
23 23

23 23

15

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

imports

cars

N

3× 108
miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The
main operation is multiplication. For the ‘cars’ node:

3×108 cars× 104miles
1 car–year×

1 gallon
25miles×

1 barrel
40 gallons ∼ 3×109 barrels/year.

The two adjustment leaves contribute a factor of 2×0.5 = 1, so the import
estimate is

3× 109 barrels/year.

For 2006, the true value (from the US Dept of Energy) is 3.7×109 barrels/year
– only 25 higher than the estimate!

Problem 1.5 Midpoints
The midpoint on the log scale is also known as the geometric mean. Show that
it is never greater than the midpoint on the usual scale (which is also known as
the arithmetic mean). Can the two midpoints ever be equal?

1.5 Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation – the design principles
of the UNIX operating system – illustrates the generality of this tool.
UNIX and its close cousins such as GNU/Linux operate devices as small
as cellular telephones and as large as supercomputers cooled by liquid
nitrogen. They constitute the world’s most portable operating system.
Its success derives not from marketing – the most successful variant,
GNU/Linux, is free software and owned by no corporation – but rather
from outstanding design principles.
These principles are the subject of The UNIX Philosophy [13], a valuable
book for anyone interested in how to design large systems. The author

23 23

23 23

15

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

imports

cars

N

3× 108
miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The
main operation is multiplication. For the ‘cars’ node:

3×108 cars× 104miles
1 car–year×

1 gallon
25miles×

1 barrel
40 gallons ∼ 3×109 barrels/year.

The two adjustment leaves contribute a factor of 2×0.5 = 1, so the import
estimate is

3× 109 barrels/year.

For 2006, the true value (from the US Dept of Energy) is 3.7×109 barrels/year
– only 25 higher than the estimate!

Problem 1.5 Midpoints
The midpoint on the log scale is also known as the geometric mean. Show that
it is never greater than the midpoint on the usual scale (which is also known as
the arithmetic mean). Can the two midpoints ever be equal?

1.5 Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation – the design principles
of the UNIX operating system – illustrates the generality of this tool.
UNIX and its close cousins such as GNU/Linux operate devices as small
as cellular telephones and as large as supercomputers cooled by liquid
nitrogen. They constitute the world’s most portable operating system.
Its success derives not from marketing – the most successful variant,
GNU/Linux, is free software and owned by no corporation – but rather
from outstanding design principles.
These principles are the subject of The UNIX Philosophy [13], a valuable
book for anyone interested in how to design large systems. The author

Global comments 1

Global comments

I’m having a hard time reading this section (I have no background really in coding, nor
do I use UNIX). I feel like I’m going to have to read this a bunch of times before I begin
to understand what is actually going on. I understand the use of divide in conquer in this
context, I’m just mostly confused following these examples (considering how easy and
great the previous sections were to read).

I agree with this. There is so much technical jargon in this section that most of my time
is spent trying to understand and remember the new terms/commands instead of divide
and conquer.

Agreed - I suggested there be a short description of how UNIX works preceding this
chapter. I don’t have much UNIX experience either and was quite confused, so I
imagine everyone else in the same boat would have similar problems.

I feel the exact same way....divide and conquer permeates all of this section, but that’s
the extent of my understanding.

I agree with previous comments; it would also be helpful if you defined or explained some
of the terms being used in this section – utility, input/output, like you did for "filter"

was UNIX the first program with this kind of search function (ie. searching for trivial,
nontrivial, trivializes along with trivial)? This seems to be pretty ubiquitous with all
searches nowadays.

Wikipedia says that there was earlier precedents. But UNIX seems to be the first
system to use regular expressions everywhere. A nice feature of the UNIX approach
is that the grep program gives you back lines, on which you can do more things (like
in class when we extracted the email addresses from the Stellar HTML file).

This section requires a foundational knowledge of UNIX that I don’t think most people
have...the overall message of divide and conquer is being lost amongst all these functions
that are being used.

I agree to a certain extent. While I’m familiar with Unix, I could imagine this section
discouraging those who do not. Is it possible to illustrate the concepts another way?

http://nb.csail.mit.edu/?comment=18387&org=pdf
http://nb.csail.mit.edu/?comment=18387&org=pdf
http://nb.csail.mit.edu/?comment=18387&org=pdf
http://nb.csail.mit.edu/?comment=18387&org=pdf
http://nb.csail.mit.edu/?comment=18387&org=pdf
http://nb.csail.mit.edu/?comment=18435&org=pdf
http://nb.csail.mit.edu/?comment=18435&org=pdf
http://nb.csail.mit.edu/?comment=18435&org=pdf
http://nb.csail.mit.edu/?comment=18456&org=pdf
http://nb.csail.mit.edu/?comment=18456&org=pdf
http://nb.csail.mit.edu/?comment=18456&org=pdf
http://nb.csail.mit.edu/?comment=18519&org=pdf
http://nb.csail.mit.edu/?comment=18519&org=pdf
http://nb.csail.mit.edu/?comment=18462&org=pdf
http://nb.csail.mit.edu/?comment=18462&org=pdf
http://nb.csail.mit.edu/?comment=18463&org=pdf
http://nb.csail.mit.edu/?comment=18463&org=pdf
http://nb.csail.mit.edu/?comment=18463&org=pdf
http://nb.csail.mit.edu/?comment=19719&org=pdf
http://nb.csail.mit.edu/?comment=19719&org=pdf
http://nb.csail.mit.edu/?comment=19719&org=pdf
http://nb.csail.mit.edu/?comment=19719&org=pdf
http://nb.csail.mit.edu/?comment=18464&org=pdf
http://nb.csail.mit.edu/?comment=18464&org=pdf
http://nb.csail.mit.edu/?comment=18464&org=pdf
http://nb.csail.mit.edu/?comment=18491&org=pdf
http://nb.csail.mit.edu/?comment=18491&org=pdf

23 23

23 23

15

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

imports

cars

N

3× 108
miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The
main operation is multiplication. For the ‘cars’ node:

3×108 cars× 104miles
1 car–year×

1 gallon
25miles×

1 barrel
40 gallons ∼ 3×109 barrels/year.

The two adjustment leaves contribute a factor of 2×0.5 = 1, so the import
estimate is

3× 109 barrels/year.

For 2006, the true value (from the US Dept of Energy) is 3.7×109 barrels/year
– only 25 higher than the estimate!

Problem 1.5 Midpoints
The midpoint on the log scale is also known as the geometric mean. Show that
it is never greater than the midpoint on the usual scale (which is also known as
the arithmetic mean). Can the two midpoints ever be equal?

1.5 Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation – the design principles
of the UNIX operating system – illustrates the generality of this tool.
UNIX and its close cousins such as GNU/Linux operate devices as small
as cellular telephones and as large as supercomputers cooled by liquid
nitrogen. They constitute the world’s most portable operating system.
Its success derives not from marketing – the most successful variant,
GNU/Linux, is free software and owned by no corporation – but rather
from outstanding design principles.
These principles are the subject of The UNIX Philosophy [13], a valuable
book for anyone interested in how to design large systems. The author

23 23

23 23

15

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

imports

cars

N

3× 108
miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The
main operation is multiplication. For the ‘cars’ node:

3×108 cars× 104miles
1 car–year×

1 gallon
25miles×

1 barrel
40 gallons ∼ 3×109 barrels/year.

The two adjustment leaves contribute a factor of 2×0.5 = 1, so the import
estimate is

3× 109 barrels/year.

For 2006, the true value (from the US Dept of Energy) is 3.7×109 barrels/year
– only 25 higher than the estimate!

Problem 1.5 Midpoints
The midpoint on the log scale is also known as the geometric mean. Show that
it is never greater than the midpoint on the usual scale (which is also known as
the arithmetic mean). Can the two midpoints ever be equal?

1.5 Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation – the design principles
of the UNIX operating system – illustrates the generality of this tool.
UNIX and its close cousins such as GNU/Linux operate devices as small
as cellular telephones and as large as supercomputers cooled by liquid
nitrogen. They constitute the world’s most portable operating system.
Its success derives not from marketing – the most successful variant,
GNU/Linux, is free software and owned by no corporation – but rather
from outstanding design principles.
These principles are the subject of The UNIX Philosophy [13], a valuable
book for anyone interested in how to design large systems. The author

Global comments 2

I think the UNIX example not broad enough for someone unfamiliar with the UNIX
system to understand quickly. I like examples that are much more general/things everyone
encounters on a fairly regular basis much better.

I agree with this comment completely. I could follow the example because I have some
experience with UNIX. However, I feel like this would have been fairly hard to follow
for someone with no UNIX experience, especially since a large part of the people in this
class are not course 6.

I think the unix example is a good example of how divide and conquer can be used for
more complex problems and how it is applicable outside the subject matter. However, I
think that the heavy programming language necessary to make this point distracts readers
from the main messages. This chapter seems more like an in depth example than a lesson.
Is that what you were going for?

Is that why the tree diagrams focus on one thing in the larger spectrum of example? For
example, when calculating the imported oil consumption in the U.S., the estimation was
also based on the barrals of oil used for cars.

I have no idea what this means....hold the user captive in their pre-designed set of opera-
tions? How is that related to email or writing a document?

Ok. I think this has finally made sense. I took Linguists and it definitely makes it easier
to model and understand this tree diagrams. As well as the ones we make via actual
calculations using divide and conquer

Unlike the other divide and conquer problems seen in this class, this method applied
to Unix in this specific example does not seem very useful. The question of having a
backwards dictionary seems improbable in real life.

Will we be using other methods to solve this Unix problem over the course of the class?

I don’t really like this as a largescale example, I feel like I need to know more about UNIX
to understand it better.

I had a difficult time understanding this article. I feel that the last example was much
more straightforward. This seems like it requires a decent level of knowledge of UNIX to
understand anything more than the very basic idea that large problems need to be broken
into smaller problems.

http://nb.csail.mit.edu/?comment=18578&org=pdf
http://nb.csail.mit.edu/?comment=18578&org=pdf
http://nb.csail.mit.edu/?comment=18578&org=pdf
http://nb.csail.mit.edu/?comment=18659&org=pdf
http://nb.csail.mit.edu/?comment=18659&org=pdf
http://nb.csail.mit.edu/?comment=18659&org=pdf
http://nb.csail.mit.edu/?comment=18659&org=pdf
http://nb.csail.mit.edu/?comment=18665&org=pdf
http://nb.csail.mit.edu/?comment=18665&org=pdf
http://nb.csail.mit.edu/?comment=18665&org=pdf
http://nb.csail.mit.edu/?comment=18665&org=pdf
http://nb.csail.mit.edu/?comment=18665&org=pdf
http://nb.csail.mit.edu/?comment=18679&org=pdf
http://nb.csail.mit.edu/?comment=18679&org=pdf
http://nb.csail.mit.edu/?comment=18679&org=pdf
http://nb.csail.mit.edu/?comment=18683&org=pdf
http://nb.csail.mit.edu/?comment=18683&org=pdf
http://nb.csail.mit.edu/?comment=18694&org=pdf
http://nb.csail.mit.edu/?comment=18694&org=pdf
http://nb.csail.mit.edu/?comment=18694&org=pdf
http://nb.csail.mit.edu/?comment=18745&org=pdf
http://nb.csail.mit.edu/?comment=18745&org=pdf
http://nb.csail.mit.edu/?comment=18745&org=pdf
http://nb.csail.mit.edu/?comment=18749&org=pdf
http://nb.csail.mit.edu/?comment=18929&org=pdf
http://nb.csail.mit.edu/?comment=18929&org=pdf
http://nb.csail.mit.edu/?comment=18968&org=pdf
http://nb.csail.mit.edu/?comment=18968&org=pdf
http://nb.csail.mit.edu/?comment=18968&org=pdf
http://nb.csail.mit.edu/?comment=18968&org=pdf

23 23

23 23

15

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

imports

cars

N

3× 108
miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The
main operation is multiplication. For the ‘cars’ node:

3×108 cars× 104miles
1 car–year×

1 gallon
25miles×

1 barrel
40 gallons ∼ 3×109 barrels/year.

The two adjustment leaves contribute a factor of 2×0.5 = 1, so the import
estimate is

3× 109 barrels/year.

For 2006, the true value (from the US Dept of Energy) is 3.7×109 barrels/year
– only 25 higher than the estimate!

Problem 1.5 Midpoints
The midpoint on the log scale is also known as the geometric mean. Show that
it is never greater than the midpoint on the usual scale (which is also known as
the arithmetic mean). Can the two midpoints ever be equal?

1.5 Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation – the design principles
of the UNIX operating system – illustrates the generality of this tool.
UNIX and its close cousins such as GNU/Linux operate devices as small
as cellular telephones and as large as supercomputers cooled by liquid
nitrogen. They constitute the world’s most portable operating system.
Its success derives not from marketing – the most successful variant,
GNU/Linux, is free software and owned by no corporation – but rather
from outstanding design principles.
These principles are the subject of The UNIX Philosophy [13], a valuable
book for anyone interested in how to design large systems. The author

23 23

23 23

15

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

imports

cars

N

3× 108
miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The
main operation is multiplication. For the ‘cars’ node:

3×108 cars× 104miles
1 car–year×

1 gallon
25miles×

1 barrel
40 gallons ∼ 3×109 barrels/year.

The two adjustment leaves contribute a factor of 2×0.5 = 1, so the import
estimate is

3× 109 barrels/year.

For 2006, the true value (from the US Dept of Energy) is 3.7×109 barrels/year
– only 25 higher than the estimate!

Problem 1.5 Midpoints
The midpoint on the log scale is also known as the geometric mean. Show that
it is never greater than the midpoint on the usual scale (which is also known as
the arithmetic mean). Can the two midpoints ever be equal?

1.5 Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation – the design principles
of the UNIX operating system – illustrates the generality of this tool.
UNIX and its close cousins such as GNU/Linux operate devices as small
as cellular telephones and as large as supercomputers cooled by liquid
nitrogen. They constitute the world’s most portable operating system.
Its success derives not from marketing – the most successful variant,
GNU/Linux, is free software and owned by no corporation – but rather
from outstanding design principles.
These principles are the subject of The UNIX Philosophy [13], a valuable
book for anyone interested in how to design large systems. The author

Comments on page 1 3

Comments on page 1

Read Section 1.5 for Tuesday’s lecture (due to the Monday holiday). The memo is
due by Monday at 10pm. Don’t worry about the last two pages – they are a bunch of
end-of-chapter problems (but some of them appear on your first homework).

This example really hit home what trees and divide and conquering were, how to use
them, and the thinking process of breaking down big problems into manageable pieces.
Because this example did not include "speaking to your gut" it was much more digestable
and I would have liked to have seen this example proceed the estimation divide and
conquering problems.

I also feel this way. I supposed partly because this is a course 6 class, and we are mostly
engineers, that tis kind of example would really hit home with us.

I like your use of "speaking to your gut" and "digestible"

What makes one operating system "a cousin" of another? Are they simply operating
systems that were created by the same people? Or those with similar features? Is there
any formal classification?

Does an example not actually about estimation really have place in a book about estima-
tion? I believe you made your point about how useful divide and conquer is when you
first introduced the idea.

Is it truly portable? (I don’t know anything about computers.) For example, with regards
to web browsers, I’ve heard that either Chrome of Firefox is portable, but some of its
features take data stored in IE, since it is assumed that all computers have IE. Are there
conditions/pre-existing features necessary for UNIX/GNU/Linux to run?

It’s important to keep in mind that "most successful" is still not particularly successful in
comparison to corporate owned operating systems, due to both marketing and ease of use.

The point here is just that Linux is the most successful variant of UNIX, and it’s not due
to marketing. Your comment depends on your definition of success. I wouldn’t want
most research servers running Windows, even if it’s a useful OS for home and business
users.

http://nb.csail.mit.edu/?comment=18353&org=pdf
http://nb.csail.mit.edu/?comment=18353&org=pdf
http://nb.csail.mit.edu/?comment=18353&org=pdf
http://nb.csail.mit.edu/?comment=18379&org=pdf
http://nb.csail.mit.edu/?comment=18379&org=pdf
http://nb.csail.mit.edu/?comment=18379&org=pdf
http://nb.csail.mit.edu/?comment=18379&org=pdf
http://nb.csail.mit.edu/?comment=18379&org=pdf
http://nb.csail.mit.edu/?comment=18911&org=pdf
http://nb.csail.mit.edu/?comment=18911&org=pdf
http://nb.csail.mit.edu/?comment=18917&org=pdf
http://nb.csail.mit.edu/?comment=34133&org=pdf
http://nb.csail.mit.edu/?comment=34133&org=pdf
http://nb.csail.mit.edu/?comment=34133&org=pdf
http://nb.csail.mit.edu/?comment=18944&org=pdf
http://nb.csail.mit.edu/?comment=18944&org=pdf
http://nb.csail.mit.edu/?comment=18944&org=pdf
http://nb.csail.mit.edu/?comment=34135&org=pdf
http://nb.csail.mit.edu/?comment=34135&org=pdf
http://nb.csail.mit.edu/?comment=34135&org=pdf
http://nb.csail.mit.edu/?comment=34135&org=pdf
http://nb.csail.mit.edu/?comment=18924&org=pdf
http://nb.csail.mit.edu/?comment=18924&org=pdf
http://nb.csail.mit.edu/?comment=19061&org=pdf
http://nb.csail.mit.edu/?comment=19061&org=pdf
http://nb.csail.mit.edu/?comment=19061&org=pdf
http://nb.csail.mit.edu/?comment=19061&org=pdf

23 23

23 23

15

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

imports

cars

N

3× 108
miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The
main operation is multiplication. For the ‘cars’ node:

3×108 cars× 104miles
1 car–year×

1 gallon
25miles×

1 barrel
40 gallons ∼ 3×109 barrels/year.

The two adjustment leaves contribute a factor of 2×0.5 = 1, so the import
estimate is

3× 109 barrels/year.

For 2006, the true value (from the US Dept of Energy) is 3.7×109 barrels/year
– only 25 higher than the estimate!

Problem 1.5 Midpoints
The midpoint on the log scale is also known as the geometric mean. Show that
it is never greater than the midpoint on the usual scale (which is also known as
the arithmetic mean). Can the two midpoints ever be equal?

1.5 Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation – the design principles
of the UNIX operating system – illustrates the generality of this tool.
UNIX and its close cousins such as GNU/Linux operate devices as small
as cellular telephones and as large as supercomputers cooled by liquid
nitrogen. They constitute the world’s most portable operating system.
Its success derives not from marketing – the most successful variant,
GNU/Linux, is free software and owned by no corporation – but rather
from outstanding design principles.
These principles are the subject of The UNIX Philosophy [13], a valuable
book for anyone interested in how to design large systems. The author

23 23

23 23

15

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

imports

cars

N

3× 108
miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The
main operation is multiplication. For the ‘cars’ node:

3×108 cars× 104miles
1 car–year×

1 gallon
25miles×

1 barrel
40 gallons ∼ 3×109 barrels/year.

The two adjustment leaves contribute a factor of 2×0.5 = 1, so the import
estimate is

3× 109 barrels/year.

For 2006, the true value (from the US Dept of Energy) is 3.7×109 barrels/year
– only 25 higher than the estimate!

Problem 1.5 Midpoints
The midpoint on the log scale is also known as the geometric mean. Show that
it is never greater than the midpoint on the usual scale (which is also known as
the arithmetic mean). Can the two midpoints ever be equal?

1.5 Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation – the design principles
of the UNIX operating system – illustrates the generality of this tool.
UNIX and its close cousins such as GNU/Linux operate devices as small
as cellular telephones and as large as supercomputers cooled by liquid
nitrogen. They constitute the world’s most portable operating system.
Its success derives not from marketing – the most successful variant,
GNU/Linux, is free software and owned by no corporation – but rather
from outstanding design principles.
These principles are the subject of The UNIX Philosophy [13], a valuable
book for anyone interested in how to design large systems. The author

Comments on page 1 4

Is this also true of UNIX, or is UNIX actually owned by a corporation?
As I understand it, Unix, while an owned trademark, refers mainly to a standardization.
Whereas Linux is an actual open-source OS.

I think UNIX was developed partially at Bell Labs
I believe Unix IP has ownership; that is in fact the impetus behind Linux develop-
ment. An apocryphal(?) story is that it was named because it was a "Unix Like"
kernel.

I believe the Apple OS is also UNIX-based (though Windows is not)

I’m also a little unsure of how UNIX works and could use a little more info about how it
is related to GNU/Linux as cousins.

http://nb.csail.mit.edu/?comment=18607&org=pdf
http://nb.csail.mit.edu/?comment=18672&org=pdf
http://nb.csail.mit.edu/?comment=18672&org=pdf
http://nb.csail.mit.edu/?comment=18877&org=pdf
http://nb.csail.mit.edu/?comment=18884&org=pdf
http://nb.csail.mit.edu/?comment=18884&org=pdf
http://nb.csail.mit.edu/?comment=18884&org=pdf
http://nb.csail.mit.edu/?comment=18932&org=pdf
http://nb.csail.mit.edu/?comment=18782&org=pdf
http://nb.csail.mit.edu/?comment=18782&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 5

Comments on page 2

In a discussion of estimation, why include the philosophy points that don’t pertain to
divide & conquer? You could address the 4 related points first and then mention the
others, but having some with comments and some without seemed a bit jarring to me.

I also found them somewhat distracting, especially because without some explanation, I
really have no idea what they mean. Each of them raises questions instead of furthering
my understanding of divide and conquer.

I agree, the inclusion of the other 5 points is unnecessary and confusing. I found
myself constantly evaluating whether I was currently reading one of the 4 important
points. Also, to those not from a computer science background, these other points
would only confuse them, even though they’re not important to the later discussion.

I think the other 5 tenets were included for completion (why leave out parts of a
set?), but I agree that for clarity they should be dropped.

Is this itself an example of dividing and conquering?
I would say no in the estimation since, as there is no number problem being solved with
these techniques; however, as has been stressed many times, these skills aren’t just useful
for the purposes of guestimating numbers. It can be applied to a variety of approaches
to thinking, in which case, yes, it is?
No, it’s identifying general themes about UNIX, so it’s more about lumping common
aspects together. The 9 concepts aren’t separate parts that you could put together to
make UNIX.

Philosophy related to divide and conquer? That seems a bit of an odd parallel. Maybe
structure makes more sense than philosophy?

I don’t think this is limited to d&c. It’s not a structure, it’s a set of design principles,
which can be referred to as a (design) philosophy.

What do you mean by comments? It seems like all of them have comments.
I think 3 through 7 are just the tenets, without comments. I agree that it’s not particularly
clear what constitutes the added comment. I think though, that just the first sentence of
each item is the tenet itself.

http://nb.csail.mit.edu/?comment=18570&org=pdf
http://nb.csail.mit.edu/?comment=18570&org=pdf
http://nb.csail.mit.edu/?comment=18570&org=pdf
http://nb.csail.mit.edu/?comment=18689&org=pdf
http://nb.csail.mit.edu/?comment=18689&org=pdf
http://nb.csail.mit.edu/?comment=18689&org=pdf
http://nb.csail.mit.edu/?comment=18839&org=pdf
http://nb.csail.mit.edu/?comment=18839&org=pdf
http://nb.csail.mit.edu/?comment=18839&org=pdf
http://nb.csail.mit.edu/?comment=18839&org=pdf
http://nb.csail.mit.edu/?comment=18934&org=pdf
http://nb.csail.mit.edu/?comment=18934&org=pdf
http://nb.csail.mit.edu/?comment=18838&org=pdf
http://nb.csail.mit.edu/?comment=18886&org=pdf
http://nb.csail.mit.edu/?comment=18886&org=pdf
http://nb.csail.mit.edu/?comment=18886&org=pdf
http://nb.csail.mit.edu/?comment=18886&org=pdf
http://nb.csail.mit.edu/?comment=19065&org=pdf
http://nb.csail.mit.edu/?comment=19065&org=pdf
http://nb.csail.mit.edu/?comment=19065&org=pdf
http://nb.csail.mit.edu/?comment=18389&org=pdf
http://nb.csail.mit.edu/?comment=18389&org=pdf
http://nb.csail.mit.edu/?comment=19062&org=pdf
http://nb.csail.mit.edu/?comment=19062&org=pdf
http://nb.csail.mit.edu/?comment=18804&org=pdf
http://nb.csail.mit.edu/?comment=18834&org=pdf
http://nb.csail.mit.edu/?comment=18834&org=pdf
http://nb.csail.mit.edu/?comment=18834&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 6

The lack of memory in early UNIX systems also played a large factor in the division of
programs into smaller pieces as each could only access something on the level of 64K of
memory - not enough to do complex operations as a single program but requiring multiple
programs with very specialized function. From other UNIX history readings I’ve had for
other classes it seems less of a "UNIX made for divide and conquer" and more of a "divide
and conquer happens to work well with UNIX"

I would like to see the actual principles set apart from the commentary somehow. Perhaps
making the principles bold would do the trick?

agreed.

And/or having a line break after the principle so it’s on its own line before the comments.

I think this is a very useful principle in divide and conquer that should have been stated
at the very beginning. It helps me to think about what sort of categories to divide into to
make the estimation easier for me.

I understand that this is the way to go. The hard part is realizing you know something
about things you don’t have direct knowledge about. I found this the most frustrating
part of the diagnostic.

I agree, this could be the first sentence in the divide and conquer section. I have talked
to people in the class and thought that you knew a lot of facts they wouldn’t when the
important part is that you need to isolate things you know.

Should this actually read Section 1.3?

Yeah, typo most likely.

This is information that could have been stated earlier when describing "divide-and-
conquer"

http://nb.csail.mit.edu/?comment=18832&org=pdf
http://nb.csail.mit.edu/?comment=18832&org=pdf
http://nb.csail.mit.edu/?comment=18832&org=pdf
http://nb.csail.mit.edu/?comment=18832&org=pdf
http://nb.csail.mit.edu/?comment=18832&org=pdf
http://nb.csail.mit.edu/?comment=18832&org=pdf
http://nb.csail.mit.edu/?comment=18685&org=pdf
http://nb.csail.mit.edu/?comment=18685&org=pdf
http://nb.csail.mit.edu/?comment=18780&org=pdf
http://nb.csail.mit.edu/?comment=19067&org=pdf
http://nb.csail.mit.edu/?comment=18656&org=pdf
http://nb.csail.mit.edu/?comment=18656&org=pdf
http://nb.csail.mit.edu/?comment=18656&org=pdf
http://nb.csail.mit.edu/?comment=18919&org=pdf
http://nb.csail.mit.edu/?comment=18919&org=pdf
http://nb.csail.mit.edu/?comment=18919&org=pdf
http://nb.csail.mit.edu/?comment=18784&org=pdf
http://nb.csail.mit.edu/?comment=18784&org=pdf
http://nb.csail.mit.edu/?comment=18784&org=pdf
http://nb.csail.mit.edu/?comment=18687&org=pdf
http://nb.csail.mit.edu/?comment=18888&org=pdf
http://nb.csail.mit.edu/?comment=20306&org=pdf
http://nb.csail.mit.edu/?comment=20306&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 7

Would this also improve efficiency, because now the computer can search in parallel in-
stead of in serial for each leave? Or no?

Hmm I’m curious about this as well - would it make things faster too?
Computers can only search in parallel, if they have more than one designated proces-
sor. These days, you hear about "dual-core" or "quad-core" processors. Those can
do parallel computing. Otherwise, smaller programs won’t make computing faster.
They’ll just make it easier for you to debug and write the overall program.

In fact, having more, smaller programs could slow things down as more things
would have to be loaded into memory, taking longer than one longer single load.

This is similar to constraint based design in Mechanical engineering. The idea is you
choose the degrees of freedom you don’t want and then only place constraints that kill
the individual degrees of freedom. This way you’re not overconstrained which often leads
to mechanical failure.

This is the idea of modularity, right? If we keep things simple and contained it will be
easier to work with.

I think it would be nice to state modularity in the description
Modularity doesn’t just work on this simplest level, but also at higher levels where parts
are connected. Connections and independence between parts are also key to modularity.
You can have unitaskers that aren’t interchangeable. I agree that it might be a theme, but
it’s not this one exactly.

use of modularity in programming

is this saying that we should make clear trees? I am not getting the connection to divide
and conquer

http://nb.csail.mit.edu/?comment=18390&org=pdf
http://nb.csail.mit.edu/?comment=18390&org=pdf
http://nb.csail.mit.edu/?comment=18443&org=pdf
http://nb.csail.mit.edu/?comment=18765&org=pdf
http://nb.csail.mit.edu/?comment=18765&org=pdf
http://nb.csail.mit.edu/?comment=18765&org=pdf
http://nb.csail.mit.edu/?comment=18765&org=pdf
http://nb.csail.mit.edu/?comment=18931&org=pdf
http://nb.csail.mit.edu/?comment=18931&org=pdf
http://nb.csail.mit.edu/?comment=25334&org=pdf
http://nb.csail.mit.edu/?comment=25334&org=pdf
http://nb.csail.mit.edu/?comment=25334&org=pdf
http://nb.csail.mit.edu/?comment=25334&org=pdf
http://nb.csail.mit.edu/?comment=18820&org=pdf
http://nb.csail.mit.edu/?comment=18820&org=pdf
http://nb.csail.mit.edu/?comment=18935&org=pdf
http://nb.csail.mit.edu/?comment=19076&org=pdf
http://nb.csail.mit.edu/?comment=19076&org=pdf
http://nb.csail.mit.edu/?comment=19076&org=pdf
http://nb.csail.mit.edu/?comment=19076&org=pdf
http://nb.csail.mit.edu/?comment=27550&org=pdf
http://nb.csail.mit.edu/?comment=18603&org=pdf
http://nb.csail.mit.edu/?comment=18603&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 8

I’m not sure I understand what the difference between 1. and 2. is? Both seem to break
up a large task into small tasks.

I think one is about partitioning where things go and how you find them (1) while the
other is about actually running scripts to do tasks, like work processing. At least, thats
what I understood.

The way I saw it was: 1. Make the programs small. 2. Make the programs simple.
I guess they could be combined, but for some reason my intuition tells me that it’s
easier to understand as two separate points.

Yeah, I agree. The way I see it, in the first point the author is saying break complex
tasks into smaller ones, so each individual task is easier to understand and solve.
And then in the second point he’s saying specifically to make each program do
only one task, and that this way, the program is easier to debug

In addition to being simpler and easier to debug, the main point is that since
its one task, you can clear you mind and make that one task done well. A small
program is fine, but if it still isn’t done well then its pointless. After making a
bunch of small program that work very effectively, chances are when you put
them together they will work effectively as well.

Another thing that is nice about small, simpler specialized programs is that they can be
used in many contexts. With the example of spell-checking, it can be used by more than
one application (Word, email etc)

How does this apply to the need for more processes to be run concurrently?
Do you mean more processes need to be run to accomplish a complex task? That could
be a problem, as stated in an earlier comment, when it comes to processing power, but
the small processes wouldn’t be running concurrently, they’d be running in series, which
may cause a slowdown.

I didn’t understand which of the nine points were the four incorporating divide and con-
quer until I read the comments. Even then, I had to assume that the four with explanations
were divide and conquer examples

Go into more detail- how is this using divide and conquer?

I don’t know if this is supposed to be one of the four, but I think this is roughly applicable
if you substitute "prototype" with "constructing problem solving formulas"

http://nb.csail.mit.edu/?comment=18384&org=pdf
http://nb.csail.mit.edu/?comment=18384&org=pdf
http://nb.csail.mit.edu/?comment=18391&org=pdf
http://nb.csail.mit.edu/?comment=18391&org=pdf
http://nb.csail.mit.edu/?comment=18391&org=pdf
http://nb.csail.mit.edu/?comment=18444&org=pdf
http://nb.csail.mit.edu/?comment=18444&org=pdf
http://nb.csail.mit.edu/?comment=18444&org=pdf
http://nb.csail.mit.edu/?comment=18481&org=pdf
http://nb.csail.mit.edu/?comment=18481&org=pdf
http://nb.csail.mit.edu/?comment=18481&org=pdf
http://nb.csail.mit.edu/?comment=18481&org=pdf
http://nb.csail.mit.edu/?comment=18533&org=pdf
http://nb.csail.mit.edu/?comment=18533&org=pdf
http://nb.csail.mit.edu/?comment=18533&org=pdf
http://nb.csail.mit.edu/?comment=18533&org=pdf
http://nb.csail.mit.edu/?comment=18533&org=pdf
http://nb.csail.mit.edu/?comment=18609&org=pdf
http://nb.csail.mit.edu/?comment=18609&org=pdf
http://nb.csail.mit.edu/?comment=18609&org=pdf
http://nb.csail.mit.edu/?comment=18761&org=pdf
http://nb.csail.mit.edu/?comment=19079&org=pdf
http://nb.csail.mit.edu/?comment=19079&org=pdf
http://nb.csail.mit.edu/?comment=19079&org=pdf
http://nb.csail.mit.edu/?comment=19079&org=pdf
http://nb.csail.mit.edu/?comment=29458&org=pdf
http://nb.csail.mit.edu/?comment=29458&org=pdf
http://nb.csail.mit.edu/?comment=29458&org=pdf
http://nb.csail.mit.edu/?comment=27551&org=pdf
http://nb.csail.mit.edu/?comment=18806&org=pdf
http://nb.csail.mit.edu/?comment=18806&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 9

Prototypes are usually for testing a particular piece of your idea, independent of the rest
of the structure, which is the fundamental idea behind divide and conquer. This point
should be elaborated a bit more.

I don’t really understand how this is part of a philosophy. isn’t it the equivalent of don’t
procrastinate?

No, I think that what they mean is that it’s more important to have a prototype out
that’s 70% done in 2 weeks than an almost finalized product that’s 95% done in 2 months
because user response is valuable in redirecting projects and allows for a more intimate
iterative process. It’s less about procrastination and more about understanding that it’s
important to get a prototype out there asap for the users to say what they like and dislike.

I took this to be a philosophy for the developer to get off the ground, rather than
getting something out there to be tested by users. I interpreted it as how it’s much
easier for me to edit something I wrote poorly than write something new. Therefore,
I should just write something rather than stare at the blank paper.
in upop, we learned something very similar to this concept, and called it, "make
mistakes faster"

Hopefully an iterative spiral model, with prototypes being built starting from lower fi-
delity prototypes to higher fidelity.

This is also applicable to rough estimates: ease over precision
Sort of, but aren’t we all about efficiency (rounding to 1, few, and 10) AND portability
(perhaps using pi*10ˆ7 to remember seconds/yr)?

yes but if we had to choose between the two, we would choose portability; because
that is the whole premise of estimation.

http://nb.csail.mit.edu/?comment=18946&org=pdf
http://nb.csail.mit.edu/?comment=18946&org=pdf
http://nb.csail.mit.edu/?comment=18946&org=pdf
http://nb.csail.mit.edu/?comment=18535&org=pdf
http://nb.csail.mit.edu/?comment=18535&org=pdf
http://nb.csail.mit.edu/?comment=18561&org=pdf
http://nb.csail.mit.edu/?comment=18561&org=pdf
http://nb.csail.mit.edu/?comment=18561&org=pdf
http://nb.csail.mit.edu/?comment=18561&org=pdf
http://nb.csail.mit.edu/?comment=18561&org=pdf
http://nb.csail.mit.edu/?comment=18611&org=pdf
http://nb.csail.mit.edu/?comment=18611&org=pdf
http://nb.csail.mit.edu/?comment=18611&org=pdf
http://nb.csail.mit.edu/?comment=18611&org=pdf
http://nb.csail.mit.edu/?comment=18781&org=pdf
http://nb.csail.mit.edu/?comment=18781&org=pdf
http://nb.csail.mit.edu/?comment=18763&org=pdf
http://nb.csail.mit.edu/?comment=18763&org=pdf
http://nb.csail.mit.edu/?comment=18807&org=pdf
http://nb.csail.mit.edu/?comment=18840&org=pdf
http://nb.csail.mit.edu/?comment=18840&org=pdf
http://nb.csail.mit.edu/?comment=18914&org=pdf
http://nb.csail.mit.edu/?comment=18914&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 10

I’m not sure I understand this, in the context or UNIX or in the context of divide and
conquer.

I also am not so sure what they mean about choosing portability over efficiency. Could
someone please explain this?

does portability mean less code rather than more efficient code?
I’m not really a coder, but my guess was that it’s saying that it’s better to have very
clear, defined code, even if that means adding a couple extra lines.

yeah the use of portability is confusing.
I think this also goes along with being able to use the same code with multiple programs
(back to spell checking, using it for word processing, email etc) instead of having each
program have their own spell-checker (or whatever it is they might share)

I thought this concept of being able to use the same code with multiple programs was
called modularity? But I also don’t have a strong computer science background and
might be wrong. But the post regarding extra lines for clear definition makes sense
too.

I think portability is being mentioned for its benefit of being less specific to certain
platforms, etc. Choosing simpler functions or methods more universal is more
accepted than exploiting the most efficient approach on a given platform.
I also think that portability may be referring to modularity. Being able to you a
small code for multiple things. Although, im not sure how they justify it being
better than efficiency.

A tool that you can use for many different problems, that will get you close
to the answer is much better then one that will give you one exact answer to
only one problem.

I think this refers to the speed which is required in solving approximation problems. You
want to come up with a plan of attack as soon as possible.

Who wrote these philosophies? Did a bunch of programmers came together and write
down what they thought was important at the time?

http://nb.csail.mit.edu/?comment=18494&org=pdf
http://nb.csail.mit.edu/?comment=18494&org=pdf
http://nb.csail.mit.edu/?comment=18506&org=pdf
http://nb.csail.mit.edu/?comment=18506&org=pdf
http://nb.csail.mit.edu/?comment=18537&org=pdf
http://nb.csail.mit.edu/?comment=18615&org=pdf
http://nb.csail.mit.edu/?comment=18615&org=pdf
http://nb.csail.mit.edu/?comment=18927&org=pdf
http://nb.csail.mit.edu/?comment=18610&org=pdf
http://nb.csail.mit.edu/?comment=18610&org=pdf
http://nb.csail.mit.edu/?comment=18610&org=pdf
http://nb.csail.mit.edu/?comment=18620&org=pdf
http://nb.csail.mit.edu/?comment=18620&org=pdf
http://nb.csail.mit.edu/?comment=18620&org=pdf
http://nb.csail.mit.edu/?comment=18620&org=pdf
http://nb.csail.mit.edu/?comment=18713&org=pdf
http://nb.csail.mit.edu/?comment=18713&org=pdf
http://nb.csail.mit.edu/?comment=18713&org=pdf
http://nb.csail.mit.edu/?comment=18776&org=pdf
http://nb.csail.mit.edu/?comment=18776&org=pdf
http://nb.csail.mit.edu/?comment=18776&org=pdf
http://nb.csail.mit.edu/?comment=18926&org=pdf
http://nb.csail.mit.edu/?comment=18926&org=pdf
http://nb.csail.mit.edu/?comment=18926&org=pdf
http://nb.csail.mit.edu/?comment=18933&org=pdf
http://nb.csail.mit.edu/?comment=18933&org=pdf
http://nb.csail.mit.edu/?comment=18850&org=pdf
http://nb.csail.mit.edu/?comment=18850&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 11

What is a "flat" text file? Does this imply using .rtf instead of something more complicated,
or storing things just once instead of layering them over older versions of the same file?

I think it means plain ASCII files. Even RFT files have some formatting in them, and so
require programs with special abilities to read. But any computer ever built can open
and display an ASCII file readably without any special software.

I agree with the second post - I think a "flat" text file is basically one that doesn’t
require specialized software to open (RTF, etc).

i wouldn’t have known this either, but it seems to not matter in this context of divide-
and-conquer.

Just for the sake of discussion, I think "flat" can also be used to distinguish a file that
can be read and understood sequentially (often ASCII) from a database system that
has a non-standard underlying file/storage structure.

Even though these aren’t relevant to divide and conquer I still might like to see a sentence
describing what is meant by each.

I feel that the reasons it is not very easy to understand this it’s because very little has to
do with Divide and Conquer. reading the next pages helps to understand it better

What is Flat?

more details about these would be helpful

http://nb.csail.mit.edu/?comment=18392&org=pdf
http://nb.csail.mit.edu/?comment=18392&org=pdf
http://nb.csail.mit.edu/?comment=18442&org=pdf
http://nb.csail.mit.edu/?comment=18442&org=pdf
http://nb.csail.mit.edu/?comment=18442&org=pdf
http://nb.csail.mit.edu/?comment=18445&org=pdf
http://nb.csail.mit.edu/?comment=18445&org=pdf
http://nb.csail.mit.edu/?comment=18536&org=pdf
http://nb.csail.mit.edu/?comment=18536&org=pdf
http://nb.csail.mit.edu/?comment=18571&org=pdf
http://nb.csail.mit.edu/?comment=18571&org=pdf
http://nb.csail.mit.edu/?comment=18571&org=pdf
http://nb.csail.mit.edu/?comment=18706&org=pdf
http://nb.csail.mit.edu/?comment=18706&org=pdf
http://nb.csail.mit.edu/?comment=18762&org=pdf
http://nb.csail.mit.edu/?comment=18762&org=pdf
http://nb.csail.mit.edu/?comment=20309&org=pdf
http://nb.csail.mit.edu/?comment=26060&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 12

What is software leverage?
I also have no idea. Maybe simply that there is a lot of free software out there that one
can incorporate into UNIX?

I was unclear about the meaning also. After looking it up, I found a pretty good expla-
nation of it here: http://books.google.com/books?id=MFzVYQsD60AC&lpg=PA67&ots=nh-
xiEl9bI&dq=%22software%20leverage%22%20definition&pg=PA67#v=onepage&q=&f=false
. It is a bit of a read and would have been better had the term been explained here.

I didn’t understand a lot of the phrases in 1-9. Perhaps an easier concept on
something less technical, or more definitions. I understand the divide &
conquer parts, but thinking about the new words made it difficult to not get
overwhelmed.

I agree, I understand the divide and conquer parts, but I had to look up a
lot of these terms. Maybe another sentence in 1-9 that explains these terms of
gives an example would be helpful

Or just omitting 3 through 9? They don’t seem to contribute much to the
topic at hand, and many of us seem to be confused by them.

I’m not familiar with this terminology. What is "software leverage"? And how do you use
it?

Agreed - this is confusing for me as well.

http://nb.csail.mit.edu/?comment=18382&org=pdf
http://nb.csail.mit.edu/?comment=18393&org=pdf
http://nb.csail.mit.edu/?comment=18393&org=pdf
http://nb.csail.mit.edu/?comment=18408&org=pdf
http://nb.csail.mit.edu/?comment=18408&org=pdf
http://nb.csail.mit.edu/?comment=18408&org=pdf
http://nb.csail.mit.edu/?comment=18408&org=pdf
http://nb.csail.mit.edu/?comment=18691&org=pdf
http://nb.csail.mit.edu/?comment=18691&org=pdf
http://nb.csail.mit.edu/?comment=18691&org=pdf
http://nb.csail.mit.edu/?comment=18691&org=pdf
http://nb.csail.mit.edu/?comment=18777&org=pdf
http://nb.csail.mit.edu/?comment=18777&org=pdf
http://nb.csail.mit.edu/?comment=18777&org=pdf
http://nb.csail.mit.edu/?comment=18842&org=pdf
http://nb.csail.mit.edu/?comment=18842&org=pdf
http://nb.csail.mit.edu/?comment=18371&org=pdf
http://nb.csail.mit.edu/?comment=18371&org=pdf
http://nb.csail.mit.edu/?comment=18446&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 13

I’m not sure what a shell script is - since it seems that there’s some confusion over some
UNIX specific points, perhaps it would be best to open this section with a short description
of how UNIX works?

Agreed; this section so far isn’t so accessible if you don’t know much about operating
systems or programming, so maybe a bit more explanation would be nice (although
maybe then it’d defeat the purpose of using this as a parallel to explain divide and
conquer and just turn into a lesson on UNIX which isn’t what you want either...)

Agreed. I looked up shell scripts on wikipedia: A shell script is a script written for
the shell, or command line interpreter, of an operating system. It is often considered
a simple domain-specific programming language. Typical operations performed by
shell scripts include file manipulation, program execution, and printing text."

Shell scripts may be useful because they are typically portable within UNIX based
operating systems. Without incorporating dependencies to specific software (ex.
using flat txt files), the code is more likely to work on other UNIX based operating
systems.

I thought a captive UI was sort of UI that disallows interactivity once the user starts the
application...but I’m not sure how email is like that...

http://nb.csail.mit.edu/?comment=18447&org=pdf
http://nb.csail.mit.edu/?comment=18447&org=pdf
http://nb.csail.mit.edu/?comment=18447&org=pdf
http://nb.csail.mit.edu/?comment=18495&org=pdf
http://nb.csail.mit.edu/?comment=18495&org=pdf
http://nb.csail.mit.edu/?comment=18495&org=pdf
http://nb.csail.mit.edu/?comment=18495&org=pdf
http://nb.csail.mit.edu/?comment=18625&org=pdf
http://nb.csail.mit.edu/?comment=18625&org=pdf
http://nb.csail.mit.edu/?comment=18625&org=pdf
http://nb.csail.mit.edu/?comment=18625&org=pdf
http://nb.csail.mit.edu/?comment=18718&org=pdf
http://nb.csail.mit.edu/?comment=18718&org=pdf
http://nb.csail.mit.edu/?comment=18718&org=pdf
http://nb.csail.mit.edu/?comment=18718&org=pdf
http://nb.csail.mit.edu/?comment=18465&org=pdf
http://nb.csail.mit.edu/?comment=18465&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 14

What is a "captive user interface"? (it just doesn’t sound pleasant...) Because of that, I
don’t really understand what is going on in this tenet.

Once again...agreed, I have no idea what this means either.

p.s. If you use the "I agree" option, then this question (which clearly many people
have) will get moderated upward and will be one of the first that I see when I
look at all responses.

Whereas NB is not (yet?) smart enough to do the same if you verbally agree.
AI has a ways to go. In short, use the "I agree" option (or "I don’t agree") if it
captures what you want to say.

I’m not entirely sure but based on the rest of the paragraph I would guess they are limited
GUI interfaces that don’t allow maximum user freedom. Programs like MATLAB and
photoshop (ignoring common filters) are what I would consider good examples of a non
captive user interface, because they allow the user to define and modify operations to
their liking.

I think "captive user interfaces" refer to super fancy layouts but simply for the glittery
oo ahhh effect. Actually come to think about it, its probably referring to restrictive
UIs, like the old DOS programs.

http://nb.csail.mit.edu/?comment=18386&org=pdf
http://nb.csail.mit.edu/?comment=18386&org=pdf
http://nb.csail.mit.edu/?comment=18448&org=pdf
http://nb.csail.mit.edu/?comment=18546&org=pdf
http://nb.csail.mit.edu/?comment=18546&org=pdf
http://nb.csail.mit.edu/?comment=18546&org=pdf
http://nb.csail.mit.edu/?comment=18546&org=pdf
http://nb.csail.mit.edu/?comment=18546&org=pdf
http://nb.csail.mit.edu/?comment=18546&org=pdf
http://nb.csail.mit.edu/?comment=18476&org=pdf
http://nb.csail.mit.edu/?comment=18476&org=pdf
http://nb.csail.mit.edu/?comment=18476&org=pdf
http://nb.csail.mit.edu/?comment=18476&org=pdf
http://nb.csail.mit.edu/?comment=18476&org=pdf
http://nb.csail.mit.edu/?comment=18534&org=pdf
http://nb.csail.mit.edu/?comment=18534&org=pdf
http://nb.csail.mit.edu/?comment=18534&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 15

You’re right, it’s not pleasant. Though it’s common. For example, the typical word
processing program allows only one way to edit and create your document: You must
use its user interface or else. For example, how else can you make an OpenOffice or
MS-Word document, except by using the corresponding program?

Whereas with a non-captive-UI, you could use any method you like to make a word-
processing file, which is then (say) turned into PDF by the word processor. TeX is
an example of this kind of program. I have many programs that themselves write
TeX code, which is then compiled to make PDF.

The trees in this chapter are made by a similar method. The figure-drawing program
is called MetaPost, which is much easier to program than directly writing PostScript.
But even so, making the divide-and-conquer trees become a bit tedious because I
kept repeating so much of the MetaPost code. So I wrote a that program takes
a simple text-file representation of a tree and converts (compiles) it into MetaPost,
which is then compiled into PostScript and PDF. That would be very hard to do using
a graphical figure-drawing program. Because of the captive user interface, only a
human typing and clicking at the keyboard and mouse can generate the drawing.
this clearly explains what captive user interface is. thanks for the examples. I think
the ones you listed here are a little better than the ones in the reading.

Are any examples of this? I can understand that user interfaces are large and hard to
debug, but how exactly would you divide and conquer this?

Again, some unfamiliar terminology.

I don’t know what captive user interfaces are.

It seems like this principle has been violated by quite a few programs nowadays...

I would be interested to see an example of such a program because I’m still not really sure
that i understand what is meant here.

...yeah but shitty interface repels the average, non-programmer user

i don’t really understand how these two concepts are related, or how the unix really solves
the problems of the first paragraph.

http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=18545&org=pdf
http://nb.csail.mit.edu/?comment=19757&org=pdf
http://nb.csail.mit.edu/?comment=19757&org=pdf
http://nb.csail.mit.edu/?comment=27552&org=pdf
http://nb.csail.mit.edu/?comment=27552&org=pdf
http://nb.csail.mit.edu/?comment=18372&org=pdf
http://nb.csail.mit.edu/?comment=23218&org=pdf
http://nb.csail.mit.edu/?comment=18904&org=pdf
http://nb.csail.mit.edu/?comment=18690&org=pdf
http://nb.csail.mit.edu/?comment=18690&org=pdf
http://nb.csail.mit.edu/?comment=18809&org=pdf
http://nb.csail.mit.edu/?comment=18538&org=pdf
http://nb.csail.mit.edu/?comment=18538&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 16

I’m not sure if I’m understanding this correctly, but doesn’t leaving the program from the
user to define tend to deter the user from using the program since it means extra work?

Not if you do it right, I think its good to give the user some control over the processes.
As long as the smaller tasks are atomic the user should be able to do what they want
without messing things up.

So they don’t use UI? Or they have separate UIs for each program that can be combined
into one?

I think it might be more that they are not limited to the buttons seen in like, typical email.
They can either make their own or use others that the original designers didn’t think of.

I agree... its not necessarily that a UI doesn’t exist, but rather that if a UI module
does exist, it doesn’t limit functionality. Simple programs exist first, and a UI may be
built on top of it to provide visual support, but may or may not incorporate all of the
program’s functionality / ability.

I’m not sure I completely follow this. I’m not familiar with the terms, but it seems like
the author is being a bit repetitive. Points 1 and 2 were pretty similar–saying to split
programs into smaller programs. Here, he’s also saying the same thing–"solve complex
tasks by dividing them into smaller tasks..."

This sounds to me more like robustness (not necessarily redundancy), and less like our
goal of simplification when we use divide and conquer, right?

this is a much easier term to understand than the previous ones presented.

Works like a transfer function in systems and signals. If you can convert the elements
into transfer functions, it’s easy to design a system to match the desired performance
requirements.

This is a superb definition of a program

http://nb.csail.mit.edu/?comment=18409&org=pdf
http://nb.csail.mit.edu/?comment=18409&org=pdf
http://nb.csail.mit.edu/?comment=18822&org=pdf
http://nb.csail.mit.edu/?comment=18822&org=pdf
http://nb.csail.mit.edu/?comment=18822&org=pdf
http://nb.csail.mit.edu/?comment=18383&org=pdf
http://nb.csail.mit.edu/?comment=18383&org=pdf
http://nb.csail.mit.edu/?comment=18395&org=pdf
http://nb.csail.mit.edu/?comment=18395&org=pdf
http://nb.csail.mit.edu/?comment=18722&org=pdf
http://nb.csail.mit.edu/?comment=18722&org=pdf
http://nb.csail.mit.edu/?comment=18722&org=pdf
http://nb.csail.mit.edu/?comment=18722&org=pdf
http://nb.csail.mit.edu/?comment=18482&org=pdf
http://nb.csail.mit.edu/?comment=18482&org=pdf
http://nb.csail.mit.edu/?comment=18482&org=pdf
http://nb.csail.mit.edu/?comment=18482&org=pdf
http://nb.csail.mit.edu/?comment=18844&org=pdf
http://nb.csail.mit.edu/?comment=18844&org=pdf
http://nb.csail.mit.edu/?comment=18539&org=pdf
http://nb.csail.mit.edu/?comment=25337&org=pdf
http://nb.csail.mit.edu/?comment=25337&org=pdf
http://nb.csail.mit.edu/?comment=25337&org=pdf
http://nb.csail.mit.edu/?comment=18905&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 17

I like how you defined filter here, but I feel like filter is actually a more-known term than
the ones you did not define above.

I agree. I like the definition, but some others are more necessary.

I agree too. I needed definitions for almost every term on this list.
I agree, too. This filter example makes sense to me. Basically, make your programs
all mesh with each other–input for one is the output for another, so you don’t have
to keep using user input all over

I don’t quite understand how this definition of filter makes it a good leaf in a tree...
Don’t take "leaf" so literally; you may be thinking of leaves as the end of the branches,
but I think most often leaves just mean another branching point. If you think of it that
way, filters take data, process it, and then out put data for input into the next branch just
like all the other branches we have talked about in other trees in class.

No – a leaf necessarily (by definition) has no children. I think the right term here
would be "internal node", not leaf.

I agree – this doesn’t make much sense the way it is written. The idea we seem to be
going for is that, for example, multiplication and dimensional analysis combine easily in
arbitrary ways, just like filters, but I’m not sure the way this is explained works.

Here you explain how filters relate to the idea of divide-and-conquer... but it’s not so clear
for some of the earlier points. I’m not sure if you’re trying to just list the main tenets of
the UNIX philosophy, or if each of these points is supposed to correlate to some aspect of
divide and conquer.

It says in the line proceeding the list that only the 4 with explanations are relevant. Maybe
including the others is unnecessary since they don’t seem to have any real relevance to
divide an conquer.

Agreed. Maybe some explanation of UNIX followed by just the tenets that relate to
d&c would be clearer.

I think this is a very good informative section; I personally really enjoy sections like this
because it’s the little facts that make one a more worldly, learned individual. That said, it
does seem to be a lot of info that isn’t immediately relevant to estimation? On the other
hand, I prefer it this way and I’m sure most MIT (and college) students do to, and that’s
the target audience.

http://nb.csail.mit.edu/?comment=18373&org=pdf
http://nb.csail.mit.edu/?comment=18373&org=pdf
http://nb.csail.mit.edu/?comment=18396&org=pdf
http://nb.csail.mit.edu/?comment=18436&org=pdf
http://nb.csail.mit.edu/?comment=18483&org=pdf
http://nb.csail.mit.edu/?comment=18483&org=pdf
http://nb.csail.mit.edu/?comment=18483&org=pdf
http://nb.csail.mit.edu/?comment=18569&org=pdf
http://nb.csail.mit.edu/?comment=18789&org=pdf
http://nb.csail.mit.edu/?comment=18789&org=pdf
http://nb.csail.mit.edu/?comment=18789&org=pdf
http://nb.csail.mit.edu/?comment=18789&org=pdf
http://nb.csail.mit.edu/?comment=18845&org=pdf
http://nb.csail.mit.edu/?comment=18845&org=pdf
http://nb.csail.mit.edu/?comment=18863&org=pdf
http://nb.csail.mit.edu/?comment=18863&org=pdf
http://nb.csail.mit.edu/?comment=18863&org=pdf
http://nb.csail.mit.edu/?comment=18496&org=pdf
http://nb.csail.mit.edu/?comment=18496&org=pdf
http://nb.csail.mit.edu/?comment=18496&org=pdf
http://nb.csail.mit.edu/?comment=18496&org=pdf
http://nb.csail.mit.edu/?comment=18662&org=pdf
http://nb.csail.mit.edu/?comment=18662&org=pdf
http://nb.csail.mit.edu/?comment=18662&org=pdf
http://nb.csail.mit.edu/?comment=19082&org=pdf
http://nb.csail.mit.edu/?comment=19082&org=pdf
http://nb.csail.mit.edu/?comment=18891&org=pdf
http://nb.csail.mit.edu/?comment=18891&org=pdf
http://nb.csail.mit.edu/?comment=18891&org=pdf
http://nb.csail.mit.edu/?comment=18891&org=pdf
http://nb.csail.mit.edu/?comment=18891&org=pdf

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

24 24

24 24

16

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

isolates nine tenets of the UNIX philosophy, of which four – those with
comments in the following list – incorporate or enable divide-and-conquer
reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 7.3). Similarly, hard computa-
tional problems – for example, building a searchable database of all
emails or web pages – can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Sec-
tion 1.3).

2. Make each program do one thing well. A program doing one task –
only spell-checking rather than all of word processing – is easier to
understand, to debug, and to use. One-task programs therefore make
good leaf nodes in a divide-and-conquer trees.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency.

5. Store data in flat text files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and portability.

8. Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing
documents. These monolithic solutions, besides being large and hard
to debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple
programs. The user can adapt and remix these simple programs to
solve problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines
easily with another filter, with the output from one filter becoming
the input for the next filter. Filters therefore make good leaves in a
divide-and-conquer tree.

Comments on page 2 18

how is a program different from a filter otherwise? don’t filters remove noise? but that’s
not the definition used here.

A filter seems to be a type of program, that may or may not remove noise. A filter, as it
is used here, seems to be more of an operation.
I think you are thinking of a filter too literally, not just signal processing, but for exam-
ple, a text editor would have a small program(more likely a function) that takes input
from the keyboard and displays it on the screen. It filters the keystrokes into ASCII
characters/pixels on your screen. I think that’s what’s meant by filter...

I agree. It would be very useful if you identified the four principals that apply to both
programming and divide and conquer. Also, those four points should be parallel to one
another in their explanations.

This section is hard to understand for someone with little to no programming knowledge.
I’d like if more terms were defined or if programming was compared to divide and conquer
as opposed to the opposite (which is how it seems now)

http://nb.csail.mit.edu/?comment=18540&org=pdf
http://nb.csail.mit.edu/?comment=18540&org=pdf
http://nb.csail.mit.edu/?comment=18681&org=pdf
http://nb.csail.mit.edu/?comment=18681&org=pdf
http://nb.csail.mit.edu/?comment=18826&org=pdf
http://nb.csail.mit.edu/?comment=18826&org=pdf
http://nb.csail.mit.edu/?comment=18826&org=pdf
http://nb.csail.mit.edu/?comment=18826&org=pdf
http://nb.csail.mit.edu/?comment=18787&org=pdf
http://nb.csail.mit.edu/?comment=18787&org=pdf
http://nb.csail.mit.edu/?comment=18787&org=pdf
http://nb.csail.mit.edu/?comment=18709&org=pdf
http://nb.csail.mit.edu/?comment=18709&org=pdf
http://nb.csail.mit.edu/?comment=18709&org=pdf

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

Comments on page 3 19

Comments on page 3

I’m a bit confused here, and in the following section: are we writing this somewhere, like
code, or is this an already made program like, say, notepad?

head and tail are already programs that exist in UNIX, like in Athena the ls and cd
commands that you are probably are familiar with. When they are combined below that
is written by the user.

Would run be a simpler term?

This example for filters is helpful, but I feel like the author’s point (#9) about filters
was already the clearest. An example about #8 (captive user interfaces) would have been
helpful too

I disagree I think the verbal explanation of a filter was pretty clear but this makes sure
I understand it 100% and I’m glad it’s here. I do agree that examples of the other ones
would be very helpful

This looks a little strange. Maybe put in quotations the actual input, or make it a different
font, or something.

How you arranged it below, by putting it on a separate line, would work well too

I would either put it in italics or make it a different color
I think it already is in a different font from what I can tell, but a different color
would work wonders.

he does use a different fond...however, it would be useful to make a side note
for people who don’t code about standard practices...courier is always used to
designate what you would actually type

So far this whole example is disorganized and a bit hard to follow. Overall it needs to
be a bit better explained. You should probably just choose a few points and elaborate on
them, rather than just listing everything you can think of.

I really do not understand what this is talking about at all. it prints the first 15 lines of
what

http://nb.csail.mit.edu/?comment=18650&org=pdf
http://nb.csail.mit.edu/?comment=18650&org=pdf
http://nb.csail.mit.edu/?comment=18833&org=pdf
http://nb.csail.mit.edu/?comment=18833&org=pdf
http://nb.csail.mit.edu/?comment=18833&org=pdf
http://nb.csail.mit.edu/?comment=19083&org=pdf
http://nb.csail.mit.edu/?comment=18484&org=pdf
http://nb.csail.mit.edu/?comment=18484&org=pdf
http://nb.csail.mit.edu/?comment=18484&org=pdf
http://nb.csail.mit.edu/?comment=18562&org=pdf
http://nb.csail.mit.edu/?comment=18562&org=pdf
http://nb.csail.mit.edu/?comment=18562&org=pdf
http://nb.csail.mit.edu/?comment=18374&org=pdf
http://nb.csail.mit.edu/?comment=18374&org=pdf
http://nb.csail.mit.edu/?comment=18376&org=pdf
http://nb.csail.mit.edu/?comment=18397&org=pdf
http://nb.csail.mit.edu/?comment=18449&org=pdf
http://nb.csail.mit.edu/?comment=18449&org=pdf
http://nb.csail.mit.edu/?comment=18907&org=pdf
http://nb.csail.mit.edu/?comment=18907&org=pdf
http://nb.csail.mit.edu/?comment=18907&org=pdf
http://nb.csail.mit.edu/?comment=18951&org=pdf
http://nb.csail.mit.edu/?comment=18951&org=pdf
http://nb.csail.mit.edu/?comment=18951&org=pdf
http://nb.csail.mit.edu/?comment=18614&org=pdf
http://nb.csail.mit.edu/?comment=18614&org=pdf

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

Comments on page 3 20

The notation of this example confuses me.
The ’head -15’ and ’tail -15’ refer to text that would be typed into a command prompt or
terminal.

I think the argument syntax for this function may confuse people not familiar with
command line or terminal commands. I think a sentence or two describing the syntax,
or at least making it less confusing to others might help.

I think these small examples would be better suited within the points that precede
it, or at least identify the principals they match up with.

From solving this problem, I would guess that search engines use this divide and conquer
method in their algorithms.

This is a really good problem, we did similar problems in 6.033 at around the same time

A page and a half was spent describing the logisitics of UNIX commands and how to
use them to answer this question. This section is supposed to be describing how divide
and conquer was used when UNIX was designed, and instead my time is wasted with
a description of how to write UNIX commands, which I already know how to do. I
understand that not everyone who reads this knows UNIX and UNIX commands, but in
that case, I don’t think this is a good example if so much explanation is necessary.

I liked this example and I think the time spent to explain the pipe combinator was worth
it. Now I can think of the lines connecting nodes of a tree as the pipe operator and the
node itself as the filter.

I think instead of listing these long commands that non course 6exers dont know
much about, you could do more examples of the "print" one. There are many many
problems using lists that could be relevant to divide and conquer

what do you mean? print only 23 lines? or print the 23rd line in a larger series?

This is a really good example, easy to understand for people who haven’t had programming
experience before.

http://nb.csail.mit.edu/?comment=18660&org=pdf
http://nb.csail.mit.edu/?comment=18676&org=pdf
http://nb.csail.mit.edu/?comment=18676&org=pdf
http://nb.csail.mit.edu/?comment=18727&org=pdf
http://nb.csail.mit.edu/?comment=18727&org=pdf
http://nb.csail.mit.edu/?comment=18727&org=pdf
http://nb.csail.mit.edu/?comment=18792&org=pdf
http://nb.csail.mit.edu/?comment=18792&org=pdf
http://nb.csail.mit.edu/?comment=18747&org=pdf
http://nb.csail.mit.edu/?comment=18747&org=pdf
http://nb.csail.mit.edu/?comment=27553&org=pdf
http://nb.csail.mit.edu/?comment=18791&org=pdf
http://nb.csail.mit.edu/?comment=18791&org=pdf
http://nb.csail.mit.edu/?comment=18791&org=pdf
http://nb.csail.mit.edu/?comment=18791&org=pdf
http://nb.csail.mit.edu/?comment=18791&org=pdf
http://nb.csail.mit.edu/?comment=18791&org=pdf
http://nb.csail.mit.edu/?comment=18836&org=pdf
http://nb.csail.mit.edu/?comment=18836&org=pdf
http://nb.csail.mit.edu/?comment=18836&org=pdf
http://nb.csail.mit.edu/?comment=18856&org=pdf
http://nb.csail.mit.edu/?comment=18856&org=pdf
http://nb.csail.mit.edu/?comment=18856&org=pdf
http://nb.csail.mit.edu/?comment=18616&org=pdf
http://nb.csail.mit.edu/?comment=18909&org=pdf
http://nb.csail.mit.edu/?comment=18909&org=pdf

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

Comments on page 3 21

I am confused about this, wouldn’t the tail -1 be printing the 24th line?
You should think of the line as saying "tail -1 of head -23" which would mean "print the
last line of the 1st 23 lines. "

Agreed, it seems as though we’re printing the first 23 lines then the final line of the
entire file.

the idea is that ’tail -1’ is run on the ’head -23’ output. There isn’t a 24th (or greater) line
at that point.

He talks about feeding outputs to other functions later. That should clear it up.

We don’t always multiply, right?
A lot of the time it’s just dimensional analysis, so it is pretty much multiplying by different
unities.

I don’t like the way this is introduced. I think it would be better to suggest it is a metaphor.
Something like: "you can think as the filters as a pipe."

I don’t like the way this is introduced. I think it would be better to suggest it is a metaphor.
Something like: "you can think as the filters as a pipe."

I don’t like the way this is introduced. I think it would be better to suggest it is a metaphor.
Something like "you can think as the filters as a pipe."

this seems very intuitive to me. it was already explained above

I don’t like the way this is introduced. I think it would be better to suggest it is a metaphor.
Something like: "you can think as the filters as a pipe."

I don’t like the way this is introduced. I think it would be better to suggest it is a metaphor.
Something like "you can think as the filters as a pipe."

I don’t like the way this is introduced. I think it would be better to suggest it is a metaphor.
Something like "you can think as the filters as a pipe."

I thin

http://nb.csail.mit.edu/?comment=18664&org=pdf
http://nb.csail.mit.edu/?comment=18766&org=pdf
http://nb.csail.mit.edu/?comment=18766&org=pdf
http://nb.csail.mit.edu/?comment=18794&org=pdf
http://nb.csail.mit.edu/?comment=18794&org=pdf
http://nb.csail.mit.edu/?comment=18910&org=pdf
http://nb.csail.mit.edu/?comment=18910&org=pdf
http://nb.csail.mit.edu/?comment=18930&org=pdf
http://nb.csail.mit.edu/?comment=18920&org=pdf
http://nb.csail.mit.edu/?comment=18945&org=pdf
http://nb.csail.mit.edu/?comment=18945&org=pdf
http://nb.csail.mit.edu/?comment=18813&org=pdf
http://nb.csail.mit.edu/?comment=18813&org=pdf
http://nb.csail.mit.edu/?comment=18814&org=pdf
http://nb.csail.mit.edu/?comment=18814&org=pdf
http://nb.csail.mit.edu/?comment=18818&org=pdf
http://nb.csail.mit.edu/?comment=18818&org=pdf
http://nb.csail.mit.edu/?comment=18541&org=pdf
http://nb.csail.mit.edu/?comment=18815&org=pdf
http://nb.csail.mit.edu/?comment=18815&org=pdf
http://nb.csail.mit.edu/?comment=18816&org=pdf
http://nb.csail.mit.edu/?comment=18816&org=pdf
http://nb.csail.mit.edu/?comment=18817&org=pdf
http://nb.csail.mit.edu/?comment=18817&org=pdf
http://nb.csail.mit.edu/?comment=18819&org=pdf

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

Comments on page 3 22

This section focuses a lot on programming and not much on divide and conquer. I’d like
to see divide and conquer more incorporated in this section, otherwise I feel like I’m
getting lost in programming and missing the whole point of this section.

I like the analogy

I feel like I’m missing what this has to do with estimation. It makes sense and is inter-
esting and all of those good things, but I’m sort of wondering how it’s relevant.

It’s great that this part is so clear and easy to follow for people who don’t understand
UNIX, and I think it points out the slight inaccessibility of the previous section, when
there were a lot of terms the UNIX-unsavvy couldn’t follow.

As a before noted UNIX-unsavvy person, I agree. This is getting much clearer, although
going over the principles in class would also help a lot. Please don’t forget this is also
registered as a course 2 class.
I agree. Sometimes I have trouble reading this book because I get distracted with unfa-
miliar concepts. But when you include definitions, the readings become clearer and I see
how it relates to the problem at hand.

I agree with the comments from the others about this being well explained. I have no
experience with UNIX at all, but this is nice and clear.

It’s funny - in 6.033 we’re reading the actual UNIX paper, and your writing is making it
10X more accessible.

I see how this models the tree and divide and conquer, but I don’t see what we are going
to be estimating

I thought that these printed in quantities of 15? or if not what was the 15 for

just curious, can you do head -24 | tail -2 and get the same result, or does the tail only
print the LAST line of the input

I believe this would print line 23 AND line 24, and we were aiming to print only line 23.
As the previous reply says, you would get line 23 and 24 since you are saying the last
TWO lines of the input.

http://nb.csail.mit.edu/?comment=18712&org=pdf
http://nb.csail.mit.edu/?comment=18712&org=pdf
http://nb.csail.mit.edu/?comment=18712&org=pdf
http://nb.csail.mit.edu/?comment=20311&org=pdf
http://nb.csail.mit.edu/?comment=18576&org=pdf
http://nb.csail.mit.edu/?comment=18576&org=pdf
http://nb.csail.mit.edu/?comment=18450&org=pdf
http://nb.csail.mit.edu/?comment=18450&org=pdf
http://nb.csail.mit.edu/?comment=18450&org=pdf
http://nb.csail.mit.edu/?comment=18617&org=pdf
http://nb.csail.mit.edu/?comment=18617&org=pdf
http://nb.csail.mit.edu/?comment=18617&org=pdf
http://nb.csail.mit.edu/?comment=18658&org=pdf
http://nb.csail.mit.edu/?comment=18658&org=pdf
http://nb.csail.mit.edu/?comment=18658&org=pdf
http://nb.csail.mit.edu/?comment=29460&org=pdf
http://nb.csail.mit.edu/?comment=29460&org=pdf
http://nb.csail.mit.edu/?comment=18921&org=pdf
http://nb.csail.mit.edu/?comment=18921&org=pdf
http://nb.csail.mit.edu/?comment=18772&org=pdf
http://nb.csail.mit.edu/?comment=18772&org=pdf
http://nb.csail.mit.edu/?comment=18618&org=pdf
http://nb.csail.mit.edu/?comment=18368&org=pdf
http://nb.csail.mit.edu/?comment=18368&org=pdf
http://nb.csail.mit.edu/?comment=18375&org=pdf
http://nb.csail.mit.edu/?comment=18433&org=pdf
http://nb.csail.mit.edu/?comment=18433&org=pdf

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

25 25

25 25

17

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

As examples of these principles, here are two UNIX programs, each a
small filter doing one task well:

• head: prints the first lines of the input. For example, head invoked
as head -15 prints the first 15 lines.

• tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then
(2) print the last line of those first 23 lines. The first subproblem is solved
with the filter head -23. The second subproblem is solved with the filter
tail -1.
The remaining problem is how to hand the second filter the output of
the first filter – in other words how to combine the leaves of the tree. In
estimation problems, we usually multiply the leaf values, so the combi-
nator is usually the multiplication operator. In UNIX, the combinator is
the pipe. Just as a plumber’s pipe connects the output of one object, such
as a sink, to the input of another object (often a larger pipe system), a
UNIX pipe connects the output of one program to the input of another
program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 23rd line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell
it where to look:

1. Use the pipeline unchanged. Then head reads its input from the
keyboard. A UNIX convention – not a requirement, but a habit followed
by most programs – is that, unless an input file is specified, programs
read from the so-called standard input stream, usually the keyboard.
The pipeline

head -23 | tail -1

Comments on page 3 23

For me this is where the divide and conquer analogy gets a little lost, although after
thinking about it I suppose you could say defining the input is just another level of the
tree. You might want to make that connection clearer.

good to know

So does this notation just mean that the output of head -23 is used as the input of tail -1?

Yes, thus the pipeline analogy.

So this will print only the 23rd line right?

http://nb.csail.mit.edu/?comment=18843&org=pdf
http://nb.csail.mit.edu/?comment=18843&org=pdf
http://nb.csail.mit.edu/?comment=18843&org=pdf
http://nb.csail.mit.edu/?comment=26061&org=pdf
http://nb.csail.mit.edu/?comment=18438&org=pdf
http://nb.csail.mit.edu/?comment=18477&org=pdf
http://nb.csail.mit.edu/?comment=29461&org=pdf

26 26

26 26

18

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

therefore reads lines typed at the keyboard, prints the 23rd line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file – for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23rd word from the dictionary:

head -23 /usr/share/dict/words | tail -1

3. Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the
file /usr/share/dict/words to the input of head. The system tricks
head into thinking its reading from the keyboard, but the input comes
from the file – without requiring any change in the program!

4. Use the cat program to achieve the same effect as the preceding
method. The cat program copies its input file(s) to the output. This
extended pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its
input to its output, whereas the redirection operator lets the lower
level of the UNIX system achieve the same effect (replumbing the input)
without the gratuitous copy.

As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the
usual left to right. In other words, the dictionary begins with words that end in
‘a’. In that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [26]created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

26 26

26 26

18

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

therefore reads lines typed at the keyboard, prints the 23rd line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file – for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23rd word from the dictionary:

head -23 /usr/share/dict/words | tail -1

3. Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the
file /usr/share/dict/words to the input of head. The system tricks
head into thinking its reading from the keyboard, but the input comes
from the file – without requiring any change in the program!

4. Use the cat program to achieve the same effect as the preceding
method. The cat program copies its input file(s) to the output. This
extended pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its
input to its output, whereas the redirection operator lets the lower
level of the UNIX system achieve the same effect (replumbing the input)
without the gratuitous copy.

As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the
usual left to right. In other words, the dictionary begins with words that end in
‘a’. In that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [26]created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

Comments on page 4 24

Comments on page 4

What does it mean that it reads lines from the keyboard? does this mean that after you
type 23 lines of text it will execute the command?

I don’t know much about programming and it’s unclear what you mean by it reads lines
typed at the keyboard. How does this differ from what we’re looking for?

At the beginning of the problem we said we wanted the 23rd line of the file, so we
probably want our filters to start with the contents of the file. Otherwise it would take
whatever you are typing at the keyboard and return the 23rd line of that.

I’m not sure what the backslashes do

What is different between this and #2?

The difference between 2 and 3 clearly stated would be helpful.

I’m unclear on this. Is head going to read lines from the keyboard and then switch to the
file? How does it know when to stop taking input from the keyboard?

What’s the point of this if you can read from a file?
I’m not sure I fully understand this either. So does this put the input into a file, then
read it from the file? So you’re not directly reading the user input?

yeah i dont understand the nuances of this either
The wording is very technical and could use some more basic explanations about
what it means to connect a file to an input.

While describing these three possible input methods for getting information into the
pipe, I dont see what it adds to the divide and conquer section. It almost seems to be
getting bogged down in the implementation of a specific case rather than the idea and
effectiveness of divide and conquer.

I had the same comment while reading it. Although as a course-6-er I was interested
in the explanation, it added nothing to the divide and conquer idea and obfuscated the
reading.

http://nb.csail.mit.edu/?comment=19388&org=pdf
http://nb.csail.mit.edu/?comment=19388&org=pdf
http://nb.csail.mit.edu/?comment=18797&org=pdf
http://nb.csail.mit.edu/?comment=18797&org=pdf
http://nb.csail.mit.edu/?comment=18841&org=pdf
http://nb.csail.mit.edu/?comment=18841&org=pdf
http://nb.csail.mit.edu/?comment=18841&org=pdf
http://nb.csail.mit.edu/?comment=29462&org=pdf
http://nb.csail.mit.edu/?comment=18715&org=pdf
http://nb.csail.mit.edu/?comment=23220&org=pdf
http://nb.csail.mit.edu/?comment=26064&org=pdf
http://nb.csail.mit.edu/?comment=26064&org=pdf
http://nb.csail.mit.edu/?comment=18394&org=pdf
http://nb.csail.mit.edu/?comment=18485&org=pdf
http://nb.csail.mit.edu/?comment=18485&org=pdf
http://nb.csail.mit.edu/?comment=18542&org=pdf
http://nb.csail.mit.edu/?comment=18799&org=pdf
http://nb.csail.mit.edu/?comment=18799&org=pdf
http://nb.csail.mit.edu/?comment=18837&org=pdf
http://nb.csail.mit.edu/?comment=18837&org=pdf
http://nb.csail.mit.edu/?comment=18837&org=pdf
http://nb.csail.mit.edu/?comment=18837&org=pdf
http://nb.csail.mit.edu/?comment=18937&org=pdf
http://nb.csail.mit.edu/?comment=18937&org=pdf
http://nb.csail.mit.edu/?comment=18937&org=pdf

26 26

26 26

18

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

therefore reads lines typed at the keyboard, prints the 23rd line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file – for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23rd word from the dictionary:

head -23 /usr/share/dict/words | tail -1

3. Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the
file /usr/share/dict/words to the input of head. The system tricks
head into thinking its reading from the keyboard, but the input comes
from the file – without requiring any change in the program!

4. Use the cat program to achieve the same effect as the preceding
method. The cat program copies its input file(s) to the output. This
extended pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its
input to its output, whereas the redirection operator lets the lower
level of the UNIX system achieve the same effect (replumbing the input)
without the gratuitous copy.

As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the
usual left to right. In other words, the dictionary begins with words that end in
‘a’. In that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [26]created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

26 26

26 26

18

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

therefore reads lines typed at the keyboard, prints the 23rd line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file – for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23rd word from the dictionary:

head -23 /usr/share/dict/words | tail -1

3. Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the
file /usr/share/dict/words to the input of head. The system tricks
head into thinking its reading from the keyboard, but the input comes
from the file – without requiring any change in the program!

4. Use the cat program to achieve the same effect as the preceding
method. The cat program copies its input file(s) to the output. This
extended pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its
input to its output, whereas the redirection operator lets the lower
level of the UNIX system achieve the same effect (replumbing the input)
without the gratuitous copy.

As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the
usual left to right. In other words, the dictionary begins with words that end in
‘a’. In that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [26]created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

Comments on page 4 25

How is this different from 2? Just that you’re "tricking it"? Is this in any way better than
2 or more useful in some other circumstance than 2?

By the same token, does it matter that the program now thinks its drawing from the
keyboard input? Why would drawing from a pre-written file be any different for the
computer, once you specify the file location?

I agree with these comments - I fail to see how this option is useful. Why would you
ever want to "trick" the keyboard?

Sorry by keyboard I meant trick the system into believing it is receiving input
from the keyboard.

I think it allows you to type in the whole line head -23<... the first time and from then
on you can just type head -23 and leave out the file path. From then on the computer
will assume that it should print from that path anyway.
I think, more importantly, the fact that we’re being distracted by this question means
that some of the detail here may be unnecessary to make the overall point, and seems to
actually detract from our understanding.

I don’t really understand what this is saying.

A minor point, but this should be "it’s"

http://nb.csail.mit.edu/?comment=18378&org=pdf
http://nb.csail.mit.edu/?comment=18378&org=pdf
http://nb.csail.mit.edu/?comment=18400&org=pdf
http://nb.csail.mit.edu/?comment=18400&org=pdf
http://nb.csail.mit.edu/?comment=18400&org=pdf
http://nb.csail.mit.edu/?comment=18451&org=pdf
http://nb.csail.mit.edu/?comment=18451&org=pdf
http://nb.csail.mit.edu/?comment=18452&org=pdf
http://nb.csail.mit.edu/?comment=18452&org=pdf
http://nb.csail.mit.edu/?comment=18661&org=pdf
http://nb.csail.mit.edu/?comment=18661&org=pdf
http://nb.csail.mit.edu/?comment=18661&org=pdf
http://nb.csail.mit.edu/?comment=18868&org=pdf
http://nb.csail.mit.edu/?comment=18868&org=pdf
http://nb.csail.mit.edu/?comment=18868&org=pdf
http://nb.csail.mit.edu/?comment=23225&org=pdf
http://nb.csail.mit.edu/?comment=18869&org=pdf

26 26

26 26

18

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

therefore reads lines typed at the keyboard, prints the 23rd line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file – for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23rd word from the dictionary:

head -23 /usr/share/dict/words | tail -1

3. Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the
file /usr/share/dict/words to the input of head. The system tricks
head into thinking its reading from the keyboard, but the input comes
from the file – without requiring any change in the program!

4. Use the cat program to achieve the same effect as the preceding
method. The cat program copies its input file(s) to the output. This
extended pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its
input to its output, whereas the redirection operator lets the lower
level of the UNIX system achieve the same effect (replumbing the input)
without the gratuitous copy.

As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the
usual left to right. In other words, the dictionary begins with words that end in
‘a’. In that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [26]created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

26 26

26 26

18

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

therefore reads lines typed at the keyboard, prints the 23rd line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file – for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23rd word from the dictionary:

head -23 /usr/share/dict/words | tail -1

3. Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the
file /usr/share/dict/words to the input of head. The system tricks
head into thinking its reading from the keyboard, but the input comes
from the file – without requiring any change in the program!

4. Use the cat program to achieve the same effect as the preceding
method. The cat program copies its input file(s) to the output. This
extended pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its
input to its output, whereas the redirection operator lets the lower
level of the UNIX system achieve the same effect (replumbing the input)
without the gratuitous copy.

As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the
usual left to right. In other words, the dictionary begins with words that end in
‘a’. In that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [26]created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

Comments on page 4 26

what is the point of all of this? the text should be more focused on the "estimation"
techniques rather then get bogged down in the programming.

I think the section is trying to drive home the idea that unix programs illustrate di-
vide&conquer techniques, but I agree it seems too concerned with the details of
these programs.

I also agree. It’s good to see how these topics are used in real examples, but this
seems a little much.
I also agree with this. I am finding myself just trying to understand how the programs
work with the filters and such and forgetting I am even supposed to think about divide
and conquer.

Yeah. The relation seems fuzzy and unclear. I think the simplicity of divide and conquer
needs to be used in this example. It seems way to focused on details. Details that drive
the reader away from the original intent of the example

I agree. I actually learned some useful things about Unix from here, but that’s not
what we’re here for.

what do you mean by redirection operator, do you refer to < ?
I think that just means you’re reading the file from standard input rather than straight
from the file.
Yes, you are right, but it would be nice if < was called that above when it is first
mentioned.

In what way is this slightly less efficient? I see that it probably takes longer but is that
where the inefficiency lies?

Does this actually create a phantom copy?

ooh this sounds cool. Is it weird that I’m excited to read on to figure out how to solve
this?

This example helps to clarify some of the ideas somewhat, but this whole section is still
largely incomprehensible to me.

Thanks for the example. At first, I thought this might be from z to a, but now I get that
its based on last letter of the words.

http://nb.csail.mit.edu/?comment=18543&org=pdf
http://nb.csail.mit.edu/?comment=18543&org=pdf
http://nb.csail.mit.edu/?comment=18572&org=pdf
http://nb.csail.mit.edu/?comment=18572&org=pdf
http://nb.csail.mit.edu/?comment=18572&org=pdf
http://nb.csail.mit.edu/?comment=18621&org=pdf
http://nb.csail.mit.edu/?comment=18621&org=pdf
http://nb.csail.mit.edu/?comment=18666&org=pdf
http://nb.csail.mit.edu/?comment=18666&org=pdf
http://nb.csail.mit.edu/?comment=18666&org=pdf
http://nb.csail.mit.edu/?comment=18684&org=pdf
http://nb.csail.mit.edu/?comment=18684&org=pdf
http://nb.csail.mit.edu/?comment=18684&org=pdf
http://nb.csail.mit.edu/?comment=18871&org=pdf
http://nb.csail.mit.edu/?comment=18871&org=pdf
http://nb.csail.mit.edu/?comment=18369&org=pdf
http://nb.csail.mit.edu/?comment=18439&org=pdf
http://nb.csail.mit.edu/?comment=18439&org=pdf
http://nb.csail.mit.edu/?comment=19084&org=pdf
http://nb.csail.mit.edu/?comment=19084&org=pdf
http://nb.csail.mit.edu/?comment=18801&org=pdf
http://nb.csail.mit.edu/?comment=18801&org=pdf
http://nb.csail.mit.edu/?comment=18401&org=pdf
http://nb.csail.mit.edu/?comment=18577&org=pdf
http://nb.csail.mit.edu/?comment=18577&org=pdf
http://nb.csail.mit.edu/?comment=18969&org=pdf
http://nb.csail.mit.edu/?comment=18969&org=pdf
http://nb.csail.mit.edu/?comment=18632&org=pdf
http://nb.csail.mit.edu/?comment=18632&org=pdf

26 26

26 26

18

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

therefore reads lines typed at the keyboard, prints the 23rd line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file – for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23rd word from the dictionary:

head -23 /usr/share/dict/words | tail -1

3. Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the
file /usr/share/dict/words to the input of head. The system tricks
head into thinking its reading from the keyboard, but the input comes
from the file – without requiring any change in the program!

4. Use the cat program to achieve the same effect as the preceding
method. The cat program copies its input file(s) to the output. This
extended pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its
input to its output, whereas the redirection operator lets the lower
level of the UNIX system achieve the same effect (replumbing the input)
without the gratuitous copy.

As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the
usual left to right. In other words, the dictionary begins with words that end in
‘a’. In that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [26]created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

26 26

26 26

18

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

therefore reads lines typed at the keyboard, prints the 23rd line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file – for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23rd word from the dictionary:

head -23 /usr/share/dict/words | tail -1

3. Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the
file /usr/share/dict/words to the input of head. The system tricks
head into thinking its reading from the keyboard, but the input comes
from the file – without requiring any change in the program!

4. Use the cat program to achieve the same effect as the preceding
method. The cat program copies its input file(s) to the output. This
extended pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its
input to its output, whereas the redirection operator lets the lower
level of the UNIX system achieve the same effect (replumbing the input)
without the gratuitous copy.

As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the
usual left to right. In other words, the dictionary begins with words that end in
‘a’. In that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [26]created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

Comments on page 4 27

what is this
It’s a ’typesetting’ program. You may have heard of LaTeX before; it’s commonly used
in the scientific environment to format and print formulas which would otherwise be
cumbersome to use in word processing.

how is this different from other typing programs?

Yeah, I would like a short description of what this system does and why it’s unique.
googling TeX will explain the difference:

http://latexforhumans.wordpress.com/2008/10/07/why-use-latex/

or

http://ricardo.ecn.wfu.edu/ cottrell/wp.html
latex is really great and i love it. however, i don’t think the details of how it works
re needed here, in this book. it’s more of a point in passing, to show how awesome
donald knuth is.

I agree. It’s just a little aside to embellish the achievements of Mr. Knuth. It
doesn’t really matter what TeX is (one can always Google it) for this material,
and as Unix Rule #1 says "Small is beautiful". No need to clutter the book with
random stuff.

http://nb.csail.mit.edu/?comment=18821&org=pdf
http://nb.csail.mit.edu/?comment=18894&org=pdf
http://nb.csail.mit.edu/?comment=18894&org=pdf
http://nb.csail.mit.edu/?comment=18894&org=pdf
http://nb.csail.mit.edu/?comment=18682&org=pdf
http://nb.csail.mit.edu/?comment=18720&org=pdf
http://nb.csail.mit.edu/?comment=18778&org=pdf
http://nb.csail.mit.edu/?comment=18778&org=pdf
http://nb.csail.mit.edu/?comment=18778&org=pdf
http://nb.csail.mit.edu/?comment=18778&org=pdf
http://nb.csail.mit.edu/?comment=18788&org=pdf
http://nb.csail.mit.edu/?comment=18788&org=pdf
http://nb.csail.mit.edu/?comment=18788&org=pdf
http://nb.csail.mit.edu/?comment=18896&org=pdf
http://nb.csail.mit.edu/?comment=18896&org=pdf
http://nb.csail.mit.edu/?comment=18896&org=pdf
http://nb.csail.mit.edu/?comment=18896&org=pdf

27 27

27 27

19

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

The UNIX approach divides the problem into two parts:

1. Make a dictionary alphabetized from right to left.

2. Print the line following ‘trivia’.

The first problem subdivides into three parts:

1. Reverse each line of a regular dictionary.

2. Alphabetize (sort) the reversed dictionary.

3. Reverse each line to undo the effect of step 1.

The second part is solved by the UNIX utility sort. For the first and
third parts, perhaps a solution is provided by an item in UNIX toolbox.
However, it would take a long time to thumb through the toolbox hoping
to get lucky: My computer tells me that it has over 8000 system programs.

Fortunately, the UNIX utility man does the work for us. man with the -k
option, with the ‘k’ standing for keyword, lists programs with a specified
keyword in their name or one-line description. On my laptop, man -k
reverse says:

$ man -k reverse
col (1) - filter reverse line feeds from in-

put
git-rev-list (1) - Lists commit objects in reverse chrono-

logical order
rev (1) - reverse lines of a file or files
tac (1) - concatenate and print files in re-

verse
xxd (1) - make a hexdump or do the reverse.

Understanding the free-form English text in the one-line descriptions is
not a strength of current computers, so I leaf through this list by hand –
but it contains only five items rather than 8000. Looking at the list, I spot
rev as a filter that reverses each line of its input.

How do you use rev and sort to alphabetize the dictionary from right to left?

Therefore the following pipeline alphabetizes the dictionary from right to
left:

27 27

27 27

19

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

The UNIX approach divides the problem into two parts:

1. Make a dictionary alphabetized from right to left.

2. Print the line following ‘trivia’.

The first problem subdivides into three parts:

1. Reverse each line of a regular dictionary.

2. Alphabetize (sort) the reversed dictionary.

3. Reverse each line to undo the effect of step 1.

The second part is solved by the UNIX utility sort. For the first and
third parts, perhaps a solution is provided by an item in UNIX toolbox.
However, it would take a long time to thumb through the toolbox hoping
to get lucky: My computer tells me that it has over 8000 system programs.

Fortunately, the UNIX utility man does the work for us. man with the -k
option, with the ‘k’ standing for keyword, lists programs with a specified
keyword in their name or one-line description. On my laptop, man -k
reverse says:

$ man -k reverse
col (1) - filter reverse line feeds from in-

put
git-rev-list (1) - Lists commit objects in reverse chrono-

logical order
rev (1) - reverse lines of a file or files
tac (1) - concatenate and print files in re-

verse
xxd (1) - make a hexdump or do the reverse.

Understanding the free-form English text in the one-line descriptions is
not a strength of current computers, so I leaf through this list by hand –
but it contains only five items rather than 8000. Looking at the list, I spot
rev as a filter that reverses each line of its input.

How do you use rev and sort to alphabetize the dictionary from right to left?

Therefore the following pipeline alphabetizes the dictionary from right to
left:

Comments on page 5 28

Comments on page 5

Why/how does reverse alphabetizing the dictionary make this program better/more effi-
cient?

I don’t think this has to do with efficiency but is part of the problem definition/solution.

isn’t this not really applicable to the divide and conquer idea- because its too hard to do
this and where is the divide part

If I were asked to solve this problem on my own, I don’t think I would come up with this
as something I needed to do. I think it would help to explain why this is necessary.

it seems more natural to me to have these simply be the first 3 steps, for 4 steps total.

It is clear to me here that divide and conquer is being used in the problem but I think it
should be stated at some point, probably earlier then this. This is the first time I realized
we were breaking up the programming the same way we do problems.

Or maybe drawing a divide and conquer tree would be a useful way to show that?

Don’t we want to get the next word after ’trivia’ ending in -a in alphabetical order? But
this seems like it would find the alphabetical ordered word after ’aivirt’

This was really helpful in that I could visualize the tree before we went through the
problem, it would have also helped to have seen the second problem’s 2 divisions verbally
explained when it’s branch was approached.

I understood what was being said here, but it was actually quite confusing the first time.
Perhaps "reverse each word of a regular dictionary" would be more clear?
I agree with the replacing line with word, or simple clarifying we are talking about a
unix dictionary where each line is a word.

I actually think this is a very helpful way to explain it for us to understand it.

This is sounding very much like an algorithmic breakdown. Interesting how algorithmic
principle still prove useful in approximations.

I think it would be ususel in the class to go over some sorting algorithms, which was
the first think that I think about with divide and conquer (merge sort etc) It’s good for
general knowledge and interview questions as well

http://nb.csail.mit.edu/?comment=18520&org=pdf
http://nb.csail.mit.edu/?comment=18520&org=pdf
http://nb.csail.mit.edu/?comment=18633&org=pdf
http://nb.csail.mit.edu/?comment=18623&org=pdf
http://nb.csail.mit.edu/?comment=18623&org=pdf
http://nb.csail.mit.edu/?comment=18723&org=pdf
http://nb.csail.mit.edu/?comment=18723&org=pdf
http://nb.csail.mit.edu/?comment=18793&org=pdf
http://nb.csail.mit.edu/?comment=18802&org=pdf
http://nb.csail.mit.edu/?comment=18802&org=pdf
http://nb.csail.mit.edu/?comment=18802&org=pdf
http://nb.csail.mit.edu/?comment=18873&org=pdf
http://nb.csail.mit.edu/?comment=29464&org=pdf
http://nb.csail.mit.edu/?comment=29464&org=pdf
http://nb.csail.mit.edu/?comment=18377&org=pdf
http://nb.csail.mit.edu/?comment=18377&org=pdf
http://nb.csail.mit.edu/?comment=18377&org=pdf
http://nb.csail.mit.edu/?comment=18453&org=pdf
http://nb.csail.mit.edu/?comment=18453&org=pdf
http://nb.csail.mit.edu/?comment=18478&org=pdf
http://nb.csail.mit.edu/?comment=18478&org=pdf
http://nb.csail.mit.edu/?comment=18768&org=pdf
http://nb.csail.mit.edu/?comment=18950&org=pdf
http://nb.csail.mit.edu/?comment=18950&org=pdf
http://nb.csail.mit.edu/?comment=18865&org=pdf
http://nb.csail.mit.edu/?comment=18865&org=pdf
http://nb.csail.mit.edu/?comment=18865&org=pdf

27 27

27 27

19

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

The UNIX approach divides the problem into two parts:

1. Make a dictionary alphabetized from right to left.

2. Print the line following ‘trivia’.

The first problem subdivides into three parts:

1. Reverse each line of a regular dictionary.

2. Alphabetize (sort) the reversed dictionary.

3. Reverse each line to undo the effect of step 1.

The second part is solved by the UNIX utility sort. For the first and
third parts, perhaps a solution is provided by an item in UNIX toolbox.
However, it would take a long time to thumb through the toolbox hoping
to get lucky: My computer tells me that it has over 8000 system programs.

Fortunately, the UNIX utility man does the work for us. man with the -k
option, with the ‘k’ standing for keyword, lists programs with a specified
keyword in their name or one-line description. On my laptop, man -k
reverse says:

$ man -k reverse
col (1) - filter reverse line feeds from in-

put
git-rev-list (1) - Lists commit objects in reverse chrono-

logical order
rev (1) - reverse lines of a file or files
tac (1) - concatenate and print files in re-

verse
xxd (1) - make a hexdump or do the reverse.

Understanding the free-form English text in the one-line descriptions is
not a strength of current computers, so I leaf through this list by hand –
but it contains only five items rather than 8000. Looking at the list, I spot
rev as a filter that reverses each line of its input.

How do you use rev and sort to alphabetize the dictionary from right to left?

Therefore the following pipeline alphabetizes the dictionary from right to
left:

27 27

27 27

19

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

The UNIX approach divides the problem into two parts:

1. Make a dictionary alphabetized from right to left.

2. Print the line following ‘trivia’.

The first problem subdivides into three parts:

1. Reverse each line of a regular dictionary.

2. Alphabetize (sort) the reversed dictionary.

3. Reverse each line to undo the effect of step 1.

The second part is solved by the UNIX utility sort. For the first and
third parts, perhaps a solution is provided by an item in UNIX toolbox.
However, it would take a long time to thumb through the toolbox hoping
to get lucky: My computer tells me that it has over 8000 system programs.

Fortunately, the UNIX utility man does the work for us. man with the -k
option, with the ‘k’ standing for keyword, lists programs with a specified
keyword in their name or one-line description. On my laptop, man -k
reverse says:

$ man -k reverse
col (1) - filter reverse line feeds from in-

put
git-rev-list (1) - Lists commit objects in reverse chrono-

logical order
rev (1) - reverse lines of a file or files
tac (1) - concatenate and print files in re-

verse
xxd (1) - make a hexdump or do the reverse.

Understanding the free-form English text in the one-line descriptions is
not a strength of current computers, so I leaf through this list by hand –
but it contains only five items rather than 8000. Looking at the list, I spot
rev as a filter that reverses each line of its input.

How do you use rev and sort to alphabetize the dictionary from right to left?

Therefore the following pipeline alphabetizes the dictionary from right to
left:

Comments on page 5 29

What is meant by this? Is this just saying that there is one command that might do this
for us but for the purposes of this argument we are using divide and conquer?

I know its in a slightly different font, but it’s still hard to notice that ’man’ and earlier
’cat’ are actual functions

isnt this the same thing as going through the toolbox looking for an operation? you just
know that it exists instead of looking for it.

it would be helpful if you can actually provide some examples here

This is a very useful section.

Yeah that would make this easier to follow.

Like many people have pointed out, I feel like I understand the outline given at the top of
the page, and how that uses the divide and conquer method, but I’m not experienced with
coding or UNIX, so all this seems very foreign to me, and the lack of examples makes it
hard to follow

I feel the same way. I understand the idea behind divide-and-conquer, the example
goes from a very understandable one (printing the 23rd line) to this, and I had trouble
following the code and UNIX commands. I agree that more examples that build up to
this problem would be beneficial in grasping the material.

This is the sort of question that would benefit from expanding the tree to solve it.

I’d say reverse each line. then sort. then reverse again

http://nb.csail.mit.edu/?comment=18726&org=pdf
http://nb.csail.mit.edu/?comment=18726&org=pdf
http://nb.csail.mit.edu/?comment=18402&org=pdf
http://nb.csail.mit.edu/?comment=18402&org=pdf
http://nb.csail.mit.edu/?comment=18544&org=pdf
http://nb.csail.mit.edu/?comment=18544&org=pdf
http://nb.csail.mit.edu/?comment=18370&org=pdf
http://nb.csail.mit.edu/?comment=18803&org=pdf
http://nb.csail.mit.edu/?comment=18908&org=pdf
http://nb.csail.mit.edu/?comment=18486&org=pdf
http://nb.csail.mit.edu/?comment=18486&org=pdf
http://nb.csail.mit.edu/?comment=18486&org=pdf
http://nb.csail.mit.edu/?comment=18486&org=pdf
http://nb.csail.mit.edu/?comment=18551&org=pdf
http://nb.csail.mit.edu/?comment=18551&org=pdf
http://nb.csail.mit.edu/?comment=18551&org=pdf
http://nb.csail.mit.edu/?comment=18551&org=pdf
http://nb.csail.mit.edu/?comment=18902&org=pdf
http://nb.csail.mit.edu/?comment=26080&org=pdf

28 28

28 28

20

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

rev < /usr/share/dict/words | sort | rev

The second problem – finding the line after ‘trivia’ – is a task for the
pattern-searching utility grep. If you had not known about grep, you
might find it by asking the system for help with man -k pattern. Among
the short list is

grep (1) - print lines matching a pattern

In its simplest usage, grep prints every input line that matches a specified
pattern. For example,

grep ’trivia’ < /usr/share/dict/words

prints all lines that contain trivia. Besides trivia itself, the output
includes trivial, nontrivial, trivializes, and similar words. To
require that the word match trivia with no characters before or after it,
give grep this pattern:

grep ’^trivia$’ < /usr/share/dict/words

The patterns are regular expressions. Their syntax can become arcane but
their important features are simple. The ˆ character matches the beginning
of the line, and the $ character matches the end of the line. So the pattern
t̂rivia$ selects only lines that contain exactly the text trivia.

This invocation of grep, with the special characters anchoring the beginning and
ending of the lines, simply prints the word that I specified. How could such an
invocation be useful?

That invocation of grep tells us only that trivia is in the dictionary. So
it is useful for checking spelling – the solution to a problem, but not to
our problem of finding the word that follows trivia. However, Invoked
with the -A option, grep prints lines following each matching line. For
example,

grep -A 3 ’^trivia$’ < /usr/share/dict/words

will print ‘trivia’ and the three lines (words) that follow it.

28 28

28 28

20

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

rev < /usr/share/dict/words | sort | rev

The second problem – finding the line after ‘trivia’ – is a task for the
pattern-searching utility grep. If you had not known about grep, you
might find it by asking the system for help with man -k pattern. Among
the short list is

grep (1) - print lines matching a pattern

In its simplest usage, grep prints every input line that matches a specified
pattern. For example,

grep ’trivia’ < /usr/share/dict/words

prints all lines that contain trivia. Besides trivia itself, the output
includes trivial, nontrivial, trivializes, and similar words. To
require that the word match trivia with no characters before or after it,
give grep this pattern:

grep ’^trivia$’ < /usr/share/dict/words

The patterns are regular expressions. Their syntax can become arcane but
their important features are simple. The ˆ character matches the beginning
of the line, and the $ character matches the end of the line. So the pattern
t̂rivia$ selects only lines that contain exactly the text trivia.

This invocation of grep, with the special characters anchoring the beginning and
ending of the lines, simply prints the word that I specified. How could such an
invocation be useful?

That invocation of grep tells us only that trivia is in the dictionary. So
it is useful for checking spelling – the solution to a problem, but not to
our problem of finding the word that follows trivia. However, Invoked
with the -A option, grep prints lines following each matching line. For
example,

grep -A 3 ’^trivia$’ < /usr/share/dict/words

will print ‘trivia’ and the three lines (words) that follow it.

Comments on page 6 30

Comments on page 6

When these pipelines are added into the text, it would be helpful if each word and oper-
ation was pointed out and explaining the transition and what gets done.

Again, why exactly do we need this? We could (from what I understood earlier) get the
same output without using it, only the program would terminate at the end.

nice I was right

Is the 3 by itself is enough to have it print the 3 lines?

I’ve never been a unix user but after reading this chapter I am inclined to start, the pipeline
system and general intuitive open source options are incredibly appealing.

Does it really make sense to have stored these now oddly-ordered words in the dictionary
on the computer, rather than in a new file?

I don’t understand why we are learning all this UNIX terminology. Don’t we just want
the concepts?

good to know but it seems like you’re using this when you already know what you’re
looking for. Maybe you just use this to check it’s there. Why not just say like open trivia
or whatever you’re trying to do since you know the exact name

Is this the loose equivalent of quotation marks around a phrase in a google search?

Yeah, but with the added requirement of ’trivia’ being an entire line by itself.

What would of happened if there were no words similar to trivia that were next to it, it
seems to me that this method would not have worked. Or maybe I don’t understand what
is going on here.

http://nb.csail.mit.edu/?comment=18805&org=pdf
http://nb.csail.mit.edu/?comment=18805&org=pdf
http://nb.csail.mit.edu/?comment=18403&org=pdf
http://nb.csail.mit.edu/?comment=18403&org=pdf
http://nb.csail.mit.edu/?comment=26082&org=pdf
http://nb.csail.mit.edu/?comment=19705&org=pdf
http://nb.csail.mit.edu/?comment=18479&org=pdf
http://nb.csail.mit.edu/?comment=18479&org=pdf
http://nb.csail.mit.edu/?comment=18404&org=pdf
http://nb.csail.mit.edu/?comment=18404&org=pdf
http://nb.csail.mit.edu/?comment=18936&org=pdf
http://nb.csail.mit.edu/?comment=18936&org=pdf
http://nb.csail.mit.edu/?comment=26083&org=pdf
http://nb.csail.mit.edu/?comment=26083&org=pdf
http://nb.csail.mit.edu/?comment=26083&org=pdf
http://nb.csail.mit.edu/?comment=18564&org=pdf
http://nb.csail.mit.edu/?comment=18875&org=pdf
http://nb.csail.mit.edu/?comment=18970&org=pdf
http://nb.csail.mit.edu/?comment=18970&org=pdf
http://nb.csail.mit.edu/?comment=18970&org=pdf

28 28

28 28

20

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

rev < /usr/share/dict/words | sort | rev

The second problem – finding the line after ‘trivia’ – is a task for the
pattern-searching utility grep. If you had not known about grep, you
might find it by asking the system for help with man -k pattern. Among
the short list is

grep (1) - print lines matching a pattern

In its simplest usage, grep prints every input line that matches a specified
pattern. For example,

grep ’trivia’ < /usr/share/dict/words

prints all lines that contain trivia. Besides trivia itself, the output
includes trivial, nontrivial, trivializes, and similar words. To
require that the word match trivia with no characters before or after it,
give grep this pattern:

grep ’^trivia$’ < /usr/share/dict/words

The patterns are regular expressions. Their syntax can become arcane but
their important features are simple. The ˆ character matches the beginning
of the line, and the $ character matches the end of the line. So the pattern
t̂rivia$ selects only lines that contain exactly the text trivia.

This invocation of grep, with the special characters anchoring the beginning and
ending of the lines, simply prints the word that I specified. How could such an
invocation be useful?

That invocation of grep tells us only that trivia is in the dictionary. So
it is useful for checking spelling – the solution to a problem, but not to
our problem of finding the word that follows trivia. However, Invoked
with the -A option, grep prints lines following each matching line. For
example,

grep -A 3 ’^trivia$’ < /usr/share/dict/words

will print ‘trivia’ and the three lines (words) that follow it.

28 28

28 28

20

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

rev < /usr/share/dict/words | sort | rev

The second problem – finding the line after ‘trivia’ – is a task for the
pattern-searching utility grep. If you had not known about grep, you
might find it by asking the system for help with man -k pattern. Among
the short list is

grep (1) - print lines matching a pattern

In its simplest usage, grep prints every input line that matches a specified
pattern. For example,

grep ’trivia’ < /usr/share/dict/words

prints all lines that contain trivia. Besides trivia itself, the output
includes trivial, nontrivial, trivializes, and similar words. To
require that the word match trivia with no characters before or after it,
give grep this pattern:

grep ’^trivia$’ < /usr/share/dict/words

The patterns are regular expressions. Their syntax can become arcane but
their important features are simple. The ˆ character matches the beginning
of the line, and the $ character matches the end of the line. So the pattern
t̂rivia$ selects only lines that contain exactly the text trivia.

This invocation of grep, with the special characters anchoring the beginning and
ending of the lines, simply prints the word that I specified. How could such an
invocation be useful?

That invocation of grep tells us only that trivia is in the dictionary. So
it is useful for checking spelling – the solution to a problem, but not to
our problem of finding the word that follows trivia. However, Invoked
with the -A option, grep prints lines following each matching line. For
example,

grep -A 3 ’^trivia$’ < /usr/share/dict/words

will print ‘trivia’ and the three lines (words) that follow it.

Comments on page 6 31

This attribute of grep seems almost too handy- is there no way if getting the position of
trivia within this list of words?

It seems that those unfamiliar with UNIX would have a tough time figuring out all these
commands - is there another way to do this?
I agree–the grep method and this -A option seem to basically perform the task for us,
just in this one seemingly per-built in method(?). So aren’t we just solving our problem
using a method someone else already wrote to solve this problem?

I don’t know UNIX and cannot understand if the -A option has to do with the fact
that trivia has an A as the first letter when written backwards or if it is a general
operation.

http://nb.csail.mit.edu/?comment=18398&org=pdf
http://nb.csail.mit.edu/?comment=18398&org=pdf
http://nb.csail.mit.edu/?comment=18454&org=pdf
http://nb.csail.mit.edu/?comment=18454&org=pdf
http://nb.csail.mit.edu/?comment=18487&org=pdf
http://nb.csail.mit.edu/?comment=18487&org=pdf
http://nb.csail.mit.edu/?comment=18487&org=pdf
http://nb.csail.mit.edu/?comment=18808&org=pdf
http://nb.csail.mit.edu/?comment=18808&org=pdf
http://nb.csail.mit.edu/?comment=18808&org=pdf

29 29

29 29

21

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

trivia
trivial
trivialities
triviality

To print only the word after ‘trivia’ but not ‘trivia’ itself, use tail:

grep -A 1 ’^trivia$’ < /usr/share/dict/words | tail -1

These small solutions combine to solve the scavenger-hunt problem:

rev </usr/share/dict/words | sort | rev | grep -A 1 ’^trivia$’
| tail -1

Try it on a local UNIX or GNU/Linux system. How well does it work?

Alas, on my system, the pipeline fails with the error

rev: stdin: Invalid or incomplete multibyte or wide char-
acter

The rev program is complaining that it does not understand a character in
the dictionary. rev is from the old, ASCII-only days of UNIX, when each
character was limited to one byte; the dictionary, however, is a modern
one and includes Unicode characters to represent the accented letters
prevalent in European languages.
To solve this unexpected problem, I clean the dictionary before passing
it to rev. The cleaning program is again the filter grep told to allow
through only pure ASCII lines. The following command filters the dic-
tionary to contain words made only of unaccented, lowercase letters.

grep ’^[a-z]*$’ < /usr/share/dict/words

This pattern uses the most important features of the regular-expression
language. The ˆ and $ characters have been explained in the preceding
examples. The [a-z] notation means ‘match any character in the range
a to z – i.e. match any lowercase letter.’ The * character means ‘match
zero or more occurrences of the preceding regular expression’. So ˆ [a-
z]*$ matches any line that contains only lowercase letters – no Unicode
characters allowed.
The full pipeline is

29 29

29 29

21

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

trivia
trivial
trivialities
triviality

To print only the word after ‘trivia’ but not ‘trivia’ itself, use tail:

grep -A 1 ’^trivia$’ < /usr/share/dict/words | tail -1

These small solutions combine to solve the scavenger-hunt problem:

rev </usr/share/dict/words | sort | rev | grep -A 1 ’^trivia$’
| tail -1

Try it on a local UNIX or GNU/Linux system. How well does it work?

Alas, on my system, the pipeline fails with the error

rev: stdin: Invalid or incomplete multibyte or wide char-
acter

The rev program is complaining that it does not understand a character in
the dictionary. rev is from the old, ASCII-only days of UNIX, when each
character was limited to one byte; the dictionary, however, is a modern
one and includes Unicode characters to represent the accented letters
prevalent in European languages.
To solve this unexpected problem, I clean the dictionary before passing
it to rev. The cleaning program is again the filter grep told to allow
through only pure ASCII lines. The following command filters the dic-
tionary to contain words made only of unaccented, lowercase letters.

grep ’^[a-z]*$’ < /usr/share/dict/words

This pattern uses the most important features of the regular-expression
language. The ˆ and $ characters have been explained in the preceding
examples. The [a-z] notation means ‘match any character in the range
a to z – i.e. match any lowercase letter.’ The * character means ‘match
zero or more occurrences of the preceding regular expression’. So ˆ [a-
z]*$ matches any line that contains only lowercase letters – no Unicode
characters allowed.
The full pipeline is

Comments on page 7 32

Comments on page 7

wait but aren’t we sorting by the last letter? how is this helping us?

Have you not rearranged it yet by this point? Shouldn’t all the words near trivia end in a
if its reverse-alphabetized?

what is the point of this- I do not understand what I am supposed to get out of this that
is useful

your previous line of code above had a "3" here instead of a "1", what just happened?
the previous 3 was so he could see the next 3 words. Now that he just wants 1 word he
replaces the 3 with a 1.

then why would he write | tail -1 also? isn’t that redundant?

Because the grep would return "trivia, alluvia", and he only wants ’alluvia’

Because the grep would return "trivia, alluvia", and he only wants ’alluvia’

very helpful, thank you!

I am having trouble following this code example.

Ok, so you are NOT actually saving your newly sorted list outside of the program, so to
find the one after some other word (such as "dog") you would have to re-run the program

This is pretty easy to follow as I am doing it. This note also clarifies the confusion I had
when I was trying to do the homework before reading this.

what does this means?

I don’t really see why it matters what the computer says. It seemed as though everything
before this worked and the extra steps taken don’t really have to do with divide and
conquer. Maybe all the technical terms are getting to me...

Again, why is this stuff relevant to this class?

where are these programs coming from?

so with one line of code you fixed the problem?

http://nb.csail.mit.edu/?comment=18579&org=pdf
http://nb.csail.mit.edu/?comment=18385&org=pdf
http://nb.csail.mit.edu/?comment=18385&org=pdf
http://nb.csail.mit.edu/?comment=18626&org=pdf
http://nb.csail.mit.edu/?comment=18626&org=pdf
http://nb.csail.mit.edu/?comment=18565&org=pdf
http://nb.csail.mit.edu/?comment=18567&org=pdf
http://nb.csail.mit.edu/?comment=18567&org=pdf
http://nb.csail.mit.edu/?comment=18695&org=pdf
http://nb.csail.mit.edu/?comment=18866&org=pdf
http://nb.csail.mit.edu/?comment=18867&org=pdf
http://nb.csail.mit.edu/?comment=18975&org=pdf
http://nb.csail.mit.edu/?comment=19706&org=pdf
http://nb.csail.mit.edu/?comment=18405&org=pdf
http://nb.csail.mit.edu/?comment=18405&org=pdf
http://nb.csail.mit.edu/?comment=23233&org=pdf
http://nb.csail.mit.edu/?comment=23233&org=pdf
http://nb.csail.mit.edu/?comment=18627&org=pdf
http://nb.csail.mit.edu/?comment=18915&org=pdf
http://nb.csail.mit.edu/?comment=18915&org=pdf
http://nb.csail.mit.edu/?comment=18915&org=pdf
http://nb.csail.mit.edu/?comment=18938&org=pdf
http://nb.csail.mit.edu/?comment=18628&org=pdf
http://nb.csail.mit.edu/?comment=18580&org=pdf

29 29

29 29

21

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

trivia
trivial
trivialities
triviality

To print only the word after ‘trivia’ but not ‘trivia’ itself, use tail:

grep -A 1 ’^trivia$’ < /usr/share/dict/words | tail -1

These small solutions combine to solve the scavenger-hunt problem:

rev </usr/share/dict/words | sort | rev | grep -A 1 ’^trivia$’
| tail -1

Try it on a local UNIX or GNU/Linux system. How well does it work?

Alas, on my system, the pipeline fails with the error

rev: stdin: Invalid or incomplete multibyte or wide char-
acter

The rev program is complaining that it does not understand a character in
the dictionary. rev is from the old, ASCII-only days of UNIX, when each
character was limited to one byte; the dictionary, however, is a modern
one and includes Unicode characters to represent the accented letters
prevalent in European languages.
To solve this unexpected problem, I clean the dictionary before passing
it to rev. The cleaning program is again the filter grep told to allow
through only pure ASCII lines. The following command filters the dic-
tionary to contain words made only of unaccented, lowercase letters.

grep ’^[a-z]*$’ < /usr/share/dict/words

This pattern uses the most important features of the regular-expression
language. The ˆ and $ characters have been explained in the preceding
examples. The [a-z] notation means ‘match any character in the range
a to z – i.e. match any lowercase letter.’ The * character means ‘match
zero or more occurrences of the preceding regular expression’. So ˆ [a-
z]*$ matches any line that contains only lowercase letters – no Unicode
characters allowed.
The full pipeline is

29 29

29 29

21

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

trivia
trivial
trivialities
triviality

To print only the word after ‘trivia’ but not ‘trivia’ itself, use tail:

grep -A 1 ’^trivia$’ < /usr/share/dict/words | tail -1

These small solutions combine to solve the scavenger-hunt problem:

rev </usr/share/dict/words | sort | rev | grep -A 1 ’^trivia$’
| tail -1

Try it on a local UNIX or GNU/Linux system. How well does it work?

Alas, on my system, the pipeline fails with the error

rev: stdin: Invalid or incomplete multibyte or wide char-
acter

The rev program is complaining that it does not understand a character in
the dictionary. rev is from the old, ASCII-only days of UNIX, when each
character was limited to one byte; the dictionary, however, is a modern
one and includes Unicode characters to represent the accented letters
prevalent in European languages.
To solve this unexpected problem, I clean the dictionary before passing
it to rev. The cleaning program is again the filter grep told to allow
through only pure ASCII lines. The following command filters the dic-
tionary to contain words made only of unaccented, lowercase letters.

grep ’^[a-z]*$’ < /usr/share/dict/words

This pattern uses the most important features of the regular-expression
language. The ˆ and $ characters have been explained in the preceding
examples. The [a-z] notation means ‘match any character in the range
a to z – i.e. match any lowercase letter.’ The * character means ‘match
zero or more occurrences of the preceding regular expression’. So ˆ [a-
z]*$ matches any line that contains only lowercase letters – no Unicode
characters allowed.
The full pipeline is

Comments on page 7 33

explanation would be helpful here...not just another computer jargon

So any words with accents would be deleted? Wouldn’t this potentially change the solu-
tion if the word after trivia happened to have accents or uppercase letters

Yeah I’m not too happy with this compromise either, but I’m assuming there’s no other
simple way to do it...

Some of these code examples are hard to follow.

http://nb.csail.mit.edu/?comment=18872&org=pdf
http://nb.csail.mit.edu/?comment=18399&org=pdf
http://nb.csail.mit.edu/?comment=18399&org=pdf
http://nb.csail.mit.edu/?comment=18455&org=pdf
http://nb.csail.mit.edu/?comment=18455&org=pdf
http://nb.csail.mit.edu/?comment=18828&org=pdf

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

Comments on page 8 34

Comments on page 8

I think by this stage in the chapter I got a bit lost...usually seeing a bunch of code frightens
people. The chapter should go a little slower and maybe try and use simple pseudocode
examples instead of focusing on UNIX.

I think I could’ve gotten the same out of the chapter without knowing the exact code.
Could’ve used more reader friendly names for methods, but I do enjoy that I learned the
something real

This is pretty simple to understand.

is this the code that reverses the dictionary?

tree takes a bit to understand, but makes sense

These trees with code in them are very difficult for me to understand.

this reminds me a lot of 6.001

This tree is hard to follow by itself.

http://nb.csail.mit.edu/?comment=18870&org=pdf
http://nb.csail.mit.edu/?comment=18870&org=pdf
http://nb.csail.mit.edu/?comment=18870&org=pdf
http://nb.csail.mit.edu/?comment=18941&org=pdf
http://nb.csail.mit.edu/?comment=18941&org=pdf
http://nb.csail.mit.edu/?comment=18941&org=pdf
http://nb.csail.mit.edu/?comment=23234&org=pdf
http://nb.csail.mit.edu/?comment=18630&org=pdf
http://nb.csail.mit.edu/?comment=20315&org=pdf
http://nb.csail.mit.edu/?comment=19707&org=pdf
http://nb.csail.mit.edu/?comment=26085&org=pdf
http://nb.csail.mit.edu/?comment=18829&org=pdf

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

Comments on page 8 35

I really like this diagram of a tree explaining the whole pipeline. It really ties back what
we know of trees and divide and conquer to the UNIX example.

Although this tree certainly helps, a lot of this reading was very confusing to me as some-
one with extremely limited coding experience. I was able to follow the UNIX principles
and even the basic head and tail topics, but after that I was pretty lost. Using this tree I
was able to go back and understand a little bit more, but I am certainly not completely
comfortable with the material.

And I guess to voice the opposite view point, this was an extremely enlightening
example as it provided an interesting way for me to consider a problem I’d otherwise
think of in a very informal fashion if I had to solve it, and probably take a lot longer
to figure out, even with the experiences using Unix/Linux I have. So Thanks!

It would have helped me to see this, or at least parts of this, as we went through the
problem and not the whole thing at the end.

I totally agree. Until I saw this tree I had totally lost the divide and conquer to trying
to understand UNIX.

Although placing the tree at the end was helpful it would have been easier to
understand if less UNIX coding was used and more english and logic was used.

Same here, I am not very familiar with UNIX but this tree really helped me
figure out what was going on. It may be helpful to show this in the beginning
as well

Maybe the best solution is instead to show the tree being developed as it
progresses. Like when we realize we have to clean the dictionary, we can
see that part added to the tree - the problem as described at the beginning
of the section has a simpler tree that we add to so why not show the initial
state and the complications added to it?

I agree, starting with a basic tree which was then improved upon would
keep me focused on the divide and conquer concept as opposed to the
syntax of UNIX
I strongly second the recommendation to slowly build the tree. I’m a
relative noob in programming, so it was a bit difficult to follow the
functions (since it’s an entirely new syntax to me). However, if you
could show the tree as it went along and then have it here as a cumu-
lative one, that would be awesome.

http://nb.csail.mit.edu/?comment=18568&org=pdf
http://nb.csail.mit.edu/?comment=18568&org=pdf
http://nb.csail.mit.edu/?comment=18624&org=pdf
http://nb.csail.mit.edu/?comment=18624&org=pdf
http://nb.csail.mit.edu/?comment=18624&org=pdf
http://nb.csail.mit.edu/?comment=18624&org=pdf
http://nb.csail.mit.edu/?comment=18624&org=pdf
http://nb.csail.mit.edu/?comment=19008&org=pdf
http://nb.csail.mit.edu/?comment=19008&org=pdf
http://nb.csail.mit.edu/?comment=19008&org=pdf
http://nb.csail.mit.edu/?comment=19008&org=pdf
http://nb.csail.mit.edu/?comment=18634&org=pdf
http://nb.csail.mit.edu/?comment=18634&org=pdf
http://nb.csail.mit.edu/?comment=18667&org=pdf
http://nb.csail.mit.edu/?comment=18667&org=pdf
http://nb.csail.mit.edu/?comment=18773&org=pdf
http://nb.csail.mit.edu/?comment=18773&org=pdf
http://nb.csail.mit.edu/?comment=18783&org=pdf
http://nb.csail.mit.edu/?comment=18783&org=pdf
http://nb.csail.mit.edu/?comment=18783&org=pdf
http://nb.csail.mit.edu/?comment=18846&org=pdf
http://nb.csail.mit.edu/?comment=18846&org=pdf
http://nb.csail.mit.edu/?comment=18846&org=pdf
http://nb.csail.mit.edu/?comment=18846&org=pdf
http://nb.csail.mit.edu/?comment=18846&org=pdf
http://nb.csail.mit.edu/?comment=18889&org=pdf
http://nb.csail.mit.edu/?comment=18889&org=pdf
http://nb.csail.mit.edu/?comment=18889&org=pdf
http://nb.csail.mit.edu/?comment=18898&org=pdf
http://nb.csail.mit.edu/?comment=18898&org=pdf
http://nb.csail.mit.edu/?comment=18898&org=pdf
http://nb.csail.mit.edu/?comment=18898&org=pdf
http://nb.csail.mit.edu/?comment=18898&org=pdf

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

Comments on page 8 36

I agree. This tree is very helpful. Some of the above text is hard to follow, but this clears
it up nicely.

Yeah I definitely agree too. I thought the sections about were long and somewhat
difficult to follow, if someone doesn’t have very much UNIX experience. This tree
diagram, is a great way to represent the previous steps visually and to tie it back to
the divide&conquer method we learned about in the previous sections.

I also like this tree, and feel that perhaps it(or a smaller version) would be helpful to have
it earlier, because I began to jot a few words down in order to follow the logic
Yeah this really sums up everything well. While I don’t quite understand all the code,
this tree has helped me understand the divide and conquer application.

Yeah this is super helpful. It clarifies the whole process.

This tree really helps understand how the problem is solved- maybe it would have been
better to put earlier since this explanation is so long

these aren’t independent calculations. each one should be performed after the other, so
they shouldnt be represented in this leaf format.

Aye, I agree. Are we supposed to assume that we apply these steps from left to right?

I’m confused about why this goes in the bottom part of the tree. Don’t we want to select
the word after trivia then unreverse it?

It would be helpful to see how exactly we got to alluvia from the tree.
I feel like it has been mostly described, but maybe seeing a short list of the two words
proceeding and following trivia in the reverse dictionary would give a nice visual to wrap
up the problem.

We would need to write a program to answer this, right? If so, then how does approxi-
mation come into this?

Can a person who is unfamiliar with Unix answer this question? I have no idea how I
would begin (though I do understand the previous example).

...or any form of problem solving

http://nb.csail.mit.edu/?comment=18651&org=pdf
http://nb.csail.mit.edu/?comment=18651&org=pdf
http://nb.csail.mit.edu/?comment=18655&org=pdf
http://nb.csail.mit.edu/?comment=18655&org=pdf
http://nb.csail.mit.edu/?comment=18655&org=pdf
http://nb.csail.mit.edu/?comment=18655&org=pdf
http://nb.csail.mit.edu/?comment=18916&org=pdf
http://nb.csail.mit.edu/?comment=18916&org=pdf
http://nb.csail.mit.edu/?comment=18928&org=pdf
http://nb.csail.mit.edu/?comment=18928&org=pdf
http://nb.csail.mit.edu/?comment=18581&org=pdf
http://nb.csail.mit.edu/?comment=27554&org=pdf
http://nb.csail.mit.edu/?comment=27554&org=pdf
http://nb.csail.mit.edu/?comment=18547&org=pdf
http://nb.csail.mit.edu/?comment=18547&org=pdf
http://nb.csail.mit.edu/?comment=18677&org=pdf
http://nb.csail.mit.edu/?comment=18810&org=pdf
http://nb.csail.mit.edu/?comment=18810&org=pdf
http://nb.csail.mit.edu/?comment=18440&org=pdf
http://nb.csail.mit.edu/?comment=18480&org=pdf
http://nb.csail.mit.edu/?comment=18480&org=pdf
http://nb.csail.mit.edu/?comment=18480&org=pdf
http://nb.csail.mit.edu/?comment=18880&org=pdf
http://nb.csail.mit.edu/?comment=18880&org=pdf
http://nb.csail.mit.edu/?comment=18668&org=pdf
http://nb.csail.mit.edu/?comment=18668&org=pdf
http://nb.csail.mit.edu/?comment=18831&org=pdf

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

Comments on page 8 37

I feel like I understood divide and conquer okay before this chapter, but as someone who
doesn’t know anything about UNIX, this chapter was a hard read and I didn’t get much
out of it in the end...

I think he’s just trying to make the point that divide and conquer is a common, useful
tool for solving problems even when used outside of the confines of estimation. However,
it would probably help if this was stated at the beginning of the chapter.

I agree, this helped me to realize that divide and conquer is used in other instances
but the technical pieces of UNIX are unfamiliar to me and made the section harder
to understand.

I also agree. I think divide and conque is something people generally do, espe-
cially when things are exact like computer code. I’d like more talk about how to
go about breaking things down. Hints, tips, etc..

it wouldve been better to leave it short.
Agreed, I got so lost in the programming discussion that when we came back to divide
and conquer I felt like I had missed the whole point.

Definitely agreed. I am even in course 6 and I understood all the details about UNIX
and programming, and I still thought this example was excessive. There was way too
much explanation necessary for such a simple concept as divide and conquer. And
no where throughout this example did I even remember that this was supposed to
be about divide and conquer. I would delete this whole example from the book.

I think we can find a better example to use to show how common divide-and-conquer
reasoning is.

A very good example of divide and conquer, but the result is very discrete and precise:
not an approximation or an estimation.

I think the long explanation of various unix functionalities didn’t add to the explanation
and instead made it all significantly more confusing, even though I understand how to
use most of them.

http://nb.csail.mit.edu/?comment=18499&org=pdf
http://nb.csail.mit.edu/?comment=18499&org=pdf
http://nb.csail.mit.edu/?comment=18499&org=pdf
http://nb.csail.mit.edu/?comment=18663&org=pdf
http://nb.csail.mit.edu/?comment=18663&org=pdf
http://nb.csail.mit.edu/?comment=18663&org=pdf
http://nb.csail.mit.edu/?comment=18811&org=pdf
http://nb.csail.mit.edu/?comment=18811&org=pdf
http://nb.csail.mit.edu/?comment=18811&org=pdf
http://nb.csail.mit.edu/?comment=18952&org=pdf
http://nb.csail.mit.edu/?comment=18952&org=pdf
http://nb.csail.mit.edu/?comment=18952&org=pdf
http://nb.csail.mit.edu/?comment=18548&org=pdf
http://nb.csail.mit.edu/?comment=18738&org=pdf
http://nb.csail.mit.edu/?comment=18738&org=pdf
http://nb.csail.mit.edu/?comment=18823&org=pdf
http://nb.csail.mit.edu/?comment=18823&org=pdf
http://nb.csail.mit.edu/?comment=18823&org=pdf
http://nb.csail.mit.edu/?comment=18823&org=pdf
http://nb.csail.mit.edu/?comment=18823&org=pdf
http://nb.csail.mit.edu/?comment=18939&org=pdf
http://nb.csail.mit.edu/?comment=18939&org=pdf
http://nb.csail.mit.edu/?comment=18774&org=pdf
http://nb.csail.mit.edu/?comment=18774&org=pdf
http://nb.csail.mit.edu/?comment=18943&org=pdf
http://nb.csail.mit.edu/?comment=18943&org=pdf
http://nb.csail.mit.edu/?comment=18943&org=pdf

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

Comments on page 8 38

The UNIX Part of this doesn’t quite help the final message; I feel like it’s rather off topic
from Divide and Conquer. It’s cool to learn, and I understand what it’s trying to prove,
but I just don’t get the helpfulness to divide and conquer. Maybe after lecture it will
become more clear.

Is the UNIX example relevant specifically? Would other programs be just as suitable as
an example as long as they are modular in design?

I’m still not sure I understand until where I expand the tree. Is there a rule of thumb
about where to stop expanding?

I agree. In this case it looks like the author expanded the tree until he could use single
methods to solve each problem (without combining methods with the |). But I’m not
experienced with UNIX or coding so I’m not sure...
You should keep going until you have numbers that are manageable and are likely to
be correct (at least to the order of magnitude) or numbers that you know are correct.
Typically, these numbers are much smaller than the actual answer. In a way, we’re
approximating a big thing with many small things that combine together.
More generally, expand until each problem (leaf) is soluble on its own. This may vary
for different people. Just think of how you carry out any task that involves more than
one step or piece.

was this explicitly stated before? it makes sense though.

This is true for most divide and conquer cases where you’re trying to estimate but it
doesn’t seem applicable here. Breaking down the problem makes it easier to realize how
to code for an answer, but since you’re relying on a computer program to find the answer,
accuracy doesn’t seem to be a concern. This point was much clearer in the economics
example.

I really think divide and conquer is the easiest way to solve complicated problems. Also,
knowing how to break the problem into steps is extremely helpful, but I find that to be
the most difficult part.

http://nb.csail.mit.edu/?comment=18652&org=pdf
http://nb.csail.mit.edu/?comment=18652&org=pdf
http://nb.csail.mit.edu/?comment=18652&org=pdf
http://nb.csail.mit.edu/?comment=18652&org=pdf
http://nb.csail.mit.edu/?comment=18847&org=pdf
http://nb.csail.mit.edu/?comment=18847&org=pdf
http://nb.csail.mit.edu/?comment=18466&org=pdf
http://nb.csail.mit.edu/?comment=18466&org=pdf
http://nb.csail.mit.edu/?comment=18488&org=pdf
http://nb.csail.mit.edu/?comment=18488&org=pdf
http://nb.csail.mit.edu/?comment=18488&org=pdf
http://nb.csail.mit.edu/?comment=18489&org=pdf
http://nb.csail.mit.edu/?comment=18489&org=pdf
http://nb.csail.mit.edu/?comment=18489&org=pdf
http://nb.csail.mit.edu/?comment=18489&org=pdf
http://nb.csail.mit.edu/?comment=19093&org=pdf
http://nb.csail.mit.edu/?comment=19093&org=pdf
http://nb.csail.mit.edu/?comment=19093&org=pdf
http://nb.csail.mit.edu/?comment=18549&org=pdf
http://nb.csail.mit.edu/?comment=18734&org=pdf
http://nb.csail.mit.edu/?comment=18734&org=pdf
http://nb.csail.mit.edu/?comment=18734&org=pdf
http://nb.csail.mit.edu/?comment=18734&org=pdf
http://nb.csail.mit.edu/?comment=18734&org=pdf
http://nb.csail.mit.edu/?comment=29465&org=pdf
http://nb.csail.mit.edu/?comment=29465&org=pdf
http://nb.csail.mit.edu/?comment=29465&org=pdf

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

Comments on page 8 39

does this actually ensure accuracy? it seems like the more you subdivide, the more you
need to multiply guessed numbers together, possibly getting a much larger answer than
expected.

I know someone brought this up on the earlier section about trees, but does the error
multiply similarly up the tree? What is the relationship between the size of the error and
the number of leaves? (I doubt its a constant for all types of problems but it would still
be interesting to study)
I feel like this is just a reflexive fear. Everybody seems to keep fearing the possibility of
errors compounding and snowballing out of control, but from something as simple as the
health cost example in class, I’ve found that if you keep trying approaches to a problem
until you reach an angle where you’re comfortable with the numbers, the numbers won’t
be too radically off.

Just an observation.
Well I like the point is to break the problem down into things you can estimate with
accuracy and get rid of that error.

It seems that trees also represent nearly all other kinds of problem solving and logical
processes. Engineering system design, analytical thinking, etc.

That’s an interesting thought. I agree it is pretty useful, but I’m wondering about the
efficiency of using trees over other methods.
There are other diagramming options for other types of problems like flow charts, or-
ganizational charts, Gantt... Trees are useful but not universally, as we’ve seen with our
difficulties in illustrating connections and redundancy.

And in books, like this chapter... I’d still prefer something different than the text process-
ing example, but maybe that’s just me.

I think it’s a good idea to have some example that’s not computing numbers, although it
doesn’t have to be a text processing. But it might be this is the simplest example to read
without Linux experience and potentially grasp the first time.

http://nb.csail.mit.edu/?comment=18583&org=pdf
http://nb.csail.mit.edu/?comment=18583&org=pdf
http://nb.csail.mit.edu/?comment=18583&org=pdf
http://nb.csail.mit.edu/?comment=18635&org=pdf
http://nb.csail.mit.edu/?comment=18635&org=pdf
http://nb.csail.mit.edu/?comment=18635&org=pdf
http://nb.csail.mit.edu/?comment=18635&org=pdf
http://nb.csail.mit.edu/?comment=18748&org=pdf
http://nb.csail.mit.edu/?comment=18748&org=pdf
http://nb.csail.mit.edu/?comment=18748&org=pdf
http://nb.csail.mit.edu/?comment=18748&org=pdf
http://nb.csail.mit.edu/?comment=18748&org=pdf
http://nb.csail.mit.edu/?comment=18748&org=pdf
http://nb.csail.mit.edu/?comment=18947&org=pdf
http://nb.csail.mit.edu/?comment=18947&org=pdf
http://nb.csail.mit.edu/?comment=18407&org=pdf
http://nb.csail.mit.edu/?comment=18407&org=pdf
http://nb.csail.mit.edu/?comment=18492&org=pdf
http://nb.csail.mit.edu/?comment=18492&org=pdf
http://nb.csail.mit.edu/?comment=19095&org=pdf
http://nb.csail.mit.edu/?comment=19095&org=pdf
http://nb.csail.mit.edu/?comment=19095&org=pdf
http://nb.csail.mit.edu/?comment=18942&org=pdf
http://nb.csail.mit.edu/?comment=18942&org=pdf
http://nb.csail.mit.edu/?comment=19009&org=pdf
http://nb.csail.mit.edu/?comment=19009&org=pdf
http://nb.csail.mit.edu/?comment=19009&org=pdf

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

30 30

30 30

22

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

grep ’^[a-z]*$’ < /usr/share/dict/words \
| rev | sort | rev \
| grep -A 1 ’^trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue
reading the command beyond the end of that line.

The tree representing this solution is
word after trivia in reverse dictionary

grep ’ˆ [a-z]*$’ | rev | sort | rev | grep -A 1 ’ˆ trivia$’ | tail -1

make reverse dictionary
grep ’ˆ [a-z]*$’ | rev | sort | rev

clean dictionary
grep ’ˆ [a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after trivia
grep -A 1 ’ˆ trivia$’ | tail -1

select trivia and next word
grep -A 1 ’ˆ trivia$’

print last of two words
tail -1

Running the pipeline produces produces ‘alluvia’.

Problem 1.6 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short,
divide and conquer is a ubiquitous tool useful for estimating difficult
quantities or for designing large, successful systems.

Main messages

This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about
which you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.

4. Divide-and-conquer reasoning is a cross-domain tool, useful in text
processing, engineering estimates, and even economics.

Comments on page 8 40

Could you possibly provide an example of how divide-and-conquer reasoning is used in
economics? I think it would be helpful for future reading of this section, but I would also
be interested in learning about an example currently.

I agree, an example would be nice. Otherwise this point feels I little out of place in the
conclusion, given we haven’t seen such an example before.

The oil problem is sort of economics...ish. More so than the others.
It seems that by saying "and even economics," that divide and conquer is used for only
the problems mentioned, but I think you mean to say that it applies to many problems
in life, sometime obvious and sometimes not.

I think by saying even economics, the author is trying to say divide-and-conquer’s
usefulness expands more than just the examples mentioned and suggests a possible
field you hadn’t thought of.
I don’t think we need an example of that. Especially not at this part of the text. There
are already some stellar examples of how this works and we don’t actually need an
economics specific one to udnerstand it better. This bullet point just serves to illustrate
how wide-reaching this technique is beyond just estimation (plus it wouldn’t really
fit here... I mean, it’s a bullet point).

http://nb.csail.mit.edu/?comment=18508&org=pdf
http://nb.csail.mit.edu/?comment=18508&org=pdf
http://nb.csail.mit.edu/?comment=18508&org=pdf
http://nb.csail.mit.edu/?comment=18573&org=pdf
http://nb.csail.mit.edu/?comment=18573&org=pdf
http://nb.csail.mit.edu/?comment=18636&org=pdf
http://nb.csail.mit.edu/?comment=18825&org=pdf
http://nb.csail.mit.edu/?comment=18825&org=pdf
http://nb.csail.mit.edu/?comment=18825&org=pdf
http://nb.csail.mit.edu/?comment=18897&org=pdf
http://nb.csail.mit.edu/?comment=18897&org=pdf
http://nb.csail.mit.edu/?comment=18897&org=pdf
http://nb.csail.mit.edu/?comment=18900&org=pdf
http://nb.csail.mit.edu/?comment=18900&org=pdf
http://nb.csail.mit.edu/?comment=18900&org=pdf
http://nb.csail.mit.edu/?comment=18900&org=pdf
http://nb.csail.mit.edu/?comment=18900&org=pdf

31 31

31 31

23

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

By breaking hard problems into comprehensible units, the divide-and-
conquer tool helps us organize complexity. The next chapter examines its
cousin abstraction, another way to organize complexity.

Problem 1.7 Air mass
Estimate the mass of air in the 6.055J/2.038J classroom and explain your estimate
with a tree. If you have not seen the classroom yet, then make more effort to
come to lecture (!); meanwhile pictures of the classroom are linked from the
course website.

Problem 1.8 747
Estimate the mass of a full 747 jumbo jet, explaining your estimate using a tree.
Then compare with data online. We’ll use this value later this semester for
estimating the energy costs of flying.

Problem 1.9 Random walks and accuracy of divide and conquer
Use a coin, a random-number function (in whatever programming language you
like), or a table of reasonably random numbers to do the following experiments
or their equivalent.

The first experiment:

1. Flip a coin 25 times. For each heads move right one step; for each tails, move
left one step. At the end of the 25 steps, record your position as a number
between −25 and 25.

2. Repeat the above procedure four times (i.e. three more times), and mark your
four ending positions on a number line.

The second experiment:

1. Flip a coin once. For heads, move right 25 steps; for tails, move left 25 steps.

2. Repeat the above procedure four times (i.e. three more times), and mark your
four ending positions on a second number line.

Compare the marks on the two number lines, and explain the relation between
this data and the model from lecture for why divide and conquer often reduces
errors.

Problem 1.10 Fish tank
Estimate the mass of a typical home fish tank (filled with water and fish): a
useful exercise before you help a friend move who has a fish tank.

Problem 1.11 Bandwidth
Estimate the bandwidth (bits/s) of a 747 crossing the Atlantic filled with CDROM’s.

31 31

31 31

23

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

By breaking hard problems into comprehensible units, the divide-and-
conquer tool helps us organize complexity. The next chapter examines its
cousin abstraction, another way to organize complexity.

Problem 1.7 Air mass
Estimate the mass of air in the 6.055J/2.038J classroom and explain your estimate
with a tree. If you have not seen the classroom yet, then make more effort to
come to lecture (!); meanwhile pictures of the classroom are linked from the
course website.

Problem 1.8 747
Estimate the mass of a full 747 jumbo jet, explaining your estimate using a tree.
Then compare with data online. We’ll use this value later this semester for
estimating the energy costs of flying.

Problem 1.9 Random walks and accuracy of divide and conquer
Use a coin, a random-number function (in whatever programming language you
like), or a table of reasonably random numbers to do the following experiments
or their equivalent.

The first experiment:

1. Flip a coin 25 times. For each heads move right one step; for each tails, move
left one step. At the end of the 25 steps, record your position as a number
between −25 and 25.

2. Repeat the above procedure four times (i.e. three more times), and mark your
four ending positions on a number line.

The second experiment:

1. Flip a coin once. For heads, move right 25 steps; for tails, move left 25 steps.

2. Repeat the above procedure four times (i.e. three more times), and mark your
four ending positions on a second number line.

Compare the marks on the two number lines, and explain the relation between
this data and the model from lecture for why divide and conquer often reduces
errors.

Problem 1.10 Fish tank
Estimate the mass of a typical home fish tank (filled with water and fish): a
useful exercise before you help a friend move who has a fish tank.

Problem 1.11 Bandwidth
Estimate the bandwidth (bits/s) of a 747 crossing the Atlantic filled with CDROM’s.

Comments on page 9 41

Comments on page 9

So the point of this was to help us organize big problems, not estimate. Ah.

copy edit: I think there should be a comma between cousin and abstraction, since cousin
is the object, not an adjective. Abstraction is then in apposition to cousin.

Is there a constant for the density of air that we should know?
Is there a section of the book with useful constants? Maybe a page or a couple pages like
the one in our desert island pretest? That would be a pretty nifty trivia cheat sheet.

OCW Spring 2008 for this class has a version of the book, and page 2 is Back-of-the-
envelope numbers, basically the same as the desert island sheet. You can start making
your own based on these, but please don’t beat me at trivia with it.

For the record, will this book give solutions to these "try-for-yourself" type questions?

It should in the ideal world. But I suspect that, in order to actually finish the book,
I may just have to release it into the world without them. But it will be a freely
licensed book, and I hope that people will contribute solutions...

Who moves a full fish tank bigger than a few gallons?

http://nb.csail.mit.edu/?comment=18582&org=pdf
http://nb.csail.mit.edu/?comment=19098&org=pdf
http://nb.csail.mit.edu/?comment=19098&org=pdf
http://nb.csail.mit.edu/?comment=18878&org=pdf
http://nb.csail.mit.edu/?comment=18901&org=pdf
http://nb.csail.mit.edu/?comment=18901&org=pdf
http://nb.csail.mit.edu/?comment=19100&org=pdf
http://nb.csail.mit.edu/?comment=19100&org=pdf
http://nb.csail.mit.edu/?comment=19100&org=pdf
http://nb.csail.mit.edu/?comment=18670&org=pdf
http://nb.csail.mit.edu/?comment=19721&org=pdf
http://nb.csail.mit.edu/?comment=19721&org=pdf
http://nb.csail.mit.edu/?comment=19721&org=pdf
http://nb.csail.mit.edu/?comment=19101&org=pdf

32 32

32 32

24

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

Problem 1.12 Repainting MIT
Estimate the cost to repaint all indoor walls in the main MIT classroom buildings.
[with thanks to D. Zurovcik]

Problem 1.13 Explain a UNIX pipeline
What does this pipeline do?

ls -t | head | tac

[Hint: If you are not familiar with UNIX commands, use the man command on
any handy UNIX or GNU/Linux system.]

Problem 1.14 Design a UNIX pipeline
Make a pipeline that prints the ten most common words in the input stream,
along with how many times each word occurs. They should be printed in order
from the the most frequent to the less frequent words. [Hint: First translate any
non-alphabetic character into a newline. Useful utilities include tr and uniq.]

32 32

32 32

24

2010-02-12 15:22:44 / rev 1ea03ec8b94a+

Problem 1.12 Repainting MIT
Estimate the cost to repaint all indoor walls in the main MIT classroom buildings.
[with thanks to D. Zurovcik]

Problem 1.13 Explain a UNIX pipeline
What does this pipeline do?

ls -t | head | tac

[Hint: If you are not familiar with UNIX commands, use the man command on
any handy UNIX or GNU/Linux system.]

Problem 1.14 Design a UNIX pipeline
Make a pipeline that prints the ten most common words in the input stream,
along with how many times each word occurs. They should be printed in order
from the the most frequent to the less frequent words. [Hint: First translate any
non-alphabetic character into a newline. Useful utilities include tr and uniq.]

Comments on page 10 42

Comments on page 10

Nice, I really like this question, but it should be more general when it’s published.

My UNIX underlying OS X does not have a tac man entry or allow me to run that program.

http://nb.csail.mit.edu/?comment=19103&org=pdf
http://nb.csail.mit.edu/?comment=19104&org=pdf

