=pdf
http://nb.csail.mit.edu/?comment=20615&org=pdf
http://nb.csail.mit.edu/?comment=20615&org=pdf
http://nb.csail.mit.edu/?comment=20664&org=pdf
http://nb.csail.mit.edu/?comment=20664&org=pdf

39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

Comments on page 1 4

Does the first player always have the first flip?

I think so in the case of this example.

It seems that the first player is *defined* by the first toss.

I agree it would be a different probability if he didn’t.
Exactly – it doesn’t matter whether Alice or Bob wins, just whether the first player (ie
the one who tosses first) wins.

this would be the perfect place to have an aside as to what a pseudo-random number is...as
a side note, I really like that you actually [and correctly] call it a psuedo-random number
[as opposed to a random number]

how is pseudorandom different from random?

pseudorandom means it approximates the properties of random numbers
Taken from wikipedia: "A pseudorandom number generator (PRNG) is an algorithm for
generating a sequence of numbers that approximates the properties of random numbers.
The sequence is not truly random in that it is completely determined by a relatively small
set of initial values, called the PRNG’s state."

Basically, the PRNG is given an initial number (or set of numbers), and by performing
certain operations on that number it arrives at a sequence of "random numbers." The
pseudo part comes because knowledge of the initial numbers determines the rest.

What about just using math to calculate the probability? Computer simulations provide
an estimate of the expected probability, but doesn’t really add to the logic behind the
theory, right?

Yes, especially since the simulation is technically not entirely random. How bout the
course 2 students make a coin flipping robot?

There are also many calculator games which do this. I realize its unrelated, but in high
school they made us put them on our calculators to do probability simulations

I think the calculator games are also "pseudorandom number generators". The idea is
that any computational device, like a computer or calculator, can’t truly pick a random
number, and can only simulate a random choice. So I think the calculator games you
mentioned are the same as the computer program described here.

http://nb.csail.mit.edu/?comment=20530&org=pdf
http://nb.csail.mit.edu/?comment=20667&org=pdf
http://nb.csail.mit.edu/?comment=20707&org=pdf
http://nb.csail.mit.edu/?comment=20710&org=pdf
http://nb.csail.mit.edu/?comment=20739&org=pdf
http://nb.csail.mit.edu/?comment=20739&org=pdf
http://nb.csail.mit.edu/?comment=20701&org=pdf
http://nb.csail.mit.edu/?comment=20701&org=pdf
http://nb.csail.mit.edu/?comment=20701&org=pdf
http://nb.csail.mit.edu/?comment=20190&org=pdf
http://nb.csail.mit.edu/?comment=20209&org=pdf
http://nb.csail.mit.edu/?comment=20247&org=pdf
http://nb.csail.mit.edu/?comment=20247&org=pdf
http://nb.csail.mit.edu/?comment=20247&org=pdf
http://nb.csail.mit.edu/?comment=20247&org=pdf
http://nb.csail.mit.edu/?comment=20690&org=pdf
http://nb.csail.mit.edu/?comment=20690&org=pdf
http://nb.csail.mit.edu/?comment=20690&org=pdf
http://nb.csail.mit.edu/?comment=20660&org=pdf
http://nb.csail.mit.edu/?comment=20660&org=pdf
http://nb.csail.mit.edu/?comment=20660&org=pdf
http://nb.csail.mit.edu/?comment=20692&org=pdf
http://nb.csail.mit.edu/?comment=20692&org=pdf
http://nb.csail.mit.edu/?comment=20157&org=pdf
http://nb.csail.mit.edu/?comment=20157&org=pdf
http://nb.csail.mit.edu/?comment=20446&org=pdf
http://nb.csail.mit.edu/?comment=20446&org=pdf
http://nb.csail.mit.edu/?comment=20446&org=pdf
http://nb.csail.mit.edu/?comment=20446&org=pdf

39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

39 39

39 39

31

2010-02-19 21:06:10 / rev 5c65c3b1023a+

2.2 Recursion

Abstraction involves making reusable modules, ones that can be used for
solving other problems. The special case of abstraction where the other
problem is a version of the original problem is known as recursion. The
term is most common in computing, but recursion is broader than just a
computational method – as our first example illustrates.

2.2.1 Coin-flip game

The first example is the following game.
Two people take turns flipping a (fair) coin. Whoever first turns over heads
wins. What is the probability that the first player wins?

As a first approach to finding the probability, get a feel for the game by
playing it. Here is one iteration of the game resulting from using a real
coin:

TH

The first player missed the chance to win by tossing tails; but the second
player won by tossing heads. Playing many such games may suggest a
pattern to what happens or suggest how to compute the probability.
However, playing many games by flipping a real coin becomes tedious. A
computer can instead simulate the games using pseudorandom numbers
as a substitute for a real coin. Here are several runs produced by a
computer program – namely, by a Python script coin-game.py. Each
line begins with 1 or 2 to indicate which player won the game; then the
line gives the coin tosses that resulted in the win.

2 TH
2 TH
1 H
2 TH
1 TTH
2 TTTH
2 TH
1 H
1 H
1 H

Comments on page 1 5

Is there any way you could include the script in an appendix or something? I would be
interested in seeing it.

I would also be interested in seeing the script. Also, unless the script is included, I’m not
sure why it is relevant to include the name of the script.

Sure. I’ve just posted it on the course website (in the "data/scripts" section).

Awesome, which version of Python is this written in? I believe we used 2.4 for 6.00.

is it really necessary to have this detail in the text then?
I think it would be useful to have an appendix devoted to all the code in the book and
maybe a brief description, or if there’s code that explains a concept well that does not fit
in the flow of the book proper. It would help with understanding for the code-inclined.

I agree – a code appendix would be very nice, and could easily be ignored by someone
who wasn’t interested in it.

http://nb.csail.mit.edu/?comment=20248&org=pdf
http://nb.csail.mit.edu/?comment=20248&org=pdf
http://nb.csail.mit.edu/?comment=20281&org=pdf
http://nb.csail.mit.edu/?comment=20281&org=pdf
http://nb.csail.mit.edu/?comment=20325&org=pdf
http://nb.csail.mit.edu/?comment=20402&org=pdf
http://nb.csail.mit.edu/?comment=20535&org=pdf
http://nb.csail.mit.edu/?comment=20668&org=pdf
http://nb.csail.mit.edu/?comment=20668&org=pdf
http://nb.csail.mit.edu/?comment=20668&org=pdf
http://nb.csail.mit.edu/?comment=20742&org=pdf
http://nb.csail.mit.edu/?comment=20742&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 6

Comments on page 2

shouldn’t player 1 have won 50% of the time on the first try? maybe that’ll hold true when
the simulation is run more times.

what we’re calculating isn’t who wins the first time, but who ultimately wins. so if the
first player didn’t win the first time, we go to the second player, and so on and so forth,
until one of the two players gets a head and wins the game.
I think you may have been caught in the confusion of the sentence describing the win
condition. As the comment before this says, we’re calculating how often player 1 is the
first to win, not when he wins on the first try.

"Reasonable" conclusion? I don’t know that many people would make this assumption.
You might if you knew nothing about the game. If you were only told that there was a
game that Player 1 won 5 out of 10 times (without being told how the game worked),
you would guess it was fair, or at least close to fair.

Even if I didn’t know anything, I’d still be suspicious. 10 throws is certainly better
than just 2, but not enough to make any claims of fairness.

Yes, but if someone asked you "which player would you like to be" (again, without
explaining the game), you wouldn’t have any reason to prefer one or the other,
and moreover you wouldn’t have any reason to suppose that you /should/ have
a preference.

i just don’t think it’s a big deal. the phrase is fine.
yeah i don’t know what you guys are arguing about. the point he’s trying to make is
obvious.

Hearing that it is fair and looking at the example and who won are totally different.
It is obvious player one has an advantage because they have to lose before 2 can win.
So how could it be fair?

I think the point of this was just that if you didn’t understand the problem the
observed data would show you that it was fair. Not that the probability shows
that the game is fair.

I agree. If you just think of it as a black box, the output makes it look like a
fair game from the outside.

http://nb.csail.mit.edu/?comment=20236&org=pdf
http://nb.csail.mit.edu/?comment=20236&org=pdf
http://nb.csail.mit.edu/?comment=20425&org=pdf
http://nb.csail.mit.edu/?comment=20425&org=pdf
http://nb.csail.mit.edu/?comment=20425&org=pdf
http://nb.csail.mit.edu/?comment=20708&org=pdf
http://nb.csail.mit.edu/?comment=20708&org=pdf
http://nb.csail.mit.edu/?comment=20708&org=pdf
http://nb.csail.mit.edu/?comment=20285&org=pdf
http://nb.csail.mit.edu/?comment=20354&org=pdf
http://nb.csail.mit.edu/?comment=20354&org=pdf
http://nb.csail.mit.edu/?comment=20354&org=pdf
http://nb.csail.mit.edu/?comment=20394&org=pdf
http://nb.csail.mit.edu/?comment=20394&org=pdf
http://nb.csail.mit.edu/?comment=20396&org=pdf
http://nb.csail.mit.edu/?comment=20396&org=pdf
http://nb.csail.mit.edu/?comment=20396&org=pdf
http://nb.csail.mit.edu/?comment=20396&org=pdf
http://nb.csail.mit.edu/?comment=20464&org=pdf
http://nb.csail.mit.edu/?comment=20539&org=pdf
http://nb.csail.mit.edu/?comment=20539&org=pdf
http://nb.csail.mit.edu/?comment=20688&org=pdf
http://nb.csail.mit.edu/?comment=20688&org=pdf
http://nb.csail.mit.edu/?comment=20688&org=pdf
http://nb.csail.mit.edu/?comment=20715&org=pdf
http://nb.csail.mit.edu/?comment=20715&org=pdf
http://nb.csail.mit.edu/?comment=20715&org=pdf
http://nb.csail.mit.edu/?comment=20725&org=pdf
http://nb.csail.mit.edu/?comment=20725&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 7

I think that a side-bar would be useful here...explain what, exactly, you mean by fair. I
mean, I get it, but i’m not sure it’s something that would be intuitive to [most] everyone
that might read the book

I would think that this might give a slight advantage to the person who goes first

Minor edit, but this line seems a little too wordy on first read through, enough to confuse
me (I thought the placement of ’based’ was a typo)

A comma after strongly or striking "as it is" might make it clearer.

You are right. Leaving out helpful or even all commas is a confusing habit that
I picked up in England (I lived there 30% of my life). [Whoops, I did it again in
the preceding sentence.] The habit returns like a retrovirus when I least expect
it.
I think the sentence would be clearer if it were slightly reordered to read "the
conclusion cannot be believed too strongly, as it is based on only 10 games" (comma
debatable).
I would consider jsut moving the word ’based’ after ’as it is’. That seems more
grammatical in my opinion.

http://nb.csail.mit.edu/?comment=20713&org=pdf
http://nb.csail.mit.edu/?comment=20713&org=pdf
http://nb.csail.mit.edu/?comment=20713&org=pdf
http://nb.csail.mit.edu/?comment=27965&org=pdf
http://nb.csail.mit.edu/?comment=20159&org=pdf
http://nb.csail.mit.edu/?comment=20159&org=pdf
http://nb.csail.mit.edu/?comment=20220&org=pdf
http://nb.csail.mit.edu/?comment=20319&org=pdf
http://nb.csail.mit.edu/?comment=20319&org=pdf
http://nb.csail.mit.edu/?comment=20319&org=pdf
http://nb.csail.mit.edu/?comment=20319&org=pdf
http://nb.csail.mit.edu/?comment=20355&org=pdf
http://nb.csail.mit.edu/?comment=20355&org=pdf
http://nb.csail.mit.edu/?comment=20355&org=pdf
http://nb.csail.mit.edu/?comment=20404&org=pdf
http://nb.csail.mit.edu/?comment=20404&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 8

Is there a way of determining exactly how many games would be necessary? A number
that would lead to a ’confidant’ result?

I have often wondered about what makes a probability legit. For example, in a lot of
papers I read, simulations or experiments will show that "98.9%" of the time something
they want happens. However, I was talking to someone who does a lot more probability
than I do (in biology), and he said he would only trust something that is 99.9999% or
along those lines. Does it just depend on the thing that you are looking at? Such that
if you are dealing with living things, that you must have a larger sample to account for
variability?
I think this is always a hard question to answer. From what I know about probability and
statistics (which isn’t much), there are many ways you can go about doing this. t-tests,
chi square tests, etc. to guage for how accurate certain values are; and you could always
look at standard deviation and z scores as a measure of how far off measurements are
from each other–larger sample leads to smaller standard deviation
Well I’m not entirely sure, but I believe you could use the law of large numbers to solve
this. The LLN states the lim(n->inf)Prob(|Xn-u|<e)=1 for Xn average of the trials, u
expected value of the outcome, and e error. By choosing a small e we can produce a
"confident" answer and figure out the number of trials n.

That’s a very interesting question. I’ve been looking for examples for the (only half-
written) chapter on "Probabilistic reasoning". After reading your question, I think
I’ll use this coin-game simulation as one example. We’ll figure out how confident
one can be about p as a function of the number of games in the simulation.

(For those who already have familiarity with statistical inference: The analysis will
be Bayesian.)

central limit theorem says we must approach the true result with more number of trials

I think the theorem says it works fine above n = 30

http://nb.csail.mit.edu/?comment=20158&org=pdf
http://nb.csail.mit.edu/?comment=20158&org=pdf
http://nb.csail.mit.edu/?comment=20173&org=pdf
http://nb.csail.mit.edu/?comment=20173&org=pdf
http://nb.csail.mit.edu/?comment=20173&org=pdf
http://nb.csail.mit.edu/?comment=20173&org=pdf
http://nb.csail.mit.edu/?comment=20173&org=pdf
http://nb.csail.mit.edu/?comment=20173&org=pdf
http://nb.csail.mit.edu/?comment=20173&org=pdf
http://nb.csail.mit.edu/?comment=20198&org=pdf
http://nb.csail.mit.edu/?comment=20198&org=pdf
http://nb.csail.mit.edu/?comment=20198&org=pdf
http://nb.csail.mit.edu/?comment=20198&org=pdf
http://nb.csail.mit.edu/?comment=20198&org=pdf
http://nb.csail.mit.edu/?comment=20212&org=pdf
http://nb.csail.mit.edu/?comment=20212&org=pdf
http://nb.csail.mit.edu/?comment=20212&org=pdf
http://nb.csail.mit.edu/?comment=20212&org=pdf
http://nb.csail.mit.edu/?comment=20835&org=pdf
http://nb.csail.mit.edu/?comment=20835&org=pdf
http://nb.csail.mit.edu/?comment=20835&org=pdf
http://nb.csail.mit.edu/?comment=20835&org=pdf
http://nb.csail.mit.edu/?comment=20835&org=pdf
http://nb.csail.mit.edu/?comment=20835&org=pdf
http://nb.csail.mit.edu/?comment=20205&org=pdf
http://nb.csail.mit.edu/?comment=20473&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 9

Why don’t you just build it into the coin.game code?

Abstraction!
Haha, exactly! That’s sort of the same idea behind creating functions in programs.
When you make a function, you define it and allow it to be called later, which not
only saves you time (and redudant typing) but also gives you the ability to access and
combine these ’modules’.

It would be significantly faster though...

In case anyone else has to look this up... wc is the command for word count
i don’t bother to look them up... i just skim over all the programming and go to the
sections where he explains the actual estimation technique.

That’s probably where the dividing line is between the course 6 and course 2 majors...

I hope the line gets blurred by the end of the course!

Not extremely important, but "most recent" is somewhat ambiguous here. Should I take
it to mean the most recent in terms of when this book was written? Perhaps use "one"
instead?

My guess would be that "most recent" refers to one, non-specific pipeline that was run
at the time this section was written.

This makes sense as the idea of the inclusion of pseudorandom would cause different
experimental results, but the wording is rather awkward. The important part is the
68 to 32 split between the two players and I think this should be the focus.

I think that the wording "most recent" is a little off. I understand that it is meant
to place the time of the results, but I’m not sure that’s necessary in a book. Maybe
list a set of three (or so) results?

Perhaps you could also discuss how large n should be for such results to be significant.

the first player has an inherent advantage, but this doesn’t mean it’s not fair, right?
"fair" would imply that each player has an equal (1/2) probability of winning each game.
If the game is set up such that one player is more likely to win, it doesn’t meet the
definition of fair.

http://nb.csail.mit.edu/?comment=20215&org=pdf
http://nb.csail.mit.edu/?comment=20356&org=pdf
http://nb.csail.mit.edu/?comment=20405&org=pdf
http://nb.csail.mit.edu/?comment=20405&org=pdf
http://nb.csail.mit.edu/?comment=20405&org=pdf
http://nb.csail.mit.edu/?comment=20405&org=pdf
http://nb.csail.mit.edu/?comment=20693&org=pdf
http://nb.csail.mit.edu/?comment=20249&org=pdf
http://nb.csail.mit.edu/?comment=20541&org=pdf
http://nb.csail.mit.edu/?comment=20541&org=pdf
http://nb.csail.mit.edu/?comment=20618&org=pdf
http://nb.csail.mit.edu/?comment=20829&org=pdf
http://nb.csail.mit.edu/?comment=20388&org=pdf
http://nb.csail.mit.edu/?comment=20388&org=pdf
http://nb.csail.mit.edu/?comment=20388&org=pdf
http://nb.csail.mit.edu/?comment=20399&org=pdf
http://nb.csail.mit.edu/?comment=20399&org=pdf
http://nb.csail.mit.edu/?comment=20444&org=pdf
http://nb.csail.mit.edu/?comment=20444&org=pdf
http://nb.csail.mit.edu/?comment=20444&org=pdf
http://nb.csail.mit.edu/?comment=20669&org=pdf
http://nb.csail.mit.edu/?comment=20669&org=pdf
http://nb.csail.mit.edu/?comment=20669&org=pdf
http://nb.csail.mit.edu/?comment=34143&org=pdf
http://nb.csail.mit.edu/?comment=20237&org=pdf
http://nb.csail.mit.edu/?comment=20357&org=pdf
http://nb.csail.mit.edu/?comment=20357&org=pdf
http://nb.csail.mit.edu/?comment=20357&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 10

Doesn’t mean much- In the 10 iterations, it is still more probable it had a ratio closer to
2/3

This kinda makes sense because the first player has to lose for the second player to even
have a chance to win. A one time coin toss would be fair but this is a little different.

This tree made it much easier of understanding the premise for the game
Maybe I’m confused now – I thought the premise was you and another person alternate
flipping coins until someone gets heads, right?

yes, that is the premise. I think that the tree does nothing for better explaining the
game, but it does improve the understanding of the probability calculations

I don’t quite understand how this tree is a representation of the game- what happens if
the coin has to be flipped three time (tails, tails, head) where does that come in?

So if the boldface represents the first player, I assume the italics represent the second
player?

I think that the only italic is the second H down the tree...and i’m pretty sure that’s a
typo...i do know it should be bold

No, I don’t think it’s a typo. It should indeed represent the second player winning
because the pattern that leads up to it is TH, which means that the first player threw
tails, and then the second player threw heads and won.

We used this method a lot in high school statistics, but they never introduced the concept
of recursion with it.

http://nb.csail.mit.edu/?comment=27568&org=pdf
http://nb.csail.mit.edu/?comment=27568&org=pdf
http://nb.csail.mit.edu/?comment=27966&org=pdf
http://nb.csail.mit.edu/?comment=27966&org=pdf
http://nb.csail.mit.edu/?comment=20448&org=pdf
http://nb.csail.mit.edu/?comment=20575&org=pdf
http://nb.csail.mit.edu/?comment=20575&org=pdf
http://nb.csail.mit.edu/?comment=20716&org=pdf
http://nb.csail.mit.edu/?comment=20716&org=pdf
http://nb.csail.mit.edu/?comment=20436&org=pdf
http://nb.csail.mit.edu/?comment=20436&org=pdf
http://nb.csail.mit.edu/?comment=20400&org=pdf
http://nb.csail.mit.edu/?comment=20400&org=pdf
http://nb.csail.mit.edu/?comment=20718&org=pdf
http://nb.csail.mit.edu/?comment=20718&org=pdf
http://nb.csail.mit.edu/?comment=20744&org=pdf
http://nb.csail.mit.edu/?comment=20744&org=pdf
http://nb.csail.mit.edu/?comment=20744&org=pdf
http://nb.csail.mit.edu/?comment=20745&org=pdf
http://nb.csail.mit.edu/?comment=20745&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 11

The tree makes it so easy to understand now

I feel this would be the best way to find the anser to the problem
It might be helpful to add a line next to each toss showing which player is tossing. Also,
it’s a minor point, but the tree doesn’t show the TTTTH scenario mentioned in the text.

I agree. The tree makes the answer seem obvious,
i know that this will be better explained later on in this section, but when i first
saw this tree, my first reaction was "isn’t that from divide and conquer? aren’t we
supposed to be on abstraction now?" did anyone else do this?

I think maybe the point of using the tree is to show that trees have many useful
applications in different areas and in different problem solving methods.... divide
and conquer, abstraction, etc.

yeah so if we had this, why did we run a program in the first place?

How did you get these probabilities?

I’ve never seen this result before and found it pretty interesting and surprising.

I think that this is completely clear, but for someone who doesn’t have any probability
(given that probability isn’t a pre-req for this course), you may want to explain how that
sum comes around.

I agree. This conclusion definitely could be explained in greater detail. I’m confused on
why the probability doesn’t remain 1/2 the whole time or why it doesn’t go from 1/2 to
1/4

because the second one P(TTH) = 1/2 * 1/2*1/2 = 1/8, P(TTTTH) = 1/2 ˆ 5 = 1/32.
1/4 (TH) is not what we want, because (TH) means the second person gets a head,
but we want to calculate the probability of the 1st person gets the head

I agree... clearly explaining that you are calculating the probability that only the
1st, 3rd, 5th etc (only taking odd terms) would be helpful

or maybe just include exponents. p = 1/2 + 1/2ˆ3 + 1/2ˆ5 ...

is this the sum of 1/2*4ˆn?

http://nb.csail.mit.edu/?comment=20191&org=pdf
http://nb.csail.mit.edu/?comment=20218&org=pdf
http://nb.csail.mit.edu/?comment=20221&org=pdf
http://nb.csail.mit.edu/?comment=20221&org=pdf
http://nb.csail.mit.edu/?comment=20327&org=pdf
http://nb.csail.mit.edu/?comment=20426&org=pdf
http://nb.csail.mit.edu/?comment=20426&org=pdf
http://nb.csail.mit.edu/?comment=20426&org=pdf
http://nb.csail.mit.edu/?comment=20450&org=pdf
http://nb.csail.mit.edu/?comment=20450&org=pdf
http://nb.csail.mit.edu/?comment=20450&org=pdf
http://nb.csail.mit.edu/?comment=20543&org=pdf
http://nb.csail.mit.edu/?comment=20437&org=pdf
http://nb.csail.mit.edu/?comment=20738&org=pdf
http://nb.csail.mit.edu/?comment=20178&org=pdf
http://nb.csail.mit.edu/?comment=20178&org=pdf
http://nb.csail.mit.edu/?comment=20178&org=pdf
http://nb.csail.mit.edu/?comment=20186&org=pdf
http://nb.csail.mit.edu/?comment=20186&org=pdf
http://nb.csail.mit.edu/?comment=20186&org=pdf
http://nb.csail.mit.edu/?comment=20193&org=pdf
http://nb.csail.mit.edu/?comment=20193&org=pdf
http://nb.csail.mit.edu/?comment=20193&org=pdf
http://nb.csail.mit.edu/?comment=20250&org=pdf
http://nb.csail.mit.edu/?comment=20250&org=pdf
http://nb.csail.mit.edu/?comment=20269&org=pdf
http://nb.csail.mit.edu/?comment=27967&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 12

I always forget in probability (I never ever have to think about it!) when to add, or
multiply, or use exponents. Does anyone have a good way of remembering, so that when
I do need to use it once every year or so, I can do it right?

I think if there are n ways to reach the same result, in this case, n ways to win, then you
add up the probabilities. however, if a series of things need to happen in order to achieve
a certain result, then you multiply, this is just one way to understand it.
In probability, "and" corresponds to multiplication and "or" corresponds to addition of
probabilities. in this case, the probability of the first player winning is if the first coin is
heads OR if the third coin is heads OR if the fifth coin is heads; thus, the probabilities
are added

Thank you!

http://nb.csail.mit.edu/?comment=20174&org=pdf
http://nb.csail.mit.edu/?comment=20174&org=pdf
http://nb.csail.mit.edu/?comment=20174&org=pdf
http://nb.csail.mit.edu/?comment=20192&org=pdf
http://nb.csail.mit.edu/?comment=20192&org=pdf
http://nb.csail.mit.edu/?comment=20192&org=pdf
http://nb.csail.mit.edu/?comment=20199&org=pdf
http://nb.csail.mit.edu/?comment=20199&org=pdf
http://nb.csail.mit.edu/?comment=20199&org=pdf
http://nb.csail.mit.edu/?comment=20199&org=pdf
http://nb.csail.mit.edu/?comment=20720&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 13

What formula is that? I forget...

I agree, the formula should be included.
sum(a*rˆn) = a/(1-r) over n=0 to +inf, for |r|<1. Here, r=1/4, and a=1/2. (1/2)/(1-
1/4)=2/3

Thank you for the equation! I agree it should probably be included in the reading.
I don’t think it has to be. I consider a good textbook one that gives you the
basic ideas, and then encourages you to go out and explore things for yourself.
Besides, it’s pretty fun to figure out the formula yourself if you have forgotten.

oh yeah...fun...if you’re a masochist.
Fun exploration is trying out the new knowledge you gained, and playing
around with it. Tedious, unnecessary ’exploration’ is google searching
"geometric series formula" to get an equation that would have taken up
less space than the phrase "a familiar formula".

Even if you wanted figure out the sum for yourself, it’d be nice to know
if you got it right.

Although I see how it might be nice to see the formula it is some-
what besides the point of this chapter. We are using abstraction in
a lot of these examples to prove a point, and going into too much
detail in every example just detracts from the actual point.

In the next paragraph, I explain an alternative method that you can use
instead. Then you can use the alternative method to derive the geometric-
series formula.

when can you use this formula- not for all series? are there a few formulas we should
memorize for these types of series?

Equation or problem 2.1? This seems to refer to the equation above, not the problem at
the end of the section.

It is indeed Problem 2.1, whose solution gives the familiar formula needed for Equa-
tion 2.1 (though until one solves the problem, it’s not so evident).

http://nb.csail.mit.edu/?comment=20286&org=pdf
http://nb.csail.mit.edu/?comment=20341&org=pdf
http://nb.csail.mit.edu/?comment=20358&org=pdf
http://nb.csail.mit.edu/?comment=20358&org=pdf
http://nb.csail.mit.edu/?comment=20381&org=pdf
http://nb.csail.mit.edu/?comment=20395&org=pdf
http://nb.csail.mit.edu/?comment=20395&org=pdf
http://nb.csail.mit.edu/?comment=20395&org=pdf
http://nb.csail.mit.edu/?comment=20544&org=pdf
http://nb.csail.mit.edu/?comment=20685&org=pdf
http://nb.csail.mit.edu/?comment=20685&org=pdf
http://nb.csail.mit.edu/?comment=20685&org=pdf
http://nb.csail.mit.edu/?comment=20685&org=pdf
http://nb.csail.mit.edu/?comment=20719&org=pdf
http://nb.csail.mit.edu/?comment=20719&org=pdf
http://nb.csail.mit.edu/?comment=20737&org=pdf
http://nb.csail.mit.edu/?comment=20737&org=pdf
http://nb.csail.mit.edu/?comment=20737&org=pdf
http://nb.csail.mit.edu/?comment=20737&org=pdf
http://nb.csail.mit.edu/?comment=20832&org=pdf
http://nb.csail.mit.edu/?comment=20832&org=pdf
http://nb.csail.mit.edu/?comment=20832&org=pdf
http://nb.csail.mit.edu/?comment=20438&org=pdf
http://nb.csail.mit.edu/?comment=20438&org=pdf
http://nb.csail.mit.edu/?comment=20223&org=pdf
http://nb.csail.mit.edu/?comment=20223&org=pdf
http://nb.csail.mit.edu/?comment=20342&org=pdf
http://nb.csail.mit.edu/?comment=20342&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 14

so in this instance, the tree method and recursion method are used interchangeably on
this problem. i am a more visual person and find the tree more intuitive than the written
unix code. is there a rule of thumb for when one is more appropriate than another?

If you consider who wins as part of the tree structure, then it’s really sort of ’reversed
with respect to player number’ one level down... and hence the next result. If it were
truly actually repeated one level down, then the game would just be Player 1 flipping a
coin until he won, right?

This is clever. I would have easily realized that p1+p2=1 but i would not have so easily
realized that p2=1/2*p1. (Where p1=probability of 1 winning and p2=probability of 2
winning)

I agree- this is really awesome. I would never have come up with this.
I agree–this is really clever. The tree diagram helps a lot with visualizing the recursion–
every time there’s a tails, the same process happens again, and here, for the second player
to win, the first player first has to get tails, then the second player has to get heads–1/2
the chance of the first player winning since theres that extra condition of the first player
getting a tails

The probability a player wins a toss starts at 1/2. However the second person only
gets to go if the first person losses (half the time). Only two people can win so p+p/2
= 1. and now we know p, which is percentage for first player.

This is pretty cool. I wouldn’t have guessed this either at first, but after looking
at the tree, it makes sense.

I didn’t quite get it at first, but the class comments really cleared it up!

Yeah, this is amazingly simple and I didn’t get it at first either. Pretty cool.
I am still kinda not completely convinced about all this. It still seems kinda intuitive
to me that if this is a recursive example then the probability should be the same every
time and thus should add to equal 1. The class comments do help and if I am correct
then the reason it is not 1 is because player 1 gets the first flip? I don’t really see how
that would affect the probability though. (shouldn’t it not matter who goes first?)

Would be even more clear if you added these probabilities to the tree and show how it
iterates

http://nb.csail.mit.edu/?comment=20513&org=pdf
http://nb.csail.mit.edu/?comment=20513&org=pdf
http://nb.csail.mit.edu/?comment=20513&org=pdf
http://nb.csail.mit.edu/?comment=20359&org=pdf
http://nb.csail.mit.edu/?comment=20359&org=pdf
http://nb.csail.mit.edu/?comment=20359&org=pdf
http://nb.csail.mit.edu/?comment=20359&org=pdf
http://nb.csail.mit.edu/?comment=20152&org=pdf
http://nb.csail.mit.edu/?comment=20152&org=pdf
http://nb.csail.mit.edu/?comment=20152&org=pdf
http://nb.csail.mit.edu/?comment=20179&org=pdf
http://nb.csail.mit.edu/?comment=20200&org=pdf
http://nb.csail.mit.edu/?comment=20200&org=pdf
http://nb.csail.mit.edu/?comment=20200&org=pdf
http://nb.csail.mit.edu/?comment=20200&org=pdf
http://nb.csail.mit.edu/?comment=20200&org=pdf
http://nb.csail.mit.edu/?comment=20216&org=pdf
http://nb.csail.mit.edu/?comment=20216&org=pdf
http://nb.csail.mit.edu/?comment=20216&org=pdf
http://nb.csail.mit.edu/?comment=20246&org=pdf
http://nb.csail.mit.edu/?comment=20246&org=pdf
http://nb.csail.mit.edu/?comment=20273&org=pdf
http://nb.csail.mit.edu/?comment=20288&org=pdf
http://nb.csail.mit.edu/?comment=20588&org=pdf
http://nb.csail.mit.edu/?comment=20588&org=pdf
http://nb.csail.mit.edu/?comment=20588&org=pdf
http://nb.csail.mit.edu/?comment=20588&org=pdf
http://nb.csail.mit.edu/?comment=20588&org=pdf
http://nb.csail.mit.edu/?comment=27570&org=pdf
http://nb.csail.mit.edu/?comment=27570&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 15

This analysis is much easier for me to follow.
I agree, I like this analysis, although it seems a little less intuitive, which makes it a nice
addition in the text.

Agreed, this seems very simple and it’s very interesting that it really is this intuitive.
I think the effect is even greater given the contrast with the more complicated math
of the previous section

I have to agree that it was much easier to follow this when compared to the previous
section. It’s clear and simple, without much outside knowledge needed.

I also think so, I actually started thinking about it this way first.

Where p is the probability that the first player loses the first round? Because if that’s the
case how do you get p = 2/3...

I’m not sure I follow what’s happening in this paragraph.
Prob that P1 wins = p, Prob that P2 wins = 1/2*p. They add to unity, so p + 1/2*p = 1.
This reduces to 3/2*p=1, or p=2/3
i don’t understand either. all variables should be really clear, and it’s easier to understand
math when it’s not inside of a paragraph

This seems pretty obvious to me. If the first player always starts, he’s going to win more.
Am I not getting something?

There is a disconnect for me on this step. I get it from a theoretical standpoint, however,
it still seems that the probability should be 50/50.

p = 2/3 is really counter-intuitive. One first pass, I thought it would be 1/2 by symmetry,
but I guess since player 1 flips first, it breaks the symmetry argument. I like the p + p/2
= 1 argument a lot though.

I’m still misunderstanding this part.

It might be helpful to just write out explicitly the two equations you use here to solve, as
a summary:

p1 + p2 = 1 p2 = (1/2)*p1

http://nb.csail.mit.edu/?comment=20579&org=pdf
http://nb.csail.mit.edu/?comment=20637&org=pdf
http://nb.csail.mit.edu/?comment=20637&org=pdf
http://nb.csail.mit.edu/?comment=20640&org=pdf
http://nb.csail.mit.edu/?comment=20694&org=pdf
http://nb.csail.mit.edu/?comment=20694&org=pdf
http://nb.csail.mit.edu/?comment=20724&org=pdf
http://nb.csail.mit.edu/?comment=20724&org=pdf
http://nb.csail.mit.edu/?comment=20802&org=pdf
http://nb.csail.mit.edu/?comment=20329&org=pdf
http://nb.csail.mit.edu/?comment=20329&org=pdf
http://nb.csail.mit.edu/?comment=20329&org=pdf
http://nb.csail.mit.edu/?comment=20361&org=pdf
http://nb.csail.mit.edu/?comment=20361&org=pdf
http://nb.csail.mit.edu/?comment=20547&org=pdf
http://nb.csail.mit.edu/?comment=20547&org=pdf
http://nb.csail.mit.edu/?comment=20532&org=pdf
http://nb.csail.mit.edu/?comment=20532&org=pdf
http://nb.csail.mit.edu/?comment=20821&org=pdf
http://nb.csail.mit.edu/?comment=20821&org=pdf
http://nb.csail.mit.edu/?comment=20208&org=pdf
http://nb.csail.mit.edu/?comment=20208&org=pdf
http://nb.csail.mit.edu/?comment=20208&org=pdf
http://nb.csail.mit.edu/?comment=20643&org=pdf
http://nb.csail.mit.edu/?comment=20620&org=pdf
http://nb.csail.mit.edu/?comment=20620&org=pdf
http://nb.csail.mit.edu/?comment=20620&org=pdf

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

40 40

40 40

32

2010-02-19 21:06:10 / rev 5c65c3b1023a+

In these ten iterations, each player won five times. A reasonable conclu-
sion, is that the game is fair: Each player has an equal chance to win.
However, the conclusion cannot be believed too strongly based as it is on
only 10 games.

Let’s try 100 games. With only 10 games, one can quickly count the
number of wins by each player by scanning the line beginnings. But
rather than repeating the process with 100 lines, here is a UNIX pipeline
to do the work:

coin-game.py | head -100 | grep 1 | wc -l

Each run of this pipeline, because coin-game uses different pseudoran-
dom numbers each time, produces a different total. The most recent invo-
cation produced 68: In other words, player 1 won 68 times and player 2
won 32 times. The probability of player 1’s winning now seems closer to
2/3 than to 1/2.

start

H T

H T

H T

To find the exact value, first diagram the game as a tree.
Each horizontal layer contains H and T, and represents
one flip. The game ends at the leaves, when one player
has tossed heads. The boldface H’s show the leaves
where the first player wins, e.g. H, TTH, or TTTTH. The
probabilities of each winning way are, respectively, 1/2,
1/8, and 1/32. The infinite sum of these probabilities is
the probability p of the first player winning:

p =
1

2
+
1

8
+
1

32
+ · · · . (2.1)

This series can be summed using a familiar formula.

However, a more enjoyable analysis – which can explain the formula
(Problem 2.1) – comes from noticing the presence of recursion: The tree
repeats its structure one level down. That is, if the first player tosses tails,
which happens with probability 1/2, then the second player starts the
game as if he or she were the first player. Therefore, the second player
wins the game with probability 1/2 times p (the factor of 1/2 is from
the probability that the first player tosses tails). Because one of the two
players must win, the two winning probabilities p and p/2 add to unity.
Therefore, p = 2/3, as conjectured from the simulation.

Comments on page 2 16

I really like this example. The idea of recursion is a very powerful way to analyze the
game’s probability. However I think the analysis could be improved by expanding the
last paragraph, and possibly including a few more drawings.

http://nb.csail.mit.edu/?comment=20642&org=pdf
http://nb.csail.mit.edu/?comment=20642&org=pdf
http://nb.csail.mit.edu/?comment=20642&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 17

Comments on page 3

This seems a bit out of place...and I’m not sure I know enough to do this!
How does this relate to the examples above? And I think you need to add the condition
that abs(r) < 1 for this question to have any kind of meaning.

On the previous page (line 2.1) we compute the probability of the first player winning
by adding his chance of winning throughout the inifinite tree. However, there are
an infinite number of terms to add, but since the terms are powers of 1/4, (p =
(1/2)(1+1/4+1/4ˆ2+...), the formula simply helps you get the answer to the sum of
the infinite terms.
Yeah I agree, it should be noted that the condition of abs(r) < 1.

Let Z = 1 + r + rˆ2 + rˆ3 + ...

Z = 1 + r(1 + r + rˆ2 + ...) Z = 1 + r(Z) Z - rZ = 1 Z(1-r) = 1 Z = 1 / (1-r)
Wow, that was helpful! And the simplification from step 1 to 2 is a great example of
abstraction. Maybe this could be included as an example before we are prompted
with a problem to solve on our own?

You do know enough, but it requires thinking about it in an interesting way (and
it’s a problem on HW 2).

http://nb.csail.mit.edu/?comment=20162&org=pdf
http://nb.csail.mit.edu/?comment=20181&org=pdf
http://nb.csail.mit.edu/?comment=20181&org=pdf
http://nb.csail.mit.edu/?comment=20219&org=pdf
http://nb.csail.mit.edu/?comment=20219&org=pdf
http://nb.csail.mit.edu/?comment=20219&org=pdf
http://nb.csail.mit.edu/?comment=20219&org=pdf
http://nb.csail.mit.edu/?comment=20219&org=pdf
http://nb.csail.mit.edu/?comment=20260&org=pdf
http://nb.csail.mit.edu/?comment=20260&org=pdf
http://nb.csail.mit.edu/?comment=20260&org=pdf
http://nb.csail.mit.edu/?comment=20271&org=pdf
http://nb.csail.mit.edu/?comment=20271&org=pdf
http://nb.csail.mit.edu/?comment=20271&org=pdf
http://nb.csail.mit.edu/?comment=20321&org=pdf
http://nb.csail.mit.edu/?comment=20321&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 18

wouldn’t this just be infinite if |r|>=1?
yeah.. it’s conventional to state a |r|<1 bound, although the answer could include cases,
|r|<1 and |r|>=1.

Maybe it should be stated in the problem prompt. Although I hadn’t actually consid-
ered the above case, I think it would be nice to have the specifcs.i
Maybe it should be stated in the problem prompt. Although I hadn’t actually consid-
ered the above case, I think it would be nice to have the specifcs.

I think the purpose of this question is not to be mathematically rigorous here, but
rather to find interesting, pictorial or abstractional ways to find the sum of this
series

but the abstraction falls apart for |r|&gt;=1, and bounds are usually VERY
important. If you perform the abstraction, get an equation, and forget to
determine and include the bounds, then can run into big trouble. For r=2, in
this example, your equation would yield Sum = -1. In this case a sense check
can quickly show that something is wrong, but not every situation is so clear.

On the other hand, there are whole areas of mathematics and physics
where one just goes ahead and sums the series, worrying about the
rigor later (if ever). Quantum electrodynamics is a good example.

Given the abundance of rigor in most education, it’s worthwhile to
suspend, for a while, the quest for it.

I agree about focusing on other ways to solve it as opposed to mathematical
rigor, however, since recursion was just introduced with only one example, i
feel that this problem is a little advance for people to begin drawing on re-
cursion principles. At first look I didn’t even really understand how recursion
applied until i saw it explained in the comments.

I disagree – I think that not stating that sort of condition in the prompt is appro-
priate in this circumstance. It’s important for us to be able to distinguish between
the cases in which the series might converge or not, and a real application might
not give us all the restrictions we would like.

http://nb.csail.mit.edu/?comment=20263&org=pdf
http://nb.csail.mit.edu/?comment=20362&org=pdf
http://nb.csail.mit.edu/?comment=20362&org=pdf
http://nb.csail.mit.edu/?comment=20406&org=pdf
http://nb.csail.mit.edu/?comment=20406&org=pdf
http://nb.csail.mit.edu/?comment=20407&org=pdf
http://nb.csail.mit.edu/?comment=20407&org=pdf
http://nb.csail.mit.edu/?comment=20483&org=pdf
http://nb.csail.mit.edu/?comment=20483&org=pdf
http://nb.csail.mit.edu/?comment=20483&org=pdf
http://nb.csail.mit.edu/?comment=20572&org=pdf
http://nb.csail.mit.edu/?comment=20572&org=pdf
http://nb.csail.mit.edu/?comment=20572&org=pdf
http://nb.csail.mit.edu/?comment=20572&org=pdf
http://nb.csail.mit.edu/?comment=20572&org=pdf
http://nb.csail.mit.edu/?comment=20831&org=pdf
http://nb.csail.mit.edu/?comment=20831&org=pdf
http://nb.csail.mit.edu/?comment=20831&org=pdf
http://nb.csail.mit.edu/?comment=20831&org=pdf
http://nb.csail.mit.edu/?comment=20831&org=pdf
http://nb.csail.mit.edu/?comment=20595&org=pdf
http://nb.csail.mit.edu/?comment=20595&org=pdf
http://nb.csail.mit.edu/?comment=20595&org=pdf
http://nb.csail.mit.edu/?comment=20595&org=pdf
http://nb.csail.mit.edu/?comment=20595&org=pdf
http://nb.csail.mit.edu/?comment=20806&org=pdf
http://nb.csail.mit.edu/?comment=20806&org=pdf
http://nb.csail.mit.edu/?comment=20806&org=pdf
http://nb.csail.mit.edu/?comment=20806&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 19

How is this useful for us if we’re learning to approximate in order to not use a machine?

Think of the goal here not only as learning the approximate (I admit, the course
title is misleading), but as learning to use the reasoning tools, like abstraction, across
many, many fields. So, here you will see how abstraction leads to recursion which
leads to a clever multiplication algorithm.

i’m not sure i understand how this is abstraction though
It’s abstraction in that it takes a higher level routine and calls itself to accomplish
a smaller task.

What is the standard school method?

But we are humans. So how does this method help us humans approximate? Wouldn’t
we just use the 1 few or 10 method and do it in a few seconds instead?

The one/few/10 method is good for approximations. I think this is for when we need a
more exact answer.

Or for when you want to teach a computer how to do large calculations. (I really
need to change the title of the course so that I can indicate that the course is not
just approximation...)

Just curious- Pi is an irrational number...so what are computers calculating mathematically
when they calculate pi to billions of digits?

"Although practically a physicist needs only 39 digits of Pi to make a circle the size
of the observable universe accurate to one atom of hydrogen, the number itself as a
mathematical curiosity has created many challenges in different fields."

http://en.wikipedia.org/wiki/Pi#Computation_in_the_computer_age

http://nb.csail.mit.edu/?comment=20171&org=pdf
http://nb.csail.mit.edu/?comment=20322&org=pdf
http://nb.csail.mit.edu/?comment=20322&org=pdf
http://nb.csail.mit.edu/?comment=20322&org=pdf
http://nb.csail.mit.edu/?comment=20322&org=pdf
http://nb.csail.mit.edu/?comment=20549&org=pdf
http://nb.csail.mit.edu/?comment=29621&org=pdf
http://nb.csail.mit.edu/?comment=29621&org=pdf
http://nb.csail.mit.edu/?comment=27571&org=pdf
http://nb.csail.mit.edu/?comment=20161&org=pdf
http://nb.csail.mit.edu/?comment=20161&org=pdf
http://nb.csail.mit.edu/?comment=20251&org=pdf
http://nb.csail.mit.edu/?comment=20251&org=pdf
http://nb.csail.mit.edu/?comment=20320&org=pdf
http://nb.csail.mit.edu/?comment=20320&org=pdf
http://nb.csail.mit.edu/?comment=20320&org=pdf
http://nb.csail.mit.edu/?comment=20663&org=pdf
http://nb.csail.mit.edu/?comment=20663&org=pdf
http://nb.csail.mit.edu/?comment=20699&org=pdf
http://nb.csail.mit.edu/?comment=20699&org=pdf
http://nb.csail.mit.edu/?comment=20699&org=pdf
http://nb.csail.mit.edu/?comment=20699&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 20

I have no idea what this is. Maybe replace it with a more common knowledge example?
I agree that anyone outside of course 6 wouldn’t have any idea what public key cryptogra-
phy is. But for anyone still confused, wikipedia has a nice explanation: http://en.wikipedia.org/wiki/Public-
key_cryptography

I think public-key cryptography is one of the most important concepts that has
emerged in recent decades. Even in its simplest form, it should be taught in any
class (not just in course 6) for the simplicity and logic of the idea.

I think this is a good example in an electronic format where you can google something
you don’t know. Maybe it’s not a common example, but he’s trying to accommodate
multiple audiences as can be seen by the title of the class.

Is this sort of like divide and conquer, but then apply the same operation to each smaller
part(recursive step)?

I don’t understand this way of computing, it seems somewhat difficult and extensive. Also,
how is this useful for us as approximaters?

I’ve never heard of this

Agreed. Is it just how people are taught to multiply by hand?
I too have never been taught the "school method" shown here, but if the example is
only meant to illustrate how multiplication can be tedious without abstraction then it
still seems to serve its purpose even if you haven’t seen that particular method.

I don’t think I was taught how to multiply with this. It was more of a "this is
what these numbers can breakdown into."

I’m also confused what is meant by the "school method". The only method I
was ever taught in school was where you lined the numbers up vertically and
multiplied each digit through, etc.

I think the idea, although it is not exactly like how we solved problems
in school, is that we are isolating the various parts of the problem. Aside
from the tricks of grouping these numbers, we are still multiplying the
same way as always.

Is the school method something you are making up right now, or is it an establishes
technique? I have never herad of it before

http://nb.csail.mit.edu/?comment=20401&org=pdf
http://nb.csail.mit.edu/?comment=20457&org=pdf
http://nb.csail.mit.edu/?comment=20457&org=pdf
http://nb.csail.mit.edu/?comment=20457&org=pdf
http://nb.csail.mit.edu/?comment=20486&org=pdf
http://nb.csail.mit.edu/?comment=20486&org=pdf
http://nb.csail.mit.edu/?comment=20486&org=pdf
http://nb.csail.mit.edu/?comment=20670&org=pdf
http://nb.csail.mit.edu/?comment=20670&org=pdf
http://nb.csail.mit.edu/?comment=20670&org=pdf
http://nb.csail.mit.edu/?comment=20746&org=pdf
http://nb.csail.mit.edu/?comment=20746&org=pdf
http://nb.csail.mit.edu/?comment=20187&org=pdf
http://nb.csail.mit.edu/?comment=20187&org=pdf
http://nb.csail.mit.edu/?comment=20163&org=pdf
http://nb.csail.mit.edu/?comment=20343&org=pdf
http://nb.csail.mit.edu/?comment=20382&org=pdf
http://nb.csail.mit.edu/?comment=20382&org=pdf
http://nb.csail.mit.edu/?comment=20382&org=pdf
http://nb.csail.mit.edu/?comment=20390&org=pdf
http://nb.csail.mit.edu/?comment=20390&org=pdf
http://nb.csail.mit.edu/?comment=20459&org=pdf
http://nb.csail.mit.edu/?comment=20459&org=pdf
http://nb.csail.mit.edu/?comment=20459&org=pdf
http://nb.csail.mit.edu/?comment=20641&org=pdf
http://nb.csail.mit.edu/?comment=20641&org=pdf
http://nb.csail.mit.edu/?comment=20641&org=pdf
http://nb.csail.mit.edu/?comment=20641&org=pdf
http://nb.csail.mit.edu/?comment=20776&org=pdf
http://nb.csail.mit.edu/?comment=20776&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 21

This is a very awkward way of writing this

http://nb.csail.mit.edu/?comment=27968&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 22

Where does this "school method" come from? I was taught to do multiplication by hand
this way. 35 x27 —- 245 70 945 (7*5)=35, write down the 5, carry the 3 over, 7*3+3=24, write
that down. Then repeat for 2. 2*5=10, write 0, carry 1 over, 2*3+1=7, write that down.
Then add the two numbers.

I would definitely say that the above would be reflective of my schooling, however I
find myself using this other method (outlined in the text) when I need ot multiply larger
numbers, although I wouldn’t say I was ever formally taught it. And I never took the
time to write it all out. Very interesting where you take this.
I agree that this is how I was taught to do multiplication, but most of us wouldn’t do
it this way anymore - it would probably be 27*30 + 27*10/2 since that’s faster and more
intuitive for us.

I agree with this method, it’s much faster and how I would approach it, although I
did (35x30) - (35x3) which came out to a clean 945.
I agree that this is a bit more intuitive however, i think it takes more effort and
concentration to do all of this in ones head and remember the numbers too. Since
many human beings are lazy it seems that there is a bit of a trade off of effort vs.
time (since you can probably do it in your head faster than on paper).

If you look at what you’ve written out, I think that’s the answer to your question. That is
school method except it is written in column form instead of side-ways in regular equation
form. The general procedure is to take the units, tens, hundreds (27 = 7+20) and multiply
by the first number. When you take each digit and multiply by the first number, you do
it by breaking down the first number into units, tens, hundreds (35=30+5). In the end,
you multiple out everything keeping track of all powers of ten.

That being said, it might be easier to tie introduce this section using the column multi-
plication that we all learned.

If I am doing the multiplication on paper, I use the column method as explained
above. But if for whatever reason I need to do it in my head, I"ll use the method as
explained in the text. (assuming the problem is 2*2 or maybe 3*2 max... after that I
can’t keep the numbers in my memory easily and will resort to paper or calculator)

Remember from algebra: (3x+5)(2x+7)=... He’s applying what your teacher’s made you
drill in abstract

this is a clever insight, it makes it much easier to understand what he is doing in Eg.
2.4. Old FOIL method.

http://nb.csail.mit.edu/?comment=20155&org=pdf
http://nb.csail.mit.edu/?comment=20155&org=pdf
http://nb.csail.mit.edu/?comment=20155&org=pdf
http://nb.csail.mit.edu/?comment=20155&org=pdf
http://nb.csail.mit.edu/?comment=20168&org=pdf
http://nb.csail.mit.edu/?comment=20168&org=pdf
http://nb.csail.mit.edu/?comment=20168&org=pdf
http://nb.csail.mit.edu/?comment=20168&org=pdf
http://nb.csail.mit.edu/?comment=20182&org=pdf
http://nb.csail.mit.edu/?comment=20182&org=pdf
http://nb.csail.mit.edu/?comment=20182&org=pdf
http://nb.csail.mit.edu/?comment=20258&org=pdf
http://nb.csail.mit.edu/?comment=20258&org=pdf
http://nb.csail.mit.edu/?comment=20600&org=pdf
http://nb.csail.mit.edu/?comment=20600&org=pdf
http://nb.csail.mit.edu/?comment=20600&org=pdf
http://nb.csail.mit.edu/?comment=20600&org=pdf
http://nb.csail.mit.edu/?comment=20210&org=pdf
http://nb.csail.mit.edu/?comment=20210&org=pdf
http://nb.csail.mit.edu/?comment=20210&org=pdf
http://nb.csail.mit.edu/?comment=20210&org=pdf
http://nb.csail.mit.edu/?comment=20210&org=pdf
http://nb.csail.mit.edu/?comment=20210&org=pdf
http://nb.csail.mit.edu/?comment=20210&org=pdf
http://nb.csail.mit.edu/?comment=20210&org=pdf
http://nb.csail.mit.edu/?comment=20252&org=pdf
http://nb.csail.mit.edu/?comment=20252&org=pdf
http://nb.csail.mit.edu/?comment=20252&org=pdf
http://nb.csail.mit.edu/?comment=20252&org=pdf
http://nb.csail.mit.edu/?comment=20537&org=pdf
http://nb.csail.mit.edu/?comment=20537&org=pdf
http://nb.csail.mit.edu/?comment=20603&org=pdf
http://nb.csail.mit.edu/?comment=20603&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 23

school method? did anyone do this in school?

Yes, I did this in school.
I didn’t do this in school, but I can see how this method would be taught. I was a bit
confused by the name "school method" as well.

it is a horizontal representation of the vertical multiplication that i learned
I didn’t realize that. Maybe it would be easier to recognize if it was presented
in the vertical form somehow.

I assume the recursion comes in for each n power of 10?

y are we regrouping by the powers of 10? is this in reference to befoe when we estimated
large multiplications by separating the power of 10 from the from number?

http://nb.csail.mit.edu/?comment=20551&org=pdf
http://nb.csail.mit.edu/?comment=20581&org=pdf
http://nb.csail.mit.edu/?comment=20644&org=pdf
http://nb.csail.mit.edu/?comment=20644&org=pdf
http://nb.csail.mit.edu/?comment=20726&org=pdf
http://nb.csail.mit.edu/?comment=20735&org=pdf
http://nb.csail.mit.edu/?comment=20735&org=pdf
http://nb.csail.mit.edu/?comment=20451&org=pdf
http://nb.csail.mit.edu/?comment=20780&org=pdf
http://nb.csail.mit.edu/?comment=20780&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 24

This is a really confusing way to write the math out.
I agree... how is this more useful than standard two-number multiplication where you
start with the units digit, and carry the factors of 10, etc.?

Yeah, I would think that the school-method would just be the multiplication method
just mentioned? I understand that this method represents recursion but it’s also
making this multiplication so much more difficult than it is. I though recursion was
supposed to simplify our calculations?

I don’t think so, I mean it’s pretty clear what’s happening here in terms of grouping
factors and dealing with distribution. I think the target audience of this book is college
age or older students / teachers, who shouldn’t have that much trouble figuring out the
math. Also, the point is kind of to show how cumbersome and totally unnecessary the
’school method’ is compared to smart recursion.
I don’t think so, I mean it’s pretty clear what’s happening here in terms of grouping
factors and dealing with distribution. I think the target audience of this book is college
age or older students / teachers, who shouldn’t have that much trouble figuring out the
math. Also, the point is kind of to show how cumbersome and totally unnecessary the
’school method’ is compared to smart recursion.
I don’t think so, I mean it’s pretty clear what’s happening here in terms of grouping
factors and dealing with distribution. I think the target audience of this book is college
age or older students / teachers, who shouldn’t have that much trouble figuring out the
math. Also, the point is kind of to show how cumbersome and totally unnecessary the
’school method’ is compared to smart recursion.
I don’t think so, I mean it’s pretty clear what’s happening here in terms of grouping
factors and dealing with distribution. I think the target audience of this book is college
age or older students / teachers, who shouldn’t have that much trouble figuring out the
math. Also, the point is kind of to show how cumbersome and totally unnecessary the
’school method’ is compared to smart recursion.
I don’t think so, I mean it’s pretty clear what’s happening here in terms of grouping
factors and dealing with distribution. I think the target audience of this book is college
age or older students / teachers, who shouldn’t have that much trouble figuring out the
math. Also, the point is kind of to show how cumbersome and totally unnecessary the
’school method’ is compared to smart recursion.

http://nb.csail.mit.edu/?comment=20344&org=pdf
http://nb.csail.mit.edu/?comment=20364&org=pdf
http://nb.csail.mit.edu/?comment=20364&org=pdf
http://nb.csail.mit.edu/?comment=20403&org=pdf
http://nb.csail.mit.edu/?comment=20403&org=pdf
http://nb.csail.mit.edu/?comment=20403&org=pdf
http://nb.csail.mit.edu/?comment=20403&org=pdf
http://nb.csail.mit.edu/?comment=20408&org=pdf
http://nb.csail.mit.edu/?comment=20408&org=pdf
http://nb.csail.mit.edu/?comment=20408&org=pdf
http://nb.csail.mit.edu/?comment=20408&org=pdf
http://nb.csail.mit.edu/?comment=20408&org=pdf
http://nb.csail.mit.edu/?comment=20409&org=pdf
http://nb.csail.mit.edu/?comment=20409&org=pdf
http://nb.csail.mit.edu/?comment=20409&org=pdf
http://nb.csail.mit.edu/?comment=20409&org=pdf
http://nb.csail.mit.edu/?comment=20409&org=pdf
http://nb.csail.mit.edu/?comment=20410&org=pdf
http://nb.csail.mit.edu/?comment=20410&org=pdf
http://nb.csail.mit.edu/?comment=20410&org=pdf
http://nb.csail.mit.edu/?comment=20410&org=pdf
http://nb.csail.mit.edu/?comment=20410&org=pdf
http://nb.csail.mit.edu/?comment=20411&org=pdf
http://nb.csail.mit.edu/?comment=20411&org=pdf
http://nb.csail.mit.edu/?comment=20411&org=pdf
http://nb.csail.mit.edu/?comment=20411&org=pdf
http://nb.csail.mit.edu/?comment=20411&org=pdf
http://nb.csail.mit.edu/?comment=20412&org=pdf
http://nb.csail.mit.edu/?comment=20412&org=pdf
http://nb.csail.mit.edu/?comment=20412&org=pdf
http://nb.csail.mit.edu/?comment=20412&org=pdf
http://nb.csail.mit.edu/?comment=20412&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 25

While compared to the school method this takes less paper space and the math isnt
too hard to figure out, it still comes across as an application of recursion with hard
to see benefits. Adding in the following section was very useful though.

could you at least add a few more spaces between the terms being added? i felt
myself goign back several times and trying to find the term. it made reading it
take way longer than necessary.

Or, as suggested in another comment, I will add parentheses to make the
grouping clear.

This totally glitched out and over-posted a bunch of times. Weird.

Maybe add a feature to delete double posts?

is that a reliable definition of an abstraction?

I think so... its reusable and keeps only important details.
This is similar to what he was talking about in class with the tree programming
language

Actually, the programming the tree thing makes me wonder – is object oriented
coding all about abstraction? You abstract things into objects, classes, etc...?

I don’t think that this is meant to be a definition of abstraction, it is only pointing out
that commonly convenient notation’s are also abstractions.

A notation is not the only kind of abstraction, but it’s one of the most useful and
easy to recognize (and common).

Think of musical notation, e.g. for piano or guitar music. It is such a good notation
that we hardly even realize that it is a notation.

i dont understand this type of notation

10y+x, I think?

agreed!

http://nb.csail.mit.edu/?comment=20447&org=pdf
http://nb.csail.mit.edu/?comment=20447&org=pdf
http://nb.csail.mit.edu/?comment=20447&org=pdf
http://nb.csail.mit.edu/?comment=20470&org=pdf
http://nb.csail.mit.edu/?comment=20470&org=pdf
http://nb.csail.mit.edu/?comment=20470&org=pdf
http://nb.csail.mit.edu/?comment=20833&org=pdf
http://nb.csail.mit.edu/?comment=20833&org=pdf
http://nb.csail.mit.edu/?comment=20414&org=pdf
http://nb.csail.mit.edu/?comment=20415&org=pdf
http://nb.csail.mit.edu/?comment=20238&org=pdf
http://nb.csail.mit.edu/?comment=20253&org=pdf
http://nb.csail.mit.edu/?comment=20352&org=pdf
http://nb.csail.mit.edu/?comment=20352&org=pdf
http://nb.csail.mit.edu/?comment=20578&org=pdf
http://nb.csail.mit.edu/?comment=20578&org=pdf
http://nb.csail.mit.edu/?comment=20648&org=pdf
http://nb.csail.mit.edu/?comment=20648&org=pdf
http://nb.csail.mit.edu/?comment=20828&org=pdf
http://nb.csail.mit.edu/?comment=20828&org=pdf
http://nb.csail.mit.edu/?comment=20828&org=pdf
http://nb.csail.mit.edu/?comment=20828&org=pdf
http://nb.csail.mit.edu/?comment=20552&org=pdf
http://nb.csail.mit.edu/?comment=20150&org=pdf
http://nb.csail.mit.edu/?comment=20164&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 26

I believe this should be:

y|x represents 10y+x.

As it is different from the next example and doesn’t make sense in equation 2.7

I agree I think this might have been a typo, otherwise 3|5 would yield 53 and not 35

Perhaps a better way to present this abstraction would be to present the calculation graph-
ically, similar to how the alternative "school method" mentioned in the comments above
is organized? (I mean, by lining up all the terms that are x1, and all the x10 terms, and
all the x100 terms, etc, then simply adding them rather than multiplying them?) It would
avoid the cluttering of the | syntax here.

how would this work for fractions?
For decimal expansions you could maybe do: 3|1|.4|1|5 for 31.415? I’m not sure why it
would need to work for fractions..

i am honestly only glossing over this page and all the arithmetic manipulations and la-
beling it as an inefficient method. im not sure if that is the point of this, but this is how
it is coming across to me.

This is rather confusing when it’s embedded in the text. If it’s going to be so crucial for
the next part, try separating it out of the text.

How do you know where the |’s are used to separate the numbers you multiply?

How did this come from that description? I would have expected (10*3+5)*(2*10+7) and
so on

http://nb.csail.mit.edu/?comment=20156&org=pdf
http://nb.csail.mit.edu/?comment=20156&org=pdf
http://nb.csail.mit.edu/?comment=20156&org=pdf
http://nb.csail.mit.edu/?comment=20613&org=pdf
http://nb.csail.mit.edu/?comment=20170&org=pdf
http://nb.csail.mit.edu/?comment=20170&org=pdf
http://nb.csail.mit.edu/?comment=20170&org=pdf
http://nb.csail.mit.edu/?comment=20170&org=pdf
http://nb.csail.mit.edu/?comment=20170&org=pdf
http://nb.csail.mit.edu/?comment=20264&org=pdf
http://nb.csail.mit.edu/?comment=20365&org=pdf
http://nb.csail.mit.edu/?comment=20365&org=pdf
http://nb.csail.mit.edu/?comment=20519&org=pdf
http://nb.csail.mit.edu/?comment=20519&org=pdf
http://nb.csail.mit.edu/?comment=20519&org=pdf
http://nb.csail.mit.edu/?comment=20621&org=pdf
http://nb.csail.mit.edu/?comment=20621&org=pdf
http://nb.csail.mit.edu/?comment=20616&org=pdf
http://nb.csail.mit.edu/?comment=27573&org=pdf
http://nb.csail.mit.edu/?comment=27573&org=pdf

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

41 41

41 41

33

2010-02-19 21:06:10 / rev 5c65c3b1023a+

Problem 2.1 Summing a series using abstraction
Use abstraction to find the sum of the infinite series

1+ r+ r2 + r3 + · · · . (2.2)

2.2.2 Computational Recursion

The second example of recursion is an algorithm to multiply many-digit
numbers much more rapidly than is possible with the standard school
method. The school method is sufficient for humans, for we rarely multi-
ply large numbers by hand. However, computers are often called upon to
multiply gigantic numbers, whether in computing π to billions of digits or
in public-key cryptography. I’ll introduce the new method by contrasting
it with the school method on the example of 35× 27.
In the school method, the product is written as

35× 27 = (3× 10+ 5)× (2× 10+ 7). (2.3)

The product expands into four terms:

(3× 10)× (2× 10) + (3× 10)× 7+ 5× (2× 10) + 5× 7. (2.4)

Regrouping the terms by the powers of 10 gives

3× 2× 100+ (3× 7+ 5× 2)× 10+ 5× 7. (2.5)

Then you remember the four one-digit multiplications 3× 2, 3× 7, 5× 2,
and 5× 7, finding that

35× 27 = 6× 100+ 31× 10+ 35 = 945. (2.6)

Unfortunately, the preceding description is cluttered with powers of 10
obscuring the underlying pattern. Therefore, define a convenient notation
(an abstraction!): Let y|x represent 10x+y and z|y|x represent 100z+10y+
x. Then the school method runs as follows:

3|5 × 2|7 = 3× 2
∣∣ 3× 7+ 5× 2

∣∣ 5× 7. (2.7)

This notation shows how school multiplication replaces a two-digit multi-
plication with four one-digit multiplications. It would recursively replace

Comments on page 3 27

It took me a long time to figure out what this was saying. As written, I read (3x2)x10
+ 3x7 + (5x2)x10 + 5x7. I think it’d be much more clear if you used parentheses, i.e.
(3x2)|(3x7+5x2)|(5x7). The root of this problem is you never specified where the | feel with
regards to order of operations. Also, y|x is meant in discrete mathematics (at least as taught
in 6.042) that x divides y (y=ax), so this might be confusing.

I agree. I think a few sentences explaining the exact method of getting to that expression
would be helpful. Especially during its first appearance in this chapter. For example the
expression in the middle bracket wasn’t clearly apparent.

Agreed, I had to read over this section several times in order to understand what was
meant by |. Even just a quick explanation of this would and how you came up with
the notation would be very helpful.

Need to see this in class. I don’t get it.

Need to see this in class. I don’t get it.

I’m not sure if I get it, which is also why I would like to see it in class.
I had never thought of multiplication in this manner; this is really useful,
and I think after some practice with it, it will be a powerful tool.

I agree - parentheses would’ve helped emphasize that you are doing (x)|(y)|(z)
I think I’m still a little confused about what is going on here... I can’t really see how
this method is supposed easier or better than other methods.

It also took me a little while to see what this was saying. But something I noticed is that
the expansion of the multiplication is kind of like the FOIL method taught for expanding
multiplication of factors.

why is this helpful? it seems like the same thing as above

I need some more time to learn to do this.

http://nb.csail.mit.edu/?comment=20169&org=pdf
http://nb.csail.mit.edu/?comment=20169&org=pdf
http://nb.csail.mit.edu/?comment=20169&org=pdf
http://nb.csail.mit.edu/?comment=20169&org=pdf
http://nb.csail.mit.edu/?comment=20169&org=pdf
http://nb.csail.mit.edu/?comment=20207&org=pdf
http://nb.csail.mit.edu/?comment=20207&org=pdf
http://nb.csail.mit.edu/?comment=20207&org=pdf
http://nb.csail.mit.edu/?comment=20245&org=pdf
http://nb.csail.mit.edu/?comment=20245&org=pdf
http://nb.csail.mit.edu/?comment=20245&org=pdf
http://nb.csail.mit.edu/?comment=20675&org=pdf
http://nb.csail.mit.edu/?comment=20677&org=pdf
http://nb.csail.mit.edu/?comment=20721&org=pdf
http://nb.csail.mit.edu/?comment=20825&org=pdf
http://nb.csail.mit.edu/?comment=20825&org=pdf
http://nb.csail.mit.edu/?comment=20265&org=pdf
http://nb.csail.mit.edu/?comment=20463&org=pdf
http://nb.csail.mit.edu/?comment=20463&org=pdf
http://nb.csail.mit.edu/?comment=20389&org=pdf
http://nb.csail.mit.edu/?comment=20389&org=pdf
http://nb.csail.mit.edu/?comment=20389&org=pdf
http://nb.csail.mit.edu/?comment=20439&org=pdf
http://nb.csail.mit.edu/?comment=20651&org=pdf

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

Comments on page 4 28

Comments on page 4

I might recommend using a different notation here such that

y||x means 100y + x
Agreed. It would make things more clear so that instead of trying to figure out whether
| means 10y+x or 100y+x, we can just focus on the more relevant parts of the problem.

Yeah this is a little confusing.
first thing that entered my mind I was thinking "given" like y given x, since we were just
talking about probabilities
I agree. My first reaction was that this must have been a typo, and your change to the
notation would make it much clearer that it’s intentional.

Looks very cluttered and hard to read
As soon as you understand the method it’s really not that cluttered, I don’t think there’s
a better way to illustrate the multiplication.

I feel like this makes the problem even more complicated

I think this looks fine. It flows well. Maybe you could make the bars bolder.

here it is corrected

You could possibly use arrows to make things clearer? (how the multiplying is done etc.

I think that’s a typo. Should be 3 x 1|3 x 7...

http://nb.csail.mit.edu/?comment=20333&org=pdf
http://nb.csail.mit.edu/?comment=20333&org=pdf
http://nb.csail.mit.edu/?comment=20391&org=pdf
http://nb.csail.mit.edu/?comment=20391&org=pdf
http://nb.csail.mit.edu/?comment=20476&org=pdf
http://nb.csail.mit.edu/?comment=20803&org=pdf
http://nb.csail.mit.edu/?comment=20803&org=pdf
http://nb.csail.mit.edu/?comment=20807&org=pdf
http://nb.csail.mit.edu/?comment=20807&org=pdf
http://nb.csail.mit.edu/?comment=20781&org=pdf
http://nb.csail.mit.edu/?comment=29622&org=pdf
http://nb.csail.mit.edu/?comment=29622&org=pdf
http://nb.csail.mit.edu/?comment=20440&org=pdf
http://nb.csail.mit.edu/?comment=23208&org=pdf
http://nb.csail.mit.edu/?comment=20165&org=pdf
http://nb.csail.mit.edu/?comment=23209&org=pdf
http://nb.csail.mit.edu/?comment=20211&org=pdf

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

Comments on page 4 29

Does this method make multiplication easy to do in your head? It seems like 16 1-digit
multiplications would be easy to lose track of, since there’s a limit to how many digits
people can keep in their temporary memory at a time.

I agree that breaking the problem into so many pieces may make it hard to keep track
of the entire problem. Though I haven’t quite wrapped my head around this method
yet, would it be possible to work through the problem as you’re breaking it down. So
instead of keeping all 16 multiplications in your head, you work through a part at a time
(keeping track of what you still have to break down before the next step)?

I would personally break this down further and do it in parts. I agree that it does
seem a bit difficult to keep track of everything.
I would personally break this down further and do it in parts. I agree that it does
seem a bit difficult to keep track of everything.

I think the point is to create problems which we can solve in our head more easily
rather then make it easier to keep track of. Clearly, breaking the numbers down
to smaller numbers makes more solutions to keep track of but it’s a good balance
that we’re after.

I found this very very interesting. One of the things I have most enjoyed
reading about thus far.

I feel the same way. Wouldn’t it be easier to just use divide and conquer?

Pretty neat. But doesn’t this make room for a lot of mistakes, going against our idea of
intelligent redundancy?

is this faster than the school method?

some sort of comparison?

i never learned multiplication looking like this... doesn’t seem as natural, but it definitely
makes sense

http://nb.csail.mit.edu/?comment=20282&org=pdf
http://nb.csail.mit.edu/?comment=20282&org=pdf
http://nb.csail.mit.edu/?comment=20282&org=pdf
http://nb.csail.mit.edu/?comment=20384&org=pdf
http://nb.csail.mit.edu/?comment=20384&org=pdf
http://nb.csail.mit.edu/?comment=20384&org=pdf
http://nb.csail.mit.edu/?comment=20384&org=pdf
http://nb.csail.mit.edu/?comment=20384&org=pdf
http://nb.csail.mit.edu/?comment=20416&org=pdf
http://nb.csail.mit.edu/?comment=20416&org=pdf
http://nb.csail.mit.edu/?comment=20417&org=pdf
http://nb.csail.mit.edu/?comment=20417&org=pdf
http://nb.csail.mit.edu/?comment=20646&org=pdf
http://nb.csail.mit.edu/?comment=20646&org=pdf
http://nb.csail.mit.edu/?comment=20646&org=pdf
http://nb.csail.mit.edu/?comment=20646&org=pdf
http://nb.csail.mit.edu/?comment=20723&org=pdf
http://nb.csail.mit.edu/?comment=20723&org=pdf
http://nb.csail.mit.edu/?comment=20823&org=pdf
http://nb.csail.mit.edu/?comment=20279&org=pdf
http://nb.csail.mit.edu/?comment=20279&org=pdf
http://nb.csail.mit.edu/?comment=27574&org=pdf
http://nb.csail.mit.edu/?comment=27574&org=pdf
http://nb.csail.mit.edu/?comment=20783&org=pdf
http://nb.csail.mit.edu/?comment=20783&org=pdf

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

Comments on page 4 30

I don’t really see this algorithm as "natural" though, it is more complicated to me than
just multiplying via one number on top of the other and carrying the 10s, etc.

yeah I agree, although this method makes sense, I was definitely not taught to do multi-
plication this way at school so it doesn’t feel "natural" as stated in the paragraph.
Well, I think it feels unnatural because it sounds like most of us never actually learned
multiplication this way (this is the first time I’ve seen this)... so it feels like there is some
sort of gap here based on the way people were taught multiplication. I can see where
this is going in terms of recursion, but it certainly isn’t the way I’d multiply by hand.
Maybe if we were taught multiplication by this recursion method, it would seem more
natural. If nothing else, introducing the concept of recursion earlier in schooling would
allow people to understand this concept better

How does this improve the method?

visual diagrams are actually a lot more helpful for me rather than writing out the recursion
steps

Why would you break it down into this step? It seems more complicated?

I think these examples are interesting and do illustrate the recursion and abstraction
principles, but I am still having a hard time relating them to something a person would
do rather than a computer. Maybe the section should include an example that is practical
for problem solving by the human brain.

i agree...it’s sorta interesting, but i don’t think i would ever do this
I can see how 2.9 is very useful but the improvement seems a lot more complicated
to remember for a four or six digit multiplication.

How many orders of computation are being saved?

This is a really cool method.
When doing quick approximations, could we speed up the process by adding numbers
to make "few"?

i like the logic used here. not sure if it is necessary though, as it is assumed that since it
is in the book the new method should work by most students.

http://nb.csail.mit.edu/?comment=20413&org=pdf
http://nb.csail.mit.edu/?comment=20413&org=pdf
http://nb.csail.mit.edu/?comment=20573&org=pdf
http://nb.csail.mit.edu/?comment=20573&org=pdf
http://nb.csail.mit.edu/?comment=20580&org=pdf
http://nb.csail.mit.edu/?comment=20580&org=pdf
http://nb.csail.mit.edu/?comment=20580&org=pdf
http://nb.csail.mit.edu/?comment=20580&org=pdf
http://nb.csail.mit.edu/?comment=20682&org=pdf
http://nb.csail.mit.edu/?comment=20682&org=pdf
http://nb.csail.mit.edu/?comment=20682&org=pdf
http://nb.csail.mit.edu/?comment=20653&org=pdf
http://nb.csail.mit.edu/?comment=20235&org=pdf
http://nb.csail.mit.edu/?comment=20235&org=pdf
http://nb.csail.mit.edu/?comment=20822&org=pdf
http://nb.csail.mit.edu/?comment=20350&org=pdf
http://nb.csail.mit.edu/?comment=20350&org=pdf
http://nb.csail.mit.edu/?comment=20350&org=pdf
http://nb.csail.mit.edu/?comment=20350&org=pdf
http://nb.csail.mit.edu/?comment=20556&org=pdf
http://nb.csail.mit.edu/?comment=20748&org=pdf
http://nb.csail.mit.edu/?comment=20748&org=pdf
http://nb.csail.mit.edu/?comment=20172&org=pdf
http://nb.csail.mit.edu/?comment=20338&org=pdf
http://nb.csail.mit.edu/?comment=20378&org=pdf
http://nb.csail.mit.edu/?comment=20378&org=pdf
http://nb.csail.mit.edu/?comment=20521&org=pdf
http://nb.csail.mit.edu/?comment=20521&org=pdf

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

Comments on page 4 31

Wow this is crazy how it works, but I still don’t totally understand exactly how it works
I’m also a little lost. Is there some way to convey this graphically? Which numbers are
being multiplied where and why.

I feel like this relates a lot to the chess game. Yes this is great for a computer because
they dont have trouble remembering but for humans it doesnt seem practical. I need more
convincing.

It is definitely not practical for a human! The method is used here to illustrate how
abstraction, of which recursion is a special case, leads to understanding a very sly
algorithm. The goal of the course is to understand lots of natural systems (e.g. blue
skies) and to learn tools that help in designing and building person-made systems
(e.g. bridges, large software systems).

Wow. That is really impressive. I never would’ve though of that
Woah, this is also amazing. These alternative methods of using abstraction are very
interesting.

I was wondering where we were saving time.

I feel like this is true for programming. The computer will notice that there were a few
unnecessary calculations. But for humans to realize that would take more time. Recursion
to me doesn’t seem like a practical method for humans.

This is awesome. Why don’t they teach this to us at school?

Ok this makes way more sense as to why it is "clever redundancy!"
I agree, I wish I had learned this a long time ago. I would assume that it is even
more practical for humans because of the need to eliminate calculations while
working with mental math.

http://nb.csail.mit.edu/?comment=20257&org=pdf
http://nb.csail.mit.edu/?comment=20741&org=pdf
http://nb.csail.mit.edu/?comment=20741&org=pdf
http://nb.csail.mit.edu/?comment=20217&org=pdf
http://nb.csail.mit.edu/?comment=20217&org=pdf
http://nb.csail.mit.edu/?comment=20217&org=pdf
http://nb.csail.mit.edu/?comment=20324&org=pdf
http://nb.csail.mit.edu/?comment=20324&org=pdf
http://nb.csail.mit.edu/?comment=20324&org=pdf
http://nb.csail.mit.edu/?comment=20324&org=pdf
http://nb.csail.mit.edu/?comment=20324&org=pdf
http://nb.csail.mit.edu/?comment=20166&org=pdf
http://nb.csail.mit.edu/?comment=20183&org=pdf
http://nb.csail.mit.edu/?comment=20183&org=pdf
http://nb.csail.mit.edu/?comment=20458&org=pdf
http://nb.csail.mit.edu/?comment=20206&org=pdf
http://nb.csail.mit.edu/?comment=20206&org=pdf
http://nb.csail.mit.edu/?comment=20206&org=pdf
http://nb.csail.mit.edu/?comment=20222&org=pdf
http://nb.csail.mit.edu/?comment=20280&org=pdf
http://nb.csail.mit.edu/?comment=20649&org=pdf
http://nb.csail.mit.edu/?comment=20649&org=pdf
http://nb.csail.mit.edu/?comment=20649&org=pdf

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

42 42

42 42

34

2010-02-19 21:06:10 / rev 5c65c3b1023a+

a four-digit multiplication with four two-digit multiplications. For exam-
ple, using a modified | notation where y|x means 100y + x, the product
3247× 1798 becomes

32|47 × 17|98 = 32× 17
∣∣ 32× 98+ 47× 17

∣∣ 47× 98. (2.8)

Each two-digit multiplication (of which there are four) would in turn
become four one-digit multiplications. For example (and using the normal
y|x = 10y+ x notation),

3|2 × 1|7 = 3× 2
∣∣ 3× 7+ 2× 1

∣∣ 2× 7. (2.9)

Thus, a four-digit multiplication becomes 16 one-digit multiplications.
Continuing the pattern, an eight-digit multiplication becomes four four-
digit multiplications or, in the end, 64 one-digit multiplications. In gen-
eral, an n-digit multiplication requires n2 one-digit multiplications. This
recursive algorithm seems so natural, perhaps because we learned it so
long ago, that improvements are hard to imagine.
Surprisingly, a slight change in the method significantly improves it. The
key is to retain the core idea of recursion but to improve the method of
decomposition. Here is the improvement:

a1|a0 × b1|b0 = a1b1
∣∣ (a1 + a0)(b1 + b0) − a1b1 − a0b0

∣∣ a0b0.

Before analyzing the improvement, let’s check that it is not nonsense by
retrying the 35× 27 example.

3|5 × 2|7 = 3× 2
∣∣ (3+ 5)(2+ 7) − 3× 2− 5× 7

∣∣ 5× 7.

Doing the five one-digit multiplications gives

3|5 × 2|7 = 6 | 31 | 35 = 6× 100+ 31× 10+ 35 = 945, (2.10)

just as it should.
At first glance, the method seems like a retrograde step because it requires
five multiplications whereas the school method requires only four. How-
ever, the magic of the new method is that two multiplications are redun-
dant: a1b1 and a0b0 are each computed twice. Therefore, the new method
requires only three multiplications. The small change from four to three
multiplications, when used recursively, makes the new method signifi-
cantly faster: An n-digit multiplication requires roughly n1.58 one-digit

Comments on page 4 32

I don’t understand how this change would really make a computer faster. The way I see it,
a computer would have a database with all one digit multiplications and their results. My
sense of the reading is that the time-saving comes from the fact that while there are the
same number of 1x1 multiplications, some of them are the duplicates. I don’t understand
how it would take less time for it to "compute" this number with the duplicates than the
case without them, wouldn’t it still need to replace the same number of 1x1 calculations
with answers?

This is actually really clever. At first it seems very complicated, but if you can follow their
recursion, it actually makes it a lot faster

Yeah, once I understood that a1b1 and a0b0 are the same, it made sense.

where does the 1.58 come from? is that the log2(3) as mentioned below?

Why is it log2(3) though?

http://nb.csail.mit.edu/?comment=20652&org=pdf
http://nb.csail.mit.edu/?comment=20652&org=pdf
http://nb.csail.mit.edu/?comment=20652&org=pdf
http://nb.csail.mit.edu/?comment=20652&org=pdf
http://nb.csail.mit.edu/?comment=20652&org=pdf
http://nb.csail.mit.edu/?comment=20652&org=pdf
http://nb.csail.mit.edu/?comment=20652&org=pdf
http://nb.csail.mit.edu/?comment=20256&org=pdf
http://nb.csail.mit.edu/?comment=20256&org=pdf
http://nb.csail.mit.edu/?comment=20655&org=pdf
http://nb.csail.mit.edu/?comment=20254&org=pdf
http://nb.csail.mit.edu/?comment=20392&org=pdf

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

Comments on page 5 33

Comments on page 5

Very interesting.. Who originally thought of this? Why do we learn the other way?

Yea school way is much less efficient than computational recursion
but it’s less complicated to learn! we don’t really learn the school method in the same
way that it’s explained here...we do it vertically. This physical setup is much easier
to remember [and learn than] an equation

is there an example of it being used for higher order multiplication?

is there an example of it being used for higher order multiplication?

How does multiplying billion digits allow one to compute pi? How do people calculate
pi anyways?

http://en.wikipedia.org/wiki/Numerical_approximations_of_%CF%80

I’m really glad you asked that because that was a really interesting article... I think the
question you asked has a million different answers and has been an important questoin
for a long time

I like that you explain a concept then tell us why this is important at all.

In the smaller form, this feels useful for humans to possibly use as a way to do 2 digit
(maybe 4 digit) multiplication. Even though I think it is not useful for humans (we
have calculators) past that, it’s nice to now know how this type of thing works. Very
informational; I think this section was helpful.

very interesting fact, i never knew why people wanted to compute pi to a more digits than
10

http://nb.csail.mit.edu/?comment=20339&org=pdf
http://nb.csail.mit.edu/?comment=20656&org=pdf
http://nb.csail.mit.edu/?comment=20706&org=pdf
http://nb.csail.mit.edu/?comment=20706&org=pdf
http://nb.csail.mit.edu/?comment=20706&org=pdf
http://nb.csail.mit.edu/?comment=20239&org=pdf
http://nb.csail.mit.edu/?comment=20240&org=pdf
http://nb.csail.mit.edu/?comment=20686&org=pdf
http://nb.csail.mit.edu/?comment=20686&org=pdf
http://nb.csail.mit.edu/?comment=20727&org=pdf
http://nb.csail.mit.edu/?comment=20727&org=pdf
http://nb.csail.mit.edu/?comment=20727&org=pdf
http://nb.csail.mit.edu/?comment=20727&org=pdf
http://nb.csail.mit.edu/?comment=23210&org=pdf
http://nb.csail.mit.edu/?comment=20827&org=pdf
http://nb.csail.mit.edu/?comment=20827&org=pdf
http://nb.csail.mit.edu/?comment=20827&org=pdf
http://nb.csail.mit.edu/?comment=20827&org=pdf
http://nb.csail.mit.edu/?comment=22379&org=pdf
http://nb.csail.mit.edu/?comment=22379&org=pdf

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

Comments on page 5 34

Random, but interesting. I like these little sidenotes, they help me remember what I read.

That’s true, it is useful how the random application examples help differentiate topics.
I agree I would encourage including these random interesting facts because the ran-
dom/interesting nature makes them easy to remember and thus it is easier to remem-
ber the material associated with them.

I’m going to have to fourth this. It’s a lot of these side notes, ans short purposes
for the readings that keeps me engaged and saying "I wonder what this is used
for? Ohhh!"

Yeah, these are really cool to read over.

That answers my question..

It’s not that clear that the Karatsuba algorithm refers to what we just did above. I had to
Wikipedia that...

I don’t agree, I think it is clear that the "new algorithm" refers to the algorithm that was
just explained in the previous paragraphs.

I’m kind of confused as to how this applies to recursion. Another example after explaining
it would be helpful.

I somewhat agree... I thought it was a really interesting side note as someone who is
pretty technically competent in these types of things. I could see readers getting pretty
lost though.

I was definitely confused a little bit here but I do see how it relates to abstrac-
tion/recusrion

http://nb.csail.mit.edu/?comment=20167&org=pdf
http://nb.csail.mit.edu/?comment=20385&org=pdf
http://nb.csail.mit.edu/?comment=20610&org=pdf
http://nb.csail.mit.edu/?comment=20610&org=pdf
http://nb.csail.mit.edu/?comment=20610&org=pdf
http://nb.csail.mit.edu/?comment=20826&org=pdf
http://nb.csail.mit.edu/?comment=20826&org=pdf
http://nb.csail.mit.edu/?comment=20826&org=pdf
http://nb.csail.mit.edu/?comment=21629&org=pdf
http://nb.csail.mit.edu/?comment=20340&org=pdf
http://nb.csail.mit.edu/?comment=20213&org=pdf
http://nb.csail.mit.edu/?comment=20213&org=pdf
http://nb.csail.mit.edu/?comment=20574&org=pdf
http://nb.csail.mit.edu/?comment=20574&org=pdf
http://nb.csail.mit.edu/?comment=20475&org=pdf
http://nb.csail.mit.edu/?comment=20475&org=pdf
http://nb.csail.mit.edu/?comment=20728&org=pdf
http://nb.csail.mit.edu/?comment=20728&org=pdf
http://nb.csail.mit.edu/?comment=20728&org=pdf
http://nb.csail.mit.edu/?comment=29623&org=pdf
http://nb.csail.mit.edu/?comment=29623&org=pdf

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

Comments on page 5 35

Are we going to actually see this later? Otherwise it seems slightly unnecessary.
Agreed - I don’t think algorithm names should be thrown around unless they’ll come
back later.

I think a one liner name doesn’t hurt to be put in here, it gives you a bit of insight
into this world of algorithms an you can research it if you want on your own.

but it takes away from the message here and distracts the reader (clearly)
I think it’s a nice addition to reference additional algorithms at the end of a
section. It gives more background on the topic and if someone is interested in
learning about more complex/efficient algorithms they can go look them up
or at least know about their existence.

Could someone please explain the background on algorithm speeds and the meaning of
"n logn loglogn"?

yea i’d like one too...unless it’s ridiculously long and complicated, then i guess i’d rather
know it’s not worth my time
It would be a little difficult to explain under these circumstances, but take a look at the
Wikipedia article under "big O Notation" hopefully it would be a bit cleaer from there.

This is unclear where the parentheses are.
n (log n)(log (log n))

The multiple terms probably derive from multiple loops within the algorithm and/or
program.

How?? if this SS algorithm is so fast, why isn’t the only one used, and maybe some info
on how SS works?

http://nb.csail.mit.edu/?comment=20160&org=pdf
http://nb.csail.mit.edu/?comment=20184&org=pdf
http://nb.csail.mit.edu/?comment=20184&org=pdf
http://nb.csail.mit.edu/?comment=20488&org=pdf
http://nb.csail.mit.edu/?comment=20488&org=pdf
http://nb.csail.mit.edu/?comment=20557&org=pdf
http://nb.csail.mit.edu/?comment=20576&org=pdf
http://nb.csail.mit.edu/?comment=20576&org=pdf
http://nb.csail.mit.edu/?comment=20576&org=pdf
http://nb.csail.mit.edu/?comment=20576&org=pdf
http://nb.csail.mit.edu/?comment=20259&org=pdf
http://nb.csail.mit.edu/?comment=20259&org=pdf
http://nb.csail.mit.edu/?comment=20489&org=pdf
http://nb.csail.mit.edu/?comment=20489&org=pdf
http://nb.csail.mit.edu/?comment=20491&org=pdf
http://nb.csail.mit.edu/?comment=20491&org=pdf
http://nb.csail.mit.edu/?comment=20267&org=pdf
http://nb.csail.mit.edu/?comment=20700&org=pdf
http://nb.csail.mit.edu/?comment=20700&org=pdf
http://nb.csail.mit.edu/?comment=20700&org=pdf
http://nb.csail.mit.edu/?comment=27575&org=pdf
http://nb.csail.mit.edu/?comment=27575&org=pdf

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

Comments on page 5 36

Is there a reference to where we can read about this in more detail? it sounds very
interesting.

one of my favorite things about this class is that in addition to just "approximation" we
get to learn all sorts of interesting things... such as why lectures are the way they are,
how CDs work, and how pi can be computed faster :)

I find it very interesting that various programs will look at a problem and decide the
best way of computing the answer based on the number of digits. I didn’t realize
programs are so dynamic.

The GNU Multiple Precision library (http://gmplib.org/) is a very high-quality li-
brary that does that. The page also has a link to a program (using the library) that
computes pi to one billion digits.

How do I know that it chooses the algorithm by the size of the numbers? I think I
remember reading about that in the documentation, but I also experimented with it.
Python has an interface (a "binding") to the library, and plotted the running times
versus number size, and you can see the breakpoints in the graph as the algorithm
changes.

Maybe we can go over Strassen’s Algorithm for matrix multiplication? It would be nice
to find an abstraction there.

can you please go over this method in class? I am having a really hard time reading about
it and understanding what is going on

While it should be clear what n is based on the above discussion, it would still be nice to
explicitly say that we are calculating O(n) for a n-digit times a n-digit number.

agreed. does this have to do with abstraction directly as well? or does it have to do with
the algorithm that used abstraction a while ago?

I think the examples given above could be stronger by adding a closing paragraph
about how it directly relates to abstraction. I feel like the term abstraction was some-
what avoided in this section.

Overall an informative and interesting chapter. It is generally well written (though adding
parentheses to the | notation would improve it a lot).

http://nb.csail.mit.edu/?comment=20185&org=pdf
http://nb.csail.mit.edu/?comment=20185&org=pdf
http://nb.csail.mit.edu/?comment=20427&org=pdf
http://nb.csail.mit.edu/?comment=20427&org=pdf
http://nb.csail.mit.edu/?comment=20427&org=pdf
http://nb.csail.mit.edu/?comment=20654&org=pdf
http://nb.csail.mit.edu/?comment=20654&org=pdf
http://nb.csail.mit.edu/?comment=20654&org=pdf
http://nb.csail.mit.edu/?comment=20836&org=pdf
http://nb.csail.mit.edu/?comment=20836&org=pdf
http://nb.csail.mit.edu/?comment=20836&org=pdf
http://nb.csail.mit.edu/?comment=20836&org=pdf
http://nb.csail.mit.edu/?comment=20836&org=pdf
http://nb.csail.mit.edu/?comment=20836&org=pdf
http://nb.csail.mit.edu/?comment=20836&org=pdf
http://nb.csail.mit.edu/?comment=20836&org=pdf
http://nb.csail.mit.edu/?comment=20934&org=pdf
http://nb.csail.mit.edu/?comment=20934&org=pdf
http://nb.csail.mit.edu/?comment=20443&org=pdf
http://nb.csail.mit.edu/?comment=20443&org=pdf
http://nb.csail.mit.edu/?comment=20214&org=pdf
http://nb.csail.mit.edu/?comment=20214&org=pdf
http://nb.csail.mit.edu/?comment=20558&org=pdf
http://nb.csail.mit.edu/?comment=20558&org=pdf
http://nb.csail.mit.edu/?comment=20666&org=pdf
http://nb.csail.mit.edu/?comment=20666&org=pdf
http://nb.csail.mit.edu/?comment=20666&org=pdf
http://nb.csail.mit.edu/?comment=20703&org=pdf
http://nb.csail.mit.edu/?comment=20703&org=pdf

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

43 43

43 43

35

2010-02-19 21:06:10 / rev 5c65c3b1023a+

multiplications (Problem 2.2). In contrast, the school algorithm requires
n2 one-digit multiplications. The small decrease in the exponent from 2

to 1.58 has a large effect when n is large. For example, when multiplying
billion-digit numbers, the ratio of n2 to nlog2 3 is roughly 5000.
Why would anyone multiply billion-digit numbers? One answer is to
compute π to a billion digits. Computing π to a huge number of digits,
and comparing the result with the calculations of other supercomputers,
is the standard way to verify the numerical hardware in a new supercom-
puter.
The new algorithm is known as the Karatsuba algorithm after its inventor
[15]. But even it is too slow for gigantic numbers. For large enough n, an
algorithm using fast Fourier transforms is even faster than the Karatsuba
algorithm. The so-called Schönhage–Strassen algorithm [27] requires a
time proportional to n logn log logn. High-quality libraries for large-
number multiplication recursively use a combination of regular multipli-
cation, Karatsuba, and Schönhage–Strassen, selecting the algorithm ac-
cording to the number of digits.

Problem 2.2 Running time of the Karatsuba algorithm
Show that the Karatsuba multiplication method requires nlog2 3 ≈ n1.58 one-
digit multiplications.

2.3 Low-pass filters

2.3.1 RC circuits

2.3.2 Light-bulb flicker

2.3.3 Temperature fluctuations

2.4 Summary and further problems

The diagram for the hiker has two names: a phase-space diagram or a
spacetime diagram. Both types are useful in science and engineering.
Spacetime diagrams, used in Einstein’s theory of relativity, are the sub-
ject of the wonderful textbook [30]. They are the essential ingredient in

Comments on page 5 37

Is section 2.3 not written yet? lol. I guess this would emphasize to everyone that this book
is a process in the making and we should try to set aside any frustrations by focusing more
on constructive comments.

I was tempted to put a page break in before Section 2.3, to avoid showing my hand.
But I resisted. Indeed, in some parts of the course, I have a larger margin of safety
than in others.

This unit on abstraction is the one where I have the least margin of safety. I’ve been
thinking about it and trying different versions for a few years, and this year has been
the most coherent so far (but I leave to you to decide whether, on an absolute scale,
it is actually coherent).

what happened to these guys?

lol don’t complain
The posted assignment was to read section 2.2 only so he’ll probably add these in before
Tuesday

I never thought of light-bulb flicker as a low pass filter. Live and learn, I guess

http://nb.csail.mit.edu/?comment=20268&org=pdf
http://nb.csail.mit.edu/?comment=20268&org=pdf
http://nb.csail.mit.edu/?comment=20268&org=pdf
http://nb.csail.mit.edu/?comment=20330&org=pdf
http://nb.csail.mit.edu/?comment=20330&org=pdf
http://nb.csail.mit.edu/?comment=20330&org=pdf
http://nb.csail.mit.edu/?comment=20330&org=pdf
http://nb.csail.mit.edu/?comment=20330&org=pdf
http://nb.csail.mit.edu/?comment=20330&org=pdf
http://nb.csail.mit.edu/?comment=20330&org=pdf
http://nb.csail.mit.edu/?comment=20283&org=pdf
http://nb.csail.mit.edu/?comment=20559&org=pdf
http://nb.csail.mit.edu/?comment=20622&org=pdf
http://nb.csail.mit.edu/?comment=20622&org=pdf
http://nb.csail.mit.edu/?comment=20687&org=pdf

