
6.055J/2.038J (Spring 2010)

Solution set 1
Do the following warmups and problems. Submit your answers, including the short explanation, online by
10pm on Wednesday, 17 Feb 2010.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers to the problem, or to subproblems, until you solve the problem or have tried hard. This
policy helps you learn the most from the problems.

Homework is graded with a light touch: P (made a decent effort), D (made an indecent effort), or F (did not
make an effort).

In the following questions, you are often asked to give your answer as a plausible range. For most
of the questions, it is the exponent x in 10x that you are asked for. You can specify 10x as 10a±b or
as 10c...d (where c = a − b and d = a + b). Think of b as the sigma (σ) measuring your uncertainty, or
c . . . d as the one-σ range. Use the format that easier for you to think about in that question.

When you choose your plausible range, remember that the goal is not to be ‘right’ by choosing a
giant, guaranteed-safe range or, at the other extreme, to pretend to have extra confidence by choosing
an overly narrow range. Rather, the goal is to choose your range such that you would be somewhat
surprised if the true value falls outside your range. Numerically, choose the range so that it has a
2/3 probability of containing the true value.

That criterion explains why the range narrows after you estimate using divide and conquer. At first,
you have little idea about the true value, so you would not be surprised were it to fall outside a
fairly large range; after the estimate, you know more, your confidence in the estimate increases, and
your plausible range shrinks.

Warmups
1. One or few

Use the 1 or few method of multiplication (and division) to estimate

161 × 294 × 280 × 438

(a random multiplication problem generated by a short Python program).

10
±

or 10 . . .

Then compare your range with the actual answer.

The first step is to convert each factor in the product to the nearest power of ten, perhaps also
including a factor of a few. For example, 161 contains two factors of 10 and a factor of 1.61; and
1.61 is closer, on a log scale, to 1 than it is to few (

√
10). So 161 becomes simply 100 or 102. Here

are the conversions for all four factors:
161→ 102

294→ 102
× few;

280→ 102
× few;

438→ 102
× few.
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Now the product is easy to do mentally. There are eight factors of 10 and three factors of a few.
Since (few)2 = 10, three factors of a few becomes 10 × few. So

161 × 294 × 280 × 438 ≈ 108
× 10 × few ≈ 3 ·109.

In the form 10x, the estimate is 109.5 because 3 (or few) is one-half of a power of 10. The estimate
is only a factor of 2 smaller than the actual value of 5805041760 or roughly 6 ·109.

2. Air mass
Use divide-and-conquer to estimate the mass of air in the 6.055J/2.038J classroom and explain
your estimate with a tree. If you have not yet seen the classroom, try harder to attend lecture!

10
±

kg or 10 . . . kg

One way to estimate the mass is to subdivide into the volume of the room and the density of
air. The volume of the room subdivides into its length, height, and width. I remember that the
density of air is roughly 1g `−1 (or 1kgm−3) because I have used the value often in estimation
problems. Alternatively, you can use a useful fact from chemistry, that one mole of an ideal gas
at standard temperature and pressure occupies 22 liters, and combine that fact with the molar
mass of air. Using that method, the tree is

mass of air

density of air

molar volume molar mass

volume of room

depth width height

Now put values at the leaves.

For the room dimensions, the MIT schedules office webpage gives the room area, but let’s estimate
the dimensions by eye. Most rooms are 8 or 9 feet high but our classroom (4-163) has high ceilings,
so let’s say 12 feet high or 4m. The room has about 10 rows, spaced around 1m apart. So the
depth is about 10m. The room is perhaps 1.5 times as wide as it is deep, so the width is roughly
15m. As a check, these estimates mean the area is 150m2 or about 1600 ft2; the MIT classroom-
inventory page (linked from the course website) says that the area is 1303 square feet, so our
estimate of the area is accurate to 25%.

The molar volume for air (like any ideal gas) is 22 liters. The molar mass is, roughly, the molar
mass of nitrogen, which is 14g. But nitrogen is diatomic, so the actual molar mass is 28g.

The tree with values is:

mass of air

density of air

molar volume
22 `

molar mass
28 g

volume of room

depth
10 m

width
15 m

height
4 m
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Now propagate values upward. The volume of the room is 600m3. The density of air is roughly
28/22g `−1, or roughly 1kgm−3. Therefore, the mass of air in the room is roughly 600kg. In
the form 10x kg, it is halfway between (on a log scale) few × 102 kg and 103 kg. Because few is
one-half of a power of 10, the mass is in the middle of the range 102.5..103 kg. So let’s call it
102.75 kg. Either 102.5 kg or 103 kg would also be a reasonable estimate if you are rounding the
exponent to the nearest 0.5.

Problems
3. Mass of the earth

Estimate the mass of the earth.

10
±

kg or 10 . . . kg

After choosing your range (in either form), check it against the measured value.

The mass breaks into density times volume:

m ∼ 4
3
πr3ρ, (1)

where r is the radius of the earth, and ρ is the density of the earth. Note that even in this first
step we have already approximated by assuming that the earth is spherical and that it has a
uniform density.

To estimate r, I remember that California is about 3000mi away from Boston (a typical flight at
500mph takes about 6hr) and it is also 3 time zones away. So each time zone is about 1000mi,
meaning that the circumference of the earth (24 time zones) is C ∼ 2.4 ·104 mi giving a radius of
r = C/2π ∼ 4000mi. In metric units, that is 6.4 ·106 m.

To estimate ρ, I start the density of water: 103 kgm−3. The earth is made up mostly of iron and
dense rock, both much denser than water – maybe by a factor of 5. Why a factor of 5? A factor
of 3 would be too low, since that is the density of typical surface rocks, and they are the material
that floated to the top when the earth was cooling, so they are less dense than the rest of the
earth. A factor of 10, on the other hand, sounds way too dense. So I’ll choose a factor of 5,
making ρ ∼ 5 ·103 kgm−3.

Then the mass is, using π ∼ 3,

m ∼ 4 × (6.4 ·106 m)3
× 5 ·103 kgm−3. (2)

Do the arithmetic by divide and conquer. The powers of 10 total to 21: 18 from the cubed radius
and 3 from the density. Then there’s the factor of 4, a factor of 6.43, and a factor of 5. If the 6.43

were 63, it would be 216, so let’s pretend that 6.43 is 250. Then the factors are 4× 250× 5 = 5 ·103.
The result is a mass of 5 ·1024 kg or 1024.7 kg. (The true value is 6 ·1024 kg.)

4. Explain a UNIX pipeline
What does this UNIX pipeline do?

ls -t | head | tac | head -1

If you are not familiar with the individual UNIX commands, use the man command on Athena or
on any other handy UNIX or GNU/Linux system.
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The ls -t lists all the filenames in the directory ordered by recency with the most recent first.
The next step, head, takes the first 10 lines. Therefore so far we have a list of the 10 newest files.
The tac reverses this list so that we still have a list of the 10 newest files but it is ordered from
10th newest at the top to newest at the bottom. The head -1 takes the first line from this list,
giving us the 10th-newest file.

5. Atmospheric carbon dioxide
What is the mass of CO2 generated by the world annual oil consumption?

10
±

kg/year or 10 . . . kg/year

Here is the (unbalanced!) combustion of a generic hydrocarbon (including oil, gasoline, and
kerosene):

CH2 + O2 −→ CO2 + H2O.

I’ll start with the US oil consumption, roughly 3 ·109 barrels/yr. Then increase it by a factor of 4
to get the world oil consumption: I often remember reading that although the United States has
5% of the world’s population, it uses 25% of the energy. I don’t remember whether the 25%
was talking about energy overall or just oil, but maybe it doesn’t matter. I’ll then convert barrels
to liters using 160 ` per barrel and then to mass using 1kg `−1 (assuming oil and water have
comparable density).

Finally, I’ll convert this mass of oil into a mass of carbon dioxide. According to the (unbalanced)
chemical reaction, one mole of hydrocarbon (CH2) becomes one mole of carbon dioxide (CO2).
I might just either ignore the effect of balancing the equation; on the other hand, it is not hard
to determine: No other products or reactants involve carbon, so the coefficients in front of CH2
and CO2 must be identical. In other words, balancing may give strange coefficients for the other
products and reactants, but it leaves the 1 : 1 mole ratio between CH2 and CO2. A mole of CH2
weighs 14g whereas a mole of CO2 weights 44g, almost 3 times as much as the mole of CH2.
So, to convert mass of oil into mass of carbon dioxide, I’ll multiply by 3 (or few).

The overall calculation is then:

3 ·109 barrels/yr × 4 × 1.6 ·102 `
1 barrel

×
1kg oil

1 `
×

3kg CO2

3kg oil
. (3)

Now do the numbers. There are 11 powers of 10 and then the following factors:

3 × 4 × 1.6 × 3 ∼ 60. (4)

So the estimate is 6 ·1012 kg per year.

Out of curiosity, I wanted to compare this number to the actual world production of carbon
dioxide. It’s hard to find the carbon-dioxide production due just to oil. But oil might be one-third
of the world energy consumption (there’s also natural gas, hydroelectric, coal, etc.). Multiplying
the above estimate by 3 gives an estimate for the world production of carbon dioxide: 18 ·1012 kg
per year or roughly 2 ·1013 kg per year. The actual total in 2006 was 3 ·1013 kg.
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6. Piano tuners
Here is the classic Fermi question: Roughly how many piano tuners are there in New York
City? (These questions are called Fermi questions because the physicist Enrico Fermi was an
acknowledged master of inventing and solving them.)

10
±

or 10 . . .

I’ll break this one into several pieces:

1. The number of families in NYC. It is a big city, so maybe there are 107 people and therefore
107/4 families.

2. The fraction of families that have a piano. Having a piano is not common – often people say,
“Oh, you have a piano!” when they come to our apartment – but it’s not so uncommon that
I am amazed when I see a house with a piano. So I’ll estimate this fraction as 1/10 (i.e. 1
family in 10 has a piano).

3. How often a piano needs to be tuned. Judging by our own piano, it needs to be tuned every
year, but we somehow don’t arrange it that often; maybe once every 2 years is more realistic.

4. How long it takes to tune a piano. Piano tuning looks like an intricate task investigating all
the strings, etc.; maybe it takes half a day. I’ll estimate 3 hours for it.

5. How many hours of work a piano tuner needs to stay afloat. A regular work week of 40hr
times 50 weeks gives 2000hr in the year. Perhaps piano tuning involves lots of traveling; plus
it’s hard work. So maybe a fulltime piano tuner spends 1500 hours per year tuning pianos.

Now I use convenient forms of unity to find the number of piano tuners:

107 people ×
1 family
4people

×
1piano

10 families
×

1 tuning/piano
2yr

×
3hr

1 tuning
×

1yr of work
1500hr tuning

. (5)

There are a total of 3 powers of 10: 7 from the 107 and 4 in the denominators (10 families and
1500 hours of work). What’s left is

1
4
×

1
2
× 3 × 1

1.5
. (6)

The 3 and the 2 × 1.5 cancel leaving 1/4. The number of tuners is therefore 103/4 or 300. In the
form 10x, it is roughly 102.5.

7. Your turn to create
Invent an estimation question that divide and conquer might help solve. You do not need to
solve the question!

Particularly interesting or instructive questions might appear on the course website or as examples
in lecture or the notes (let me know should you not want your name attributed in case your
question gets selected).
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Solution set 2
Do the following warmups and problems. Submit your answers, including the short explanation, online by
10pm on Wednesday, 24 Feb 2010.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers to the problem, or to subproblems, until you solve the problem or have tried hard. This
policy helps you learn the most from the problems.

Homework is graded with a light touch: P (made a decent effort), D (made an indecent effort), or F (did not
make an effort).

On linux.mit.edu (the Athena GNU/Linux machine), an (American) English dictionary lives in the
/usr/share/dict/words file.

For the (optional) question that references decline.txt: It is the plain-text file on the course website
that contains volume 1 of Gibbon’s Decline and Fall. It is also available – as is any other file on the
course website – on any Athena machine as /mit/6.055/data/decline.txt

Warmups
1. Direct practice with one or few

Here is another ‘one or few’ problem generated by my Python script:

985 × 385 × 721 × 319 = ? (1)

10
±

or 10 . . .

Here are the approximations for each number:

985→ 103,

385→ few ·102,

721→ 103,

319→ few ·102.

(2)

The approximate product has 10 powers of 10 and two factors of a few, giving 1011. The exact
value is 87, 221, 370, 775 or roughly 0.9 ·1011.

2. Land area per capita
Here is another problem on which to practice the ‘one or few’ method of multiplication and
division: Estimate how much land area each person would have if people were evenly distributed
on the (land) surface of the earth.

10
±

m2 per person or 10 . . . m2 per person
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The surface area of the earth is 4πr2, where r is the radius of the earth. The land area is some
fraction f of the total surface area. I half remember that f is about 0.25, which seems plausible:
There is a lot of land, but the oceans are giant. The radius of the earth (from Homework 1) is
r ∼ 6.4 ·106 m. The world population is about 5 ·109.

So, the per-capita area A is

A ∼
4π × (6.4 ·106 m)2

× 0.25
5 ·109 . (3)

There are three powers of 10. In the remaining factors, the 4 and the 0.25 cancel each other. The
π × 6.42/5 is (using 6.42

∼ few × 10) few × few × 10/few or few × 10. The final per-capita area is
few ·104 m2.

3. Nested square roots
Evaluate√

2 ×

√
2 ×
√

2 ×
√
· · · (4)

The computation is recursive in that it contains a copy of itself. To see that, define

P ≡

√
2 ×

√
2 ×
√

2 ×
√
· · ·. (5)

Notice that P is repeated inside the square root:

P =
√

2 × P. (6)

The solution to this equation is P = 2.

4. Searching for . . . gry words
What English words, other than angry, end in gry?

Humans are much worse than computers at this question, because we store words not by their
endings but more by their beginnings and meanings. For a computer, it’s all bit strings, and
computers don’t care whether the bit string happens at the beginning or end of the word (and
there’s no meaning).

The regular expression that matches words ending in gry is gry$. In the following pipeline, the
first grep finds all those words, and the second grep excludes angry from the list:

grep ’gry$’ /usr/share/dict/words | grep -v ’^angry$’

The result is just one line: ‘hungry’.
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Problems
5. Geometric series

Use abstraction to find the sum of the infinite series

1 + r + r2 + r3 + · · · . (7)

Similar to Problem 3, look for a repeated motif or abstraction. Here, define S as the sum

S = 1 + r + r2 + r3 + · · · (8)

and then notice that S contains itself:

S = 1 + r (1 + r + r2 + · · ·)︸ ︷︷ ︸
S

. (9)

So, S = 1 + rS, whose solution is

S =
1

1 − r
. (10)

6. Pool temperature
A large outdoor swimming pool in the Arizona desert has a time constant of 4 days for exchanging
heat with the air. Roughly how large are the peak-to-peak fluctuations of the water temperature
caused by 30 ◦F (peak-to-peak) night–day fluctuations in the air temperature?

10
±

◦F or 10 . . . ◦F

The daily temperature oscillation has an angular frequency

ω = 2π f =
2π

1day
. (11)

With a thermal time constant of τ = 4days, the dimensionless paramater ωτ is 2π × 4 or about
25. Since ωτ � 1, we are in the limit of fast oscillations. In this limit, the low-pass filter –
the combined system of thermal resistance and reservoir (the swimming pool) – attenuates the
inputs oscillations by a factor of |ωτ|. So the 30 ◦F fluctuations in air temperature become a 1 ◦F
fluctuation in pool temperature.

The practical consequence for swimming is as follows. These fluctuations happen around the
average daily temperature (the DC or zero-frequency input signal). In the Arizona winter, the
daytime temperature is often 70 ◦F, but the nighttime temperature can be only 40 ◦F (the 30 ◦F
variation). Therefore, the pool will sit mostly at 55 ◦F. It is far too cold for swimming. The small
fluctuation of 1 ◦F around 55 ◦F does not make the pool comfortable even at its peak temperature.

7. Resistive network
In the following infinite network of 1 Ω resistors, what is the resistance between points A and B?
This measurement is indicated by the ohmmeter connected between these points. (If you want to
read about series and parallel resistances, a useful reference is the Wikipedia article ‘Series and
parallel circuits’.)
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1

1

1

1

1

1

1

1

1

1

1

1 . . .

AA

BB

Ω

±
Ω or . . . Ω

This resistive network contains a copy of itself (enclosed in the box):

1

1

1

1

1

1

1

1

1

1

1

1 . . .

AA

BB

Ω

Call R the resistance of the network inside the box, measured between the two dots as the
terminals. Then the original network, which also has resistance R, is

1

1

R
AA

BB

Ω

It is a 1 Ω resistance in series with the parallel combination of 1 Ω and R. So

R = 1 +
R

1 + R︸︷︷︸
1 Ω‖R

, (12)

or R2
− R − 1 = 0. The positive solution is

R =
1 +
√

5
2

≈ 1.618, (13)

which is the Golden Ratio.

An alternative, direct method is the following continued fraction that accounts for the infinite
cascase of series and parallel resistors:

R = 1 +
1

1 + 1
1+···

. (14)

This famous continued fraction converges (slowly) to the Golden Ratio. (One special feature of
the Golden Ratio is that it has the the slowest-converging continued fraction of any real number.)
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Optional
These problems are optional in case you want more practice or want to try a (possibly large) project.

8. Email indexer
Design a set of shell scripts for doing quick keyword searches of a large database of emails.
Assume that each email is stored in its own plain-text file. Perhaps one shell script generates an
index, and a second script searches the index.

9. Running time
Ordinary long multiplication requires O(n2) digit-by-digit multiplications. Show that the Karat-
suba multiplication method explained in lecture requires O(nlog2 3) ≈ O(n1.58) digit-by-digit mul-
tiplications.

10. Counting empires
How often does the word Empire (uppercase E, then all lowercase) occur in decline.txt? [Hint:
Look up the tr command.]

Divide and conquer! First turn all non-letters into newlines (squeezing out repeated newlines);
second, look for lines that exactly match ‘Empire’; and third, count the lines. Those three stages
are the three stages of the following pipeline:

tr -cs ’a-zA-Z’ ’\012’ < ./data/decline.txt | grep ’^Empire$’ | wc -l

It produces ‘37’.
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Solution set 3
Do the following warmups and problems. Submit your answers, including the short explanation, online by
10pm on Wednesday, 3 Mar 2010.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers to the problem, or to subproblems, until you solve the problem or have tried hard. This
policy helps you learn the most from the problems.

Homework is graded with a light touch: P (made a decent effort), D (made an indecent effort), or F (did not
make an effort).

Warmups
1. Fuel efficiency of a 747

Use the cost of a plane ticket to estimate the fuel efficiency of a 747, in passenger–miles per gallon
(passenger–mpg).

10
±

passenger–mpg or 10 . . . passenger–mpg

A roundtrip economy ticket from New York to San Francisco costs roughly $400. The journey is
about 2500 miles each way, so a 5000-mile journey costs about $500 (rounding up the $400 to make
the math easier). That’s about 10 cents/mile. Perhaps one-half of that cost is fuel. [Although
the service – in the air, on the phone, and at the counter – is so lousy due to understaffing that
perhaps two-thirds of the cost being fuel would be a better estimate!] At 5 cents/mile for fuel,
and at $3/gallon for fuel, the fuel efficiency is 60 passenger–miles per gallon.

2. High winds
At roughly what wind speed is the force on your body from the wind approximately equal to
your weight?

± ms−1 or . . . ms−1

A typical person is maybe m ∼ 65kg, so a weight of mg ∼ 700N. The drag force is F ∼ ρv2A.
Therefore,

v ∼
(
mg
ρA

)1/2

. (1)

The density ρ is roughly 1kgm−3. For a person, the cross-sectional area is roughly 2m × 0.5m
(height times width) or 1m2. So

v ∼

√
700N

1kgm−3 × 1m2 ∼ 25ms−1. (2)

That’s roughly 55mph.
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This problem was inspired by the high winds (and rain) a couple weeks ago. As I was walking
home in that miserable weather, I leaned sharply into the wind in order not to get toppled over
– indicating that the drag force was comparable to my weight.

3. Daunting integral
Evaluate∫

∞

−∞

x3

1 + 7x2 + 18x8 dx. (3)

± or . . .

The integrand, x3/(1 + 7x2 + 18x8), is antisymmetric: When x becomes −x, the integrand changes
sign. So, for every sliver of rectangle in the negative-x region, there’s a corresponding sliver with
the opposite sign in the positive-x region. The net sum is therefore zero.

x

This problem was inspired by my days as a physics undergraduate. Physics problem sets often
meant doing tons of complicated integrals. Our bible was Gradshteyn and Ryzhik’s Table of
Integrals, Series, and Products, now in its 7th edition. Often when we couldn’t find an integral in
Gradshteyn, we later realized, after much painful integration gymnastics, that the integral had
to be zero by symmetry. So, don’t miss those chances to use symmetry.

Problems
4. Solitaire

You start with the numbers 3, 4, and 5. At each move, you choose any two of the three numbers
– call the choices a and b – and replace them with 0.8a− 0.6b and 0.6a + 0.8b. The goal is to reach
4, 4, 4. Can you do it? If yes, give a move sequence; if no, show that you cannot.

To see whether solitaire games are solvable, look for an invariant. Alas there is no algorithm for
finding invariants; you have to use clues and make lucky guesses.

Speaking of clues, is it a happy coincidence that 0.82 + 0.62 = 1? That convenient sum suggests
looking at sums of squares, and how those are changed by making a move. Replacing a and b
by a′ = 0.8a− 0.6b and b′ = 0.6a + 0.8b makes the sum of squares a2 + b2 into a′2 + b′2. Expand that
expression:

a′2 + b′2 = (0.8a − 0.6b)2 + (0.6a + 0.8b)2

= 0.64a2
− 0.96ab + 0.36b2 + 0.36a2 + 0.96ab + 0.64b2

= a2 + b2.
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Great! Each move leaves the sum of squares unchanged. That sum started out with the invariant
at 32 + 42 + 52 = 50, so it remains 50. The goal state, however, requires that the invariant become
42 + 42 + 42 = 48. It’s not possible to reach the goal.

The invariant has a nice geometric interpretation (a picture). To see it, let P = (a, b, c) be the
coordinates of a point in three-dimensional space. Then each move leaves unchanged the distance
to the origin, which is

√

a2 + b2 + c2. So each move shifts P to another location equally distant
from the origin, meaning that it moves P on the surface of a sphere. But it cannot escape the
surface.

An interesting question to which I don’t know the answer: Can you reach every point on the
surface of the sphere? The distance invariant does not forbid it, but maybe other constraints do?

5. Maximizing a polynomial
Use symmetry to find the maximum value of 6x − x2.

± or . . .

x3

The polynomial factors as P = x(6 − x). As a symmetry operation, try
replacing x with 6 − x. That operation is a reflection through the vertical
line x = 3. It turns P into (6 − x)x, which is again P just with the factors
swapped. Let’s call x0 the value of x that maximizes P. Because changing
x to 6 − x doesn’t change the curve, it doesn’t change the location of
the minimum, which is at (x0,P(x0)). Thus x0 turns into x0 under the
symmetry operation x 7→ 6−x. The only value of x that is unchanged by a
reflection through the vertical line x = 3 is 3 itself, so x0 = 3 and P(x0) = 9.

6. Tiling a mouse-eaten chessboard
An 8 × 8 chessboard gets two diagonally opposite corners eaten away by a
mouse. You have dominoes, each 2×1 in shape – i.e. each covers two adjacent
squares. Can you tile the mouse-eaten chessboard with these dominoes? In
other words, can you lay down the dominoes to cover every square exactly
once (no empty squares and no overlaps)?

yes

no

Placing a domino on the board is one move in this solitaire game. For each move, you choose
where to place the domino – which means you might have many choices for each move. Can you
cover the whole board? The space of possible moves grows rapidly. Hence, look for an invariant:
a quantity unchanged by any move of the game.

Because each domino covers one white square and one black square, the following quantity is
invariant (unchanged):

I = number of uncovered black squares − number of uncovered white squares. (4)

With a regular chess board, the initial position would have I = 0, from 32 white squares and 32
black squares. With this modified board, two black squares have vanished, so I is 30 − 32 = −2.
However, in the winning position, all squares are covered; therefore I = 0. Because I is invariant,
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no sequence of domino moves can turn the initial uncovered board into the winning board (with
all squares covered).

Optional!
7. Symmetry for second-order systems

This problem analyzes the frequency of maximum gain for an LRC circuit or, equivalently, for a
damped spring–mass system. The gain of such a system is the ratio of the input amplitude to
the output amplitude as a function of frequency.

If the output voltage is measured across the resistor, and you drive the circuit with a voltage
oscillating at frequency ω, the gain is (in a suitable system of units):

G(ω) =
jω

1 + jω/Q − ω2 ,

where j =
√
−1 and Q is quality factor, a dimensionless measure of the damping. Do not worry

if you do not know where that gain formula comes from. The purpose of this problem is not its
origin, but rather using symmetry to maximize its magnitude.

The magnitude of the gain is

|G(ω)| = ω√(
1 − ω2

)2
+ ω2/Q2

.

Find a variable substitution (a symmetry operation) ωnew = f (ω) that turns |G(ω)| into |H(ωnew)|
such that G and H are the same function (i.e. they have the same structure but with ω in G
replaced by ωnew in H). Use the form of that symmetry operation to maximize |G(ω)| without
using calculus.

When maximizing a parabolic function such as y = x(6− x), the symmetry is reflection about the
line x = 3. In symbols, the transformation is xnew = 6 − x.

Let’s transfer a few lessons from the parabola example to the problem of maximizing the gain.
In the parabola example, the symmetry is a reflection about an interesting point (there, the point
halfway between the two roots x = 0 and x = 6). Analogously, an interesting frequency is ω = 1
because it makes the real part of the denominator in G(ω) go to zero, and making the real part
go to zero helps minimize the denominator.

Therefore reflecting about ω = 1 is worth trying, perhaps ωnew = 1−ω. For frequencies, however,
differences are not as important as ratios. For example, a musical octave is a factor of 2 in
frequency, rather than a difference. So reflect in a multiplicative way: ωnew = w−1.

This transformation works either in G(ω) or in the magnitude |G(ω)|. It’s slightly easier in G(ω):

G(ω) =
jω

1 + jω/Q − ω2 7→ H(ωnew) =
j/ωnew

1 + j/Qωnew − 1/ω2
new

.

Multiply numerator and denominator by ω2
new:

H(ωnew) =
jωnew

ω2
new + jωnew/Q − 1

,

which is the same function as G(ω), except for negating the real part in the denominator. Negating
the real part in the denominator doesn’t affect the magnitude of the denominator, so |H(ωnew)|
has the same form as |G(ω)|.
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Since ωnew = 1/ω, the maximum value of ωnew will be ω−1
max. That’s one equation.

Since the two magnitudes |G(ω)| and |H(ωnew)| are the same function, the maximum value of ωnew
is also the maximum value of ω. That’s the second equation.

Together they produce ω = ωnew = 1 (ignoring the negative-frequency solution ω = −1). At that
frequency, |G(ω)| is Q. For the electrical and mechanical engineers: The quality factor Q is also
the gain at resonance.

8. Inertia tensor
[For those who know about inertia tensors.] Here is the inertia tensor (the generalization of moment
of inertia) of a particular object, calculated in a lousy coordinate system: 4 0 0

0 5 4
0 4 5


Change coordinate systems to a set of principal axes. In other words, write the inertia tensor as Ixx 0 0

0 Iyy 0
0 0 Izz


and give the values of Ixx, Iyy, and Izz. Hint: What properties of a matrix are invariant when
changing coordinate systems?

Whatever coordinate change I make, I will leave the x axis alone because the Ixx component is
already separated from the y- and z submatrix. That submatrix is( 5 4

4 5

)
I have to figure out how changing the coordinate system changes this submatrix. Rather than
find the coordinate change explicitly, I use invariants to avoid that computation.

One invariant of any matrix, not just of this 2× 2 matrix, is its determinant. Another invariant is
its trace (the sum of the diagonal elements). In the nasty coordinate system, the trace of the y-
and z submatrix is 5 + 5 = 10. So the trace is 10 in the nice coordinate system. The determinant
is 5 × 5 − 4 × 4 = 9, so it the determinant is 9 in the nice coordinate system.

Those facts are sufficient to deduce the submatrix in the nice coordinate system (without needing
to figure out what the nice coordinate system is). In the nice coordinate system, the 2×2 submatrix
looks like( Iyy 0

0 Izz

)
So I need to find Iyy and Izz such that

Iyy + Izz = 10 (from the trace invariant)

and

IyyIzz = 9 (from the determinant invariant)

The solution is Iyy = 1 and Izz = 9 (or vice versa). So the inertia tensor becomes 4 0 0
0 1 0
0 0 9


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9. Resistive grid

Ω

In an infinite grid of 1-ohm resistors, what is the resistance mea-
sured across one resistor?

To measure resistance, an ohmmeter injects a current I at one
terminal (for simplicity, say I = 1Å), removes the same current
from the other terminal, and measures the resulting voltage dif-
ference V between the terminals. The resistance is R = V/I.

Hint: Use symmetry. But it’s still a hard problem!

I’d like to find the current flowing through the resistor when
1Å is sent into one terminal of the ohmmeter and removed
from its other terminal. The solution has two steps, each subtle:

1. Break the resistance-measuring experiment into two parts, each having a lot of symmetry.

2. Analyze those parts using symmetry.

The current distribution that results from the full resistance-measuring experiment is not suffi-
ciently symmetric because it has a preferred direction along the selected resistor. However, if I
break the experiment into two parts – inserting current and removing current – then each part
produces a symmetric current distribution.

By symmetry – because all four coordinate directions are equivalent – in-
serting 1Å produces 1/4Å flowing in each coordinate direction away from
the terminal. Let’s call this terminal the positive terminal. So inserting the
1Å at the positive terminal produces 1/4Å through the selected resistor, and
this current flows away from the positive terminal.

By symmetry, removing 1Å produces 1/4Å in each coordinate direction,
flowing toward the terminal. Let’s call this terminal the negative terminal.
So removing 1Å produces 1/4Å through the selected resistor, flowing toward
the negative terminal. Equivalently, it produces 1/4Å flowing away from the
positive terminal.

Now superimpose the two pictures to reproduce the experiment of mea-
suring the resistance. The experiment produces 1/2Å through the resistor,
flowing from the positive to the negative terminal. The voltage across the
resistor is the current times its resistance, so the voltage is 1/2V. Since a 1Å test current produces
a 1/2V drop, the effective resistance is 1/2 Ω.

If you want an even more difficult problem: Find the resistance measured across a diagonal!
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Solution set 4
Submit your answers and explanations online by 10pm on Wednesday, 10 Mar 2010.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers to the problem, or to subproblems, until you solve the problem or have tried hard. This
policy helps you learn the most from the problems.

Homework is graded with a light touch: P (made a decent effort), D (made an indecent effort), or F (did not
make an effort).
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Problem 1 Bandwidth
To keep your divide-and-conquer muscles strong, here is an exercise from lecture: Estimate the
bandwidth of a 747 crossing the Atlantic filled with CDROMs.

10
±

bits/s or 10 . . . bits/s

Divide and conquer! Here’s a tree on which to fill values:

bandwidth

capacity (bits) of 747

number of CDROM’s

cargo mass CDROM mass

CDROM capacity

time to cross Atlantic

First I estimate the cargo mass. A 747 can easily carry about 400 people, each person having a mass
(with luggage) of, say 140kg. The total mass is

m ∼ 400 × 140kg ∼ 6 ·104 kg.

A special cargo plane, with no seats or other frills for passengers, probably can carry 105 kg.

Here are the other estimates. A CDROM’s mass is perhaps one ounce or 30g. So the number of
CDROM’s is 3 · 106. The capacity of a CDROM is 600MB or about 5 · 109 bits. The time to cross the
Atlantic is about 8hours or 3 ·104 s.

Now propagate the values toward the root of the tree:

bandwidth (capacity/time)
5 ·1011 s−1

capacity (bits) of 747
1.5 ·1016

number of CDROM’s
3 ·106

cargo mass
105 kg

CDROM mass
30 g

CDROM capacity
5 ·109

time to cross Atlantic
3 ·104 s

The bandwidth is 0.5 terabits per second or 1011.5 bits/second.

Despite the large bandwidth offered by a 747 carrying CDROM’s (not to mention DVDROM’s), trans-
Atlantic Internet connections go instead via undersea fiber-optic cables. Low latency is important!
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Problem 2 Gravity versus radius
Assume that planets are uniform spheres. How does g, the gravitational acceleration at the surface,
depend on the planet’s radius R? In other words, what is the exponent n in

g ∝ Rn? (1)

± or . . .

The gravitational force (the weight) on an object of mass m is GMm/R2, where G is Newton’s constant,
and M is the moon’s mass. Thus the gravitational acceleration g is GM/R2. But the mass M is
proportional to R3, so g ∝ R1. In other words, n = 1.

Problem 3 Gravity on the moon
The radius of the moon is one-fourth the radius of the earth. Use the result of Problem 2 to predict
the ratio gmoon/gearth. In reality, gmoon/gearth is roughly one-sixth. How might you explain any
discrepancy between the predicted and actual ratio?

The ratio gmoon/gearth should be proportional to the ratio of radii Rmoon/Rearth, namely 1/4. The actual
ratio is lower because of an effect neglected in the analysis of Problem 2: the differing density. When
that effect is included, then the mass M is ρR3 (except for a constant), so

g ∼
GρR3

R2 ∝ ρR. (2)

If ρmoon/ρearth is 2/3, that reduction in concert with the radii ratio would explain the factor of 6
difference in g.

Moon rock, which is less dense than the average earth rock, is comparable in density to rock in the
earth’s crust. This equivalence suggests that the moon was once a piece of the earth’s crust that got
scooped out probably by a large meteor impact.
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Problem 4 Minimum power
In the readings we estimated the flight speed that minimizes energy consumption. Call that speed
vE. We could also have estimated vP, the speed that minimizes power consumption. What is the
ratio vP/vE?

± or . . .

The zillions of constants (such as ρ) clutter the analysis without changing the result. So I’ll simplify
the problem by using a system of units where all the constants are 1. Then the energy is

E ∼ v2 +
1
v2 ,

where the first term is from drag and the second term is from lift. The power is energy per time,
and time is inversely proportional to v, so P ∝ Ev and

P ∼ v3 +
1
v
.

The first term is the steep v3 dependence of drag power on velocity (which we used to estimate the
world-record cycling and swimming speeds). The energy expression is unchanged when v → 1/v,
so it has a minimum at vE = 1.

To minimize the power, use calculus (ask me if you are curious about calculus-free ways to minimize
it):

dP
dv
∼ 3v2

−
1
v2 = 0,

therefore vP = 3−1/4 (roughly 3/4), which is also the ratio vP/vE.

So the minimum-power speed is about 25% less than the minimum-energy speed. That result makes
sense. Drag power grows very fast as v increases – much faster than lift power decreases – so it’s
worth reducing the speed a little to reduce the drag a lot.

If you don’t believe the simplification that I used of setting all constants to 1 – and it is not immediately
obvious that it should work – then try using this general form:

E ∼ Av2 +
B
v2 ,

where A and B are constants. You’ll find that vE and vP each contain the same function of A and B
and that this function disappears from the ratio vP/vE.
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Problem 5 Highway vs city driving
Here is a measure of the importance of drag for a car moving at speed v for a distance d:

Edrag

Ekinetic
∼
ρv2Ad
mcarv2 .

This ratio is equivalent to the ratio
mass of the air displaced

mass of the car

and to the ratio
ρair
ρcar
×

d
lcar
,

where ρcar is the density of the car (its mass divided by its volume) and lcar is the length of the car.

Make estimates for a typical car and find the distance d at which the ratio becomes significant (say,
roughly 1).

10
±

m or 10 . . . m

To include in the explanation box: How does the distance compare with the distance between exits
on the highway and between stop signs or stoplights on city streets? What therefore are the main
mechanisms of energy loss in city and in highway driving?

A typical car has mass mcar ∼ 103 kg, cross-sectional area A ∼ 2m×1.5m = 3m2, and length lcar ∼ 4m.
So

ρcar ∼
mcar

Alcar
∼

103 kg
3m2 × 4m

∼ 102 kgm−3.

Since ρcar/ρair ∼ 100, the ratio
ρair
ρcar

d
lcar

becomes 1 when d/lcar ∼ 100, so d ∼ 400m.

This distance d is significantly farther than the distance between stop signs or stoplights on city streets.
In Manhattan, for example, 20 east–west blocks are one mile, giving a spacing of approximately 80m.
So air resistance is not a significant loss in city driving. Instead the loss comes from engine friction,
rolling resistance, and (mostly) braking.

However, the distance d is comparable to the exit spacing on urban highways. So when you drive
on the highway for even a few exit distances, air resistance is a significant loss.

Interestingly, highway fuel efficiencies are higher than city fuel efficiencies, even though drag gets
worse at the higher, highway speeds, and presumably engine friction and rolling resistance also get
worse at higher speeds. Only one loss mechanism, braking, is less prevalent in highway than in city
driving. Therefore, braking must be a significant loss in city driving. Regenerative braking, used in
some hybrid or electric cars, would therefore significantly improve fuel efficiency in city driving.
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Problem 6 Mountains
Here are the heights of the tallest mountains on Mars and Earth.

Mars 27km (Mount Olympus)
Earth 9km (Mount Everest)

Predict the height of the tallest mountain on Venus.

10
±

km or 10 . . . km

To include in the explanation box: Then check your prediction in a table of astronomical data (or online).

One pattern is that the larger planet (earth) has the smaller mountain. Large planets presumably
have stronger gravitational fields at their surface, which keeps the mountains closer to the ground.
The derivation in lecture on mountain heights dropped the dependence on g because we looked only
at mountains on earth where all mountains share the value of g.

The same derivation can be repeated but retaining g. The weight of a mountain of size l is W ∝ gl3,
so the pressure at the base is p ∝ gl3/l2 ∼ gl. When the pressure p exceeds the maximum pressure
that rock can support, the mountain can no longer grow upward. This criterion is equivalent to
holding gl constant. Therefore,

l ∝ g−1.

Here are the gravitational field strengths on the three planets:

a. Mars: 3.7ms−2

b. earth: 10ms−2

c. Venus: 8.9ms−2

The product gl for each planet should be the same. That hypothesis works for Mars and earth:

a. Mars: 105 m2 s−2

b. earth: 0.9 ·105 m2 s−2

If Venus follows the predicted scaling, then gl should be roughly 105 m2 s−2 with g ∼ 8.9ms−2.
Therefore l should be roughly 11km. Indeed, the tallest mountain on Venus, which is Maxwell
Montes, has just that height. Scaling triumphs!

Here is a fun question: Why aren’t mountains on the moon 60km tall (the Moon’s surface gravity is
about one-sixth of earth’s surface gravity, as analyzed in Problem 3)?
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Problem 7 Raindrop speed
Use the drag-force results from the readings to estimate the terminal speed of a typical raindrop
(diameter of about 0.5 cm).

10
±

ms−1 or 10 . . . ms−1

To include in the explanation box: How could you check this result?

The weight of the raindrop is the density times the volume times g:

W ∼ ρr3g,

where I neglect dimensionless factors such as 4π/3.

At terminal velocity, the weight equals the drag. The drag is

F ∼ ρairv2A ∼ ρairv2r2.

Equating the weight to the drag gives an equation for v and r:

ρairv2r2
∼ ρr3g,

so v ∝ r1/2.

Bigger raindrops fall faster but – because of the square root – not much faster.

With the g and the densities, the terminal velocity is

v ∼
√

ρ

ρair
gr.

A typical raindrop has a diameter of maybe 5 or 6mm, so r ∼ 3mm. Since the density ratio between
water and air is roughly 1000,

v ∼
√

1000 × 10ms−2 × 3 ·10−3 m ∼ 5ms−1.

First convert the speed into a more familiar value: 11mph (miles per hour). If one drives at a speed
vcar, then raindrops appear to move at an angle arctan(vcar/v). When vcar = v, the drops come at a
45 ◦ angle. So one way to measure the terminal speed is to drive in a rainstorm, slowly accelerating
while the passenger (not the driver!) says when the drops hit at a 45 ◦ angle.

You could also run in a rainstorm and note the speed at which a small umbrella has to held at 45 ◦
to keep you perfectly dry.



Solution set 4 / 6.055J/2.038J: Art of approximation in science and engineering (Spring 2010) 8

Problem 8 Cruising speed versus air density
For geometrically similar animals (same shape and composition but different size), how does the
minimum-energy speed v depend on air density ρ? In other words, what is the exponent β in v ∝ ρβ?

± or . . .

From the lecture notes,

Mg ∼ C1/2ρv2L2,

where C is the modified drag coefficient. So

v ∼
(

Mg
C1/2ρL2

)1/2

.

The only dependence on ρ is the ρ itself in the denominator, leaving

v ∝ ρ−1/2

and β = 1/2.

The inverse relationship between the speed and density explains why planes fly at a high altitude.
The energy consumption at the minimum-energy speed is proportional to the drag force, which is
proportional to ρv2. Because v ∝ ρ−1/2, the powers of ρ cancel in the energy consumption; in other
words, the energy consumption (at the minimum-energy speed for that ρ) is independent of ρ. By
flying high, where ρ is low, planes can fly faster without increasing their energy consumption.
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Problem 9 Cruising speed versus mass
For geometrically similar animals (same shape and composition but different size), how does the
minimum-energy speed v depend on mass M? In other words, what is the exponent β in v ∝Mβ?

± or . . .

Again from the lecture notes,

Mg ∼ C1/2ρv2L2,

where C is the modified drag coefficient. So

v ∼
(

Mg
C1/2ρL2

)1/2

.

For geometrically similar animals, g is independent of size (they all fight the same gravity) and C is
also independent of size (because the drag coefficient depends only on shape). But M depends on
L according to M ∝ L3 or L ∝ M1/3. Because L2 is proportional to M2/3, the denominator contains
M2/3. The numerator contains M1, so the ratio of numerator to denominator is M1/3. After taking
the square root, we find the scaling

v ∝M1/6.

In other words, β = 1/6.

Large birds (and planes) fly slightly faster than small birds and planes. The design of the 737 was
affected by this fact. The 737 is for medium-range flights and carries fewer passengers than a 747.
However, if the 737 were merely a geometrically scaled 747 – retaining the shape but reducing M
by, say, a factor of 3 – then it would have a cruising speed roughly 20% lower than a 747 (because
31/6
≈ 1.2). That reduction would be fine if the 737 were the only plane traveling the skies. But planes

are directed along fixed flight paths where it is dangerous to have planes overtaking one another.
Therefore, the 737 was designed not to be geometrically similar to the 747 but instead to have the
same cruising speed as the 747. Scaling matters!
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Problem 10 Speed of a bar-tailed godwit
Use the results of Problem 8 and Problem 9 to write the ratio v747/vgodwit as a product of dimension-
less factors, where v747 is the minimum-energy speed of a 747, and vgodwit is the minimum-energy
speed of a bar-tailed godwit (i.e. its cruising speed). By estimating the dimensionless factors and their
product, estimate the cruising speed of a bar-tailed godwit. [Useful information: mgodwit ∼ 0.4kg;
v747 ∼ 600mph.]

10
±

ms−1 or 10 . . . ms−1

To include in the explanation box: Compare your result with the speed of the record-setting bar-tailed
godwit, which made its 11, 570km journey in 8.5 days.

Assuming that the animals and planes fly at the minimum-energy speed,

v747
vgodwit

=

(
ρhigh
ρsea level

)−1/2

×

(
m747

mgodwit

)1/6

.

A plane flies at around 10km where the density is roughly one-third of the sea-level density. The
mass of a 747 is roughly 4 · 105 kg, so the mass ratio between a 747 and a godwit is 106. Therefore,
the speed ratio is roughly

v747
vgodwit

∼ (1/3)−1/2
× (106)1/6 =

√

3 × 10 ∼ 17.

A 747 flies at around 550mph so the godwit should fly around 550/17mph ∼ 32mph. The actual
speed of record-setting godwit is almost identical:

vactual ∼
11, 570km
8.5days

×
0.6mi
1km

×
1day

24hours
∼ 35mph.
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Solution set 5
Submit your answers and explanations online by 10pm on Wednesday, 07 Apr 2010.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers to the problem, or to subproblems, until you solve the problem or have tried hard. This
policy helps you learn the most from the problems.

Homework is graded with a light touch: P (made a decent effort), D (made an indecent effort), or F (did not
make an effort).

Problem 1 9V battery
Roughly how much energy is stored in a typical (disposable) 9V battery?

10
±

J or 10 . . . J

I’ll estimate it by working out the energy in my laptop battery, and then adjusting the estimate
to compensate for the smaller size of a 9V battery. The energy in my laptop battery is the ideal
candidate for divide and conquer: the power drawn by the laptop times the battery life. I know the
battery life well: about 4 or 5 hours (I have the slightly larger 9-cell Thinkpad battery).

The power draw is harder to estimate. The screen, the CPU, and the disk drive probably use
comparable amounts of power, since reducing the power consumption of each item seems to be
comparably important in extending the battery’s life. The methods include using a lower screen
brightness, putting the CPU into idle (technically, C2 and C3 states), or spinning down the disk. The
screen is an LCD screen, which is much more efficient than an incandescent (standard) light bulb.
So, although it is bright like a (weak) light bulb, say a 30-watt bulb, it may draw only 5 or 10W.

Three such items – which includes the disk drive and the CPU – add up to perhaps 20W. (As a
check, the Powertop utility that comes with my Debian GNU/Linux installation says that the laptop
is using 16.6W.)

The product of power and time is energy stored in the battery:

Elaptop ∼ 20W × 4.5hours × 3600 s
1hour

∼ 3 ·105 J. (1)

Now let’s shrink that energy to account for the smaller size of a 9V battery. As a simple method, I’ll
assume that all batteries have a comparable energy density (energy stored per mass). In mass, my
laptop battery feels like about 15 or maybe 20 9V batteries. So I’ll divide 3 ·105 J by 15 or 20:

E9V ∼
Elaptop

15 or 20
∼ 15kJ. (2)

For a rough comparison with actual values, Wikipedia quotes 20kJ as the energy stored in a 9V
battery.
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Problem 2 Non-Hooke’s law spring
Imagine a mass connected to a spring with force law F = Cx3 (instead of the usual Hooke’s law
behavior F = kx) and therefore potential energy V ∼ Cx4 (where C is a constant). Which curve shows
how the system’s oscillation period T depends on the amplitude x0?

T

x0

A

D

C

B

E

0
0

Curve A

Curve B

Curve C

Curve D

Curve E

Dimensional analysis:

T period T
x0 amplitude L
C spring constant ML−2T−2

m mass M

The trickiest entry in the table is the dimensions of C. Since Cx3 is a force, C has dimensions of force
over length cubed, namely ML−2T−2. These four quantities made out of three dimensions produce
one independent dimensionless group. Its simplest form is Cx2

0T2/m. Because there is only one
dimensionless group, it must be a constant. In other words, T ∝ 1/x0. The only matching curve is
curve E.
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Problem 3 Power radiated by an accelerating charge
If the velocity and acceleration of a (nonrelativistic) electric charge are doubled, how does the power
radiated by the charge change?

The power increases by a factor of 16.

The power increases by a factor of 8.

The power increases by a factor of 4.

The power increases by a factor of 2.

The power increases by a factor of
√

2.

The first question is: On what does the radiated power depend? First, c (the speed of light), because
that is the speed at which the power travels; second, the charge’s acceleration or velocity (or both);
and third, the charge itself q. We probably also need ε0, the horrible constant when using SI units
for electromagnetism. But ε0 and q will show up only together as q2/4πε0, so let’s combine those
two quantities accordingly.

The remaining question is what to include from among acceleration or velocity. If the power radiated
depended on the velocity, then we could use relativity to make a perpetual motion machine: Generate
more energy simply by using a different reference frame, one moving with just the right velocity.
No way! So, the power depends on the acceleration but not the velocity.

The list of variables, including the radiated power, is:

P radiated power ML2T−3

q2/4πε0 ML3T−2

c speed of light LT−1

a acceleration MLT−2

These four variables, again with three dimensions, result in one independent dimensionless group–
for example,

Π1 ≡
P

q2/4πε0

c3

a2 . (3)

With only one group, it must be a constant, so

P ∼ q2/4πε0
a2

c3 . (4)

Except for needing a factor of 2/3, this result is correct (the full result is called the Larmor formula).

To answer the particular problem, doubling the velocity and acceleration quadruples the power
radiated.

Problem 4 Local black hole
What is roughly the largest radius the earth could have, with its current mass, and be a black hole
(i.e. light cannot escape from its surface)?

10
±

m or 10 . . . m
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In gravity problems, the quantity GM/Rc2 is dimensionless. For most objects, it is very tiny. A likely
candidate criterion for a black hole is when this quantity is around 1. Therefore, the radius of the
black-hole earth would be

R ∼ GM
c2 . (5)

Putting in numbers,

R ∼
7 ·10−11 m3 kg−1 s−2

× 6 ·1024 kg
1017 m2 s−2 ∼ 4mm. (6)

(The true black-hole radius, based on general-relativity calculations, is twice this value based on
dimensional analysis and a bit of guessing.)

Problem 5 Wire
Roughly what is the number density of free (conduction) electrons in a copper wire?

10
±

m−3 or 10 . . . m−3

Copper has, as a guess, one conduction electron per atom. Each atom occupies roughly a 3-Angstrom
cube – i.e., a volume of roughly 3·10−29 m3. The number density is the reciprocal of the atomic volume
(since there is only one conduction electron per atom). Thus n ∼ 3·1028 m−3. (The true value is roughly
2.5 times greater, due to the atomic volume being slightly smaller than I estimated here using the
3-Angstrom rule of thumb.)

Problem 6 Yield from an atomic bomb

t (ms) R (m)
3.26 59.0
4.61 67.3

15.0 106.5
62.0 185.0

Geoffrey Taylor, a famous Cambridge fluid mechanic, annoyed the US government
by doing the following analysis. The question he answered: ‘What was the energy
yield of the first atomic blast (in the New Mexico desert in 1945)?’ Pictures de-
classified by the US government – the pictures even had a scale bar! – provided
the tabulated data on the radius of the explosion at various times.
Use dimensional analysis to work out the relation between radius R, time t, blast
energy E, and air density ρ. Then use the data in the table to estimate the blast
energy E:

10
±

J or 10 . . . J

Four quantities composed of three independent dimensions make one independent dimensionless
group. The only quantities whose dimensions contain mass are E and ρ. So E and ρ appear in the
group as E/ρ, whose dimensions are L5T−2. Therefore the following choice is dimensionless:

Π1 ≡
Et2

ρR5 .

With only one dimensionless group, the most general statement connecting those four quantities is
Et2

ρR5 ∼ 1.

or

E ∼
ρR5

t2 .

For each row of data in the table, I’ll estimate ρR5/t2, using ρ ∼ 1kgm−3:
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t (ms) R (m) E (1013 J)
3.26 59.0 6.7
4.61 67.3 6.5

15.0 106.5 6.1
62.0 185.0 5.6

The data are not perfectly consistent about the predicted blast energy E, but they hover pretty closely
around 6 ·1013 J.

This blast energy, expressed in more common units for such devices, is roughly 15kilotons of TNT
– in close agreement with the then-classified value of 20kilotons. Dimensional analysis triumphs
again!



6.055J/2.038J (Spring 2010)

Solution set 6
Submit your answers and explanations online by 10pm on Wednesday, 14 Apr 2010.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers to the problem, or to subproblems, until you solve the problem or have tried hard. This
policy helps you learn the most from the problems.

Homework is graded with a light touch: P (made a decent effort), D (made an indecent effort), or F (did not
make an effort).

Problem 1 Guessing an integral using easy cases
Use easy cases to choose the correct value of the integral∫

∞

−∞

e−ax2 dx. (1)

√
πa
√
π/a

The most useful special cases here are a→ 0 and a→∞. When a is zero, the Gaussian becomes the
flat line y = 1, which has infinite area. The first choice,

√
πa, goes to zero in this limit, so it cannot

be right. The second choice,
√
π/a, has the correct behavior.

The limit a → ∞ gives the same conclusion: The first choice cannot be right, and the second one
might be right.
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Problem 2 Differential-equation solution
Which sketch shows a solution of the differential equation

dy
dt
= Ay(M − y),

where A and M are positive constants?

y

t
D

C

B

A

0
0

Curve A

Curve B

Curve C

Curve D

Use easy cases by choosing the solution that behaves correctly in all the easy cases. Here, one easy
case is small t (t ≈ 0), when y is small – in particular, small compared to M. Then the M − y term is
approximately M, making the differential equation

dy
dt
= AMy ∝ y.

It is the equation for exponential growth (since AM is positive). Therefore, for small t, the curve
should follow an exponential, which is concave upwards (‘holds water’). Only curves B and C satisfy
this test.

In the large-t extreme case, y approaches M. Then dy/dt = 0, which makes y constant (consistent
with the assumption y→M). Among curves B and C, the only curve that becomes flat is curve B.

As a further piece of evidence in favor of curve B, the derivative dy/dt must always be positive.
Why? For it to be negative, y would have to exceed M. But when y reaches M, then dy/dt becomes
0 and y stops changing. Therefore, y can never exceed M. Contradiction! Therefore, the derivative
cannot be negative. Curve C, however, has a region of negative slope.
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Problem 3 Fog
Fog is a low-lying cloud, perhaps 1km tall and made up of tiny water droplets (radius r ∼ 10µm).
By estimating the terminal speed of fog droplets, estimate the time that the cloud takes to settle to
the ground.

10
±

s or 10 . . . s

To include in the explanation box: What is the everyday consequence of this settling time?

At low Reynolds number, the drag is

F = 6πρflνvr, (2)

where ρfl is the density of the fluid. The weight of the object is

W = 4
3
πr3ρobjg, (3)

where ρobj is the density of the object. At the terminal speed v, the drag and weight balance:

6πρflνvr ∼ 4
3
πr3ρobjg. (4)

Therefore, the terminal speed v is

v ∼ 2
9

gr2

ν

ρobj

ρfl
.

(This calculation neglects buoyancy, which is a small effect for water droplets falling in air.)

Calling 2/9 = 1/5 and using ν ∼ 10−5 m2 s−1 gives

v ∼ 1
5
×

10ms−2
× 10−10 m2

10−5 m2 s−1 × 1000 ∼ 2 cm s−1.

As a check on the initial assumption, let’s calculate the Reynolds number:

Re ∼ 10−5 m × 2 ·10−2 ms−1

10−5 m2 s−1 ∼ 0.02.

It is much less than 1, validating the assumption of low-Reynolds-number flow.

At v ∼ 2 cm s−1, the droplet takes 5 · 104 s to fall 1km. A day is roughly 105 s, so the fall time is
about one-half of a day. The everyday consequence is that fog settles overnight. You go to sleep
with a pea-soup fog, and by the time you wake up, it’s mostly settled onto the ground – and maybe
evaporated as the morning sun warms the ground.
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Problem 4 Hyperbolic-function sketch
Which graph is ln cosh x (where cosh x ≡ (ex + e−x)/2)?

y

x
0 3

0

3
C

D

BA

Curve A

Curve B

Curve C

Curve D

Use easy cases: |x| → ∞ and x → 0. In the x → ∞ case, cosh x ≈ ex/2, so ln cosh x ≈ x − ln 2. In the
x→ −∞ case, cosh x ≈ e−x/2, so ln cosh x ≈ −x − ln 2. In other words,

ln cosh x = |x| − ln 2 (|x| → ∞). (5)

This is enough information to select curve C.

But let’s check that curve C is correct also in the x→ 0 case. There, a Taylor series for ex gives

cosh x = ex + e−x

2
=

1
2

[
(1 + x + x2

2
+ · · ·) + (1 − x + x2

2
− · · ·)

]
. (6)

The result is cosh x ≈ 1 + x2/2. For the logarithm, the Taylor series is

ln(1 + z) ≈ z. (7)

So,

ln cosh x ≈ ln
(
1 + x2

2

)
≈

x2

2
. (8)

Thus, near the origin, ln cosh x looks like an upward-facing parabola (concave up). Curve C passes
this test.
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Problem 5 Guessing an integral
Choose the correct value of the integral∫

∞

−∞

1
a2 + x2 dx, (9)

where a is a positive constant.

πa

π/a
√
πa
√
π/a

The easiest special case is a → ∞. In that limit, the integrand is zero everywhere, so the integral is
zero. The first and third choices are therefore incorrect.

To decide between the second and fourth choices, use the special case a = 1. The integral becomes∫
∞

−∞

1
1 + x2 dx

The integral is arctan x. At ∞ it contributes π/2, and at −∞ it subtracts −π/2, so the integral is π.
Only the second choice, π/a, has the correct behavior when a = 1.
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Problem 6 Debugging
Use special (i.e. easy) cases of n to decide which of these two C functions correctly computes the
sum of the first n odd numbers:

Program A:

int sum_of_odds (int n) {
int i, total = 0;
for (i=1; i<=2*n+1; i+=2)

total += i;
return total;

}

Program B:

int sum_of_odds (int n) {
int i, total = 0;
for (i=1; i<=2*n-1; i+=2)

total += i;
return total;

}

Special cases are useful in debugging programs. The easiest cases are often n = 0 or n = 1. Let’s try
n = 0 first. In the first program, the 2n + 1 in the loop condition means that i = 1 is the only case,
so the total becomes 1. Whereas the sum of the first 0 odd numbers should be zero! So the first
program looks suspicious.

Let’s confirm that analysis using n = 1. The first program will have i = 1 and i = 3 in the loop,
making the total 1+ 3 = 4. The second program will have i = 1 in the loop, making the total 1. Since
the correct answer is 1, Program A has a bug, and Program B looks good.
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Problem 7 Damped, driven spring
A damped, driven spring–mass system (e.g., in 18.03, 2.003, 2.004, 6.003, and maybe also 8.01) is
described by the differential equation

md2x
dt2 + bdx

dt
+ kx = F0eiωt, (10)

where m is the mass of the object, b is the damping constant, k is the spring constant, x is the
displacement of the mass, ω is the (angular) frequency of the driving force, and F0 is the amplitude
of the driving force. The solution has the form

x = x0eiωt, (11)

where x0 is the (possibly complex) amplitude.
Which graph, on log–log axes, correctly shows the transfer function F0/x0? Don’t solve the differential
equation – use an approximation method to guess the answer!

Curve A
ω

Curve B ω

Curve C
ω

[In writing the solution, I realized that I made a mistake in the problem statement by asking for F0/x0
(input/output) instead of x0/F0 (output/input). Additionally, I should have used absolute value and
asked about the magnitude of the transfer function |x0/F0|. I’ll write the solution as if I had written
the problem correctly. Apologies if you spent extra time because of those mistakes!]
Use easy cases. At low frequencies (ω→ 0), the spring moves very slowly, meaning that derivatives
with respect to time become tiny. Therefore, the time-derivative terms m(d2x/dt2) and b(dx/dt) become
much smaller than the kx term. The remaining equation is

kx ≈ F0eiωt. (12)

With x = x0eiωt, the transfer function x0/F0 is 1/k. This function is independent of frequency, so the
curve must be flat at low frequencies. The only curve that matches this criterion is curve A.
As a check, let’s try really high frequencies (ω→∞). Then the second-derivative term m(d2x/dt2) is
the dominant term, so the differential equation simplifies to

md2x
dt2 = F0eiωt. (13)

Using x = x0eiωt gives

−mx0ω
2 = F0, (14)

so the magnitude of the transfer function |x0/F0| is 1/mω2. On a log–log graph, that is a −2 slope,
which could be curves B or C but not curve A.
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Solution set 7
Submit your answers and explanations online by 10pm on Friday, 23 Apr 2010.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers to the problem, or to subproblems, until you solve the problem or have tried hard. This
policy helps you learn the most from the problems.

Homework is graded with a light touch: P (made a decent effort), D (made an indecent effort), or F (did not
make an effort).

Problem 1 No need to remember lots of constants
Many atomic problems, such as the size or binding energy of hydrogen, end up in expressions
with ~, the electron mass me, and e2/4πε0. You can avoid remembering those constants by instead
remembering the following values:

~c ≈ 200 eVnm = 2000 eVÅ
mec2

∼ 0.5 ·106 eV
e2/4πε0

~c
≡ α ≈

1
137

(fine-structure constant).

Use those values to evaluate the energy of a visible-light photon. Note: The photon energy is E = h f ,
where h is Planck’s constant and f is the frequency of the radiation; equivalently, E = ~ω, where
~ = h/2π and ω is the angular frequency of the radiation.

10
±

eV or 10 . . . eV

E = h f = 2π~ f = 2π~ c
λ
,

where f is its frequency and λ is its wavelength. For green light, λ ∼ 600nm, so

E ∼

2π︷︸︸︷
6 ×

~c︷ ︸︸ ︷
200 eVnm

600nm︸ ︷︷ ︸
λ

∼ 2 eV.
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Problem 2 Boundary-layer thickness
How thick is the boundary layer on a golf ball traveling at, say, v ∼ 40ms−1?

10
±

m or 10 . . . m

The thickness δ is roughly
√
νt, where ν is the kinematic viscosity of air, and t is the time for air to

travel a distance comparable to r, the radius of the golf ball. So

δ ∼

√
νr
v
, (1)

A golf ball has a diameter of about 5 cm so r ∼ 2 cm. The kinematic viscosity of air is ν ∼ 10−5 m2 s−1.
So

δ ∼

√
10−5 m2 s−1 × 2 ·10−2 m

4 ·101 ms−1 ∼ 10−4 m (2)

(after neglecting a factor of 0.7). Compared to this thickness, the dimples are plenty thick enough to
trip the boundary layer into turbulence and thereby reduce the drag coefficient.



Solution set 7 / 6.055J/2.038J: Art of approximation in science and engineering (Spring 2010) 3

Problem 3 Viscous versus form drag
The form drag (drag due to moving fluid aside) is

Fd ∼ ρv2A. (3)

The viscous (skin-friction) drag is

Fν ∼ ρν × surface area × velocity gradient, (4)

where ρν is the dynamic viscosity η. The velocity gradient is v/δ, where v is the flow speed, and δ
is the boundary-layer thickness.

The ratio Fd/Fν is dimensionless, and must therefore be a function of the only dimensionless measure
of the flow, namely the Reynolds number Re. In fact, the function is a power law:

Fd

Fν
∼ Ren, (5)

where n is the scaling exponent. What is n?

± or . . .

Using v/δ as the velocity gradient and A as the surface area, the skin-friction drag becomes

Fν ∼ ρνA
v
δ
. (6)

Therefore, the ratio of drag forces is

Fd

Fν
∼
ρv2Acs

ρνAv/δ
, (7)

where Acs is the cross-sectional area. For objects that are not too elongated (e.g. not a long train), the
surface and cross-sectional areas are comparable. Then the areas in the numerator and denominator
cancel out. Additionally, the factors of ρ and one factor of v also cancel. What’s left is

Fd

Fν
∼

vδ
ν
. (8)

From the reading (r27-lumping-boundary-layers), δ ∼ r/
√
Re, so

Fd

Fν
∼

vr
ν
× Re−1/2. (9)

The fraction vr/ν is the Reynolds number, so
Fd

Fν
∼ Re1/2. (10)

Thus, n = 1/2.

For most everyday flows, Re� 1. Thus, most of the drag is form drag rather than skin-friction drag.
The exception to this rule is very long objects (freight trains), where the surface area is much greater
than the cross-sectional area.
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Problem 4 Viscous versus form drag while walking
Use the result of Problem 3 to estimate the ratio

form drag
viscous drag

=
Fd

Fν
(11)

for a person walking.

10
±

or 10 . . .

The ratio is roughly the square root of the Reynolds number, where

Re ∼
size × speed

kinematic viscosity
. (12)

For a person, the size is roughly r ∼ 1m (using the geometric mean of 2m for the height and 0.5m
for the width). For walking, v ∼ 1.5ms−1. The viscosity of air is, conveniently, 1.5 ·10−5 m2 s−1, so the
Reynolds number is roughly

Re ∼ 1m × 1.5ms−1

1.5 ·10−5 m2 s−1 ∼ 105. (13)

The square root is 102.5 or 300. Form drag, which is mostly independent of viscosity, is the big source
of drag.
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Problem 5 Rolling down the plane
Four objects, made of identical steel, roll down an 30-degree inclined plane without slipping. The
large objects have three times the radius of the small objects. Which object has the greatest acceler-
ation?

a large spherical shell

a large disc

a small solid sphere

a small ring

The goal is to find the acceleration a along the plane. It depends on g, θ (which is 30 ◦ here), the
object’s moment of inertia I, its mass m, and the rolling radius r.

a = f (g, θ, I,m, r).

Use dimensional analysis to simplify this function of five variables. The six variables in total make
three independent dimensionless groups:

a
g

θ
I

mr2 .

Therefore,
a
g
= f

(
θ,

I
mr2

)
. (14)

Probably
a
g
= f

( I
mr2

)
sinθ.

a = f
( I
mr2

)
g sinθ.

The ratio I/mr2 is a dimensionless measure of where the mass of an object lies. The farther toward
the edge and away from the rolling axis, the greater the ratio. Most importantly, I/mr2 is independent
of an object’s radius; for example, a big and a small ring have the same ratio.

The bigger the ratio, the bigger the fraction of energy consumed by rolling motion compared to
translational motion. Therefore, the object with the smallest I/mr2 will have the greatest acceleration.
The solid sphere (choice C) has the most mass near the rolling axis, so it will be the fastest.



Solution set 7 / 6.055J/2.038J: Art of approximation in science and engineering (Spring 2010) 6

Problem 6 Hydrogen binding energy
In lecture and readings we analyzed hydrogen (r26-lumping-hydrogen.pdf on NB), which is one
electron bound to one proton. Using those results, one can show that the binding energy is

E ∼ 1
2

me(αc)2, (15)

where α is the fine-structure constant, c is the speed of light, and me is the mass of the electron.

Use the methods of Problem 1 to calculate the binding energy in electron–volts.

10
±

eV or 10 . . . eV

Rearranging the powers of c,

E ∼ 1
2
×mec2

× α2. (16)

Because α ≈ 1/137, which is roughly 1/141,

α2
∼

1
1.41 ·102 ∼

1
2
·10−4. (17)

Since mec2
∼ 0.5 ·106 eV, the binding energy is

E ∼ 1
2
×

1
2
·106 eV × 1

2
·10−4

∼
1
8
·102 eV. (18)

The result is 13 eV.
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Problem 7 Heavy nuclei
In this problem you study the innermost electron in an atom with many protons (i.e. with a heavy
nucleus). So, imagine a nucleus with Z protons around which orbits just one electron. Let E(Z) be
the binding energy. The case Z = 1 (Problem 6) is hydrogen.

Find how E(Z) depends on Z. Namely, what is the scaling exponent n in

E(Z) ∝ Zn (19)

or, equivalently, in
E(Z)
E(1)

= Zn ? (20)

± or . . .

With Z protons pulling on one electron, the electrostatic energy contains the factor Ze2/4πε0. So
instead of using e2/4πε0 as one quantity in the dimensional analysis, we should use Ze2/4πε0. The
other quantities – aZ, me, and ~ – are unchanged except for aZ replacing a0. The Z propagates along
with the e2 through the calculation of the radius aZ and the energy E(Z).

Since the radius a0 has one factor of e2 in the denominator, the aZ picks up a factor of Z in the
denominator relative to a0. Therefore,

aZ =
a0

Z
.

The electrostatic binding energy is inversely proportional to the radius aZ:

E(Z) ∼ Ze2

4πε0

1
aZ
. (21)

One factor of Z is directly visible, and the second factor is part of 1/aZ. The energy E(Z) thus has a
factor of Z2:

E(Z) = E(1) × Z2.

Therefore, n = 2.
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Problem 8 Heaviest nuclei
Consider again the system of Problem 7: a nucleus with Z protons surrounded by one electron.

When the binding energy E(Z) is comparable to mec2 – the rest energy of the electron – then the
electron has enough kinetic energy to produce, out of nowhere, a positron (an anti-electron). As a
result of this process, which is known as pair creation, the positron leaves the nucleus, turning one
proton into a neutron. That makes the atomic number Z drop by one. The consequence is that, for
large-enough Z, the nucleus is unstable! Relativity sets an upper limit for Z.

Use the results of Problem 7 to estimate this maximum Z set by relativity (feel free to ignore factors
of 1/2 in E(1)).

± or . . .

To include in the explanation box: Compare your estimate with the Z for the heaviest stable nucleus
(uranium).

Since the binding energy E(Z) is E0 × Z2 and E0 ∼ m(αc)2, the binding energy is

E(Z) ∼ mc2(Zα)2. (22)

Whe Zα ∼ 1, this energy is comparable to the electron’s rest energy: That is when the electron
becomes significantly relativistic, which permits pair creation to destabilize the nucleus. So the
maximum Z is roughly α−1 or about 140. The heaviest stable nucleus is uranium with Z = 92, so the
explanation for the stability of the elements looks pretty good.
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Solution set 8
Submit your answers and explanations online by 10pm on Wednesday, 05 May 2010.

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid
looking up answers to the problem, or to subproblems, until you solve the problem or have tried hard. This
policy helps you learn the most from the problems.

Homework is graded with a light touch: P (made a decent effort), D (made an indecent effort), or F (did not
make an effort).
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Problem 1 Should you be worried?
Assume that 1 in 104 bridges in the United States are in danger of collapse unless repaired soon, and
that a new test for bridge integrity has been devised. This test is 90% accurate: It always detects an
unsafe bridge (no false negatives); and 10% of the time it says that a safe bridge is unsafe (10% false
positives).

You learn that a nearby bridge, on which you often walk, failed the test (the test said it was unsafe).
What are the odds that the bridge is safe?

10
±

or 10 . . .

Note: If psafe is the probability that the bridge is safe, then the corresponding odds are defined by

odds ≡
psafe

1 − psafe
.

(Odds, unlike probabilities, range from 0 to ∞ and are thus more suitable for describing in the form
10a±b.)

Let’s do it by the natural-frequencies approach. Imagine a population of 104 US bridges. Given the
base rate of 1 in 104, assume that one bridge among them is actually in danger of collapse.

Now imagine applying the bridge-integrity test to all 104 bridges. It will spot the one unsafe bridge.
But from among the nearly 104 safe bridges, it will also mark 10% or 103 bridges as unsafe. The
bridge you use is among the roughly 103 bridges with a positive test. But only one of those bridges
is actually unsafe, so punsafe ≈ 10−3. Therefore, the odds are 103 to 1 that the bridge is safe (or simply
103).

Now let’s use Bayes theorem to get the same result. The odds form of Bayes theorem is

O(H|E) = O(H)
P(E|H)
P(E|H)

, (1)

where H is the hypothesis that the bridge is unsafe, O(H) is the odds in favor of that hypothesis being
true, E is the evidence that the bridge failed the integrity test, P(E|H) is the probability of a failed
integrity test given that the bridge is unsafe (the false-negative rate), and P(E|H) is the probability of
a failed test given that the bridge is safe (the false-positive rate).

The initial odds O(H) are 10−4 (the bridge is very probably safe). The likelihood ratio is
P(E|H)
P(E|H)

=
1

0.1
= 10. (2)

Therefore, the new odds are 10−3 in favor of the bridge being unsafe (or 103 in favor of it being safe,
as computed above).

For an excellent article in the newspaper (of all places) on how to do Bayes theorem using natural
frequencies, see Steven Strogatz’s recent column in the New York Times (thanks to Sean Clarke for
pointing me to it), available at http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/

http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/
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Problem 2 Reusing plausible-range combinations
In lecture, we saw that if the width of an object has a plausible range w = 1 . . . 10m and the length
has a plausible range l = 1 . . . 10m, then the area A = lw has the range 2 . . . 50m2.

If instead the plausible ranges are w = 2 . . . 20m and l = 5 . . . 50m, what is the plausible range for
the area?

± m2 or . . . m2

Multiplying everything (the top and bottom) by a constant changes the midpoint of the range and
the lower and upper endpoints, but does not change the width itself (the ratio of the upper to lower
endpoints). For example, a factor of 25 uncertainty is still a factor of 25, just around a new midpoint.
In fancy words, the width of a range is invariant to changes of scale.

From lecture, we are given that 1 . . . 10 × 1 . . . 10 ≈ 2 . . . 50. Now multiply the lower and upper
endpoints of the first range by 2; and multiply the lower and upper endpoints of the second range
by 5. Those changes multiply the lower and upper endpoints of the product by 2 × 5. So,

2 . . . 20 × 5 . . . 50 ≈ 20 . . . 500. (3)

Problem 3 Singing a logarithm
Estimate 1.540 using the singing-logarithms method from lecture (a copy of the handout is on the
course website).

10
±

or 10 . . .

1.5 is 3/2, which is 7 semitones (a perfect fifth). Each semitone is a factor of 21/12 which is also 101/40

(40 semitones make a factor of 10). Therefore, 1.5 ≈ 107/40 and

1.540
≈

(
107/40

)40
= 107. (4)

The true value is just above 1.1 ·107.
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Problem 4 Estimating a mass
You are trying to estimate the mass of an object. Suppose that your plausible range for its density
is 1 . . . 5g cm−3 and for its volume is 1 . . . 5 cm3. What is (roughly) your plausible range for its mass?

± g or . . . g

Each range is a factor of 5 in width. In semitones,

5 =
5
4︸︷︷︸

4 semitones

× 2︸︷︷︸
12 semitones

× 2︸︷︷︸
12 semitones

= 28 semitones. (5)

Because 40 semitones make a factor of 10, the 28 semitones means a base-10 logarithm of 0.7. Add
the squares of (logarithmic) widths to get the new (logarithmic) width squared:

0.72 + 0.72
≈ 1. (6)

So, the new plausible range has a width of 1 decade (a factor of 10). The range is centered at 5g:

m = ρV ∼
√

5︸︷︷︸
1...5

g cm−3
×

√

5︸︷︷︸
1...5

cm3 = 5g. (7)

So the plausible range is 1.7 . . . 15g. (A full calculation, without using the semitones approximation,
gives 1.6 . . . 15.6g.)

Problem 5 Which is the wider range?
Suppose that your knowledge of the quantities a, b, and c is given by these plausible ranges:

a = 1 . . . 10
b = 1 . . . 10
c = 1 . . . 10.

(8)

Which quantity – abc or a2b – has the wider plausible range? (The ‘width’ is the ratio of the upper
to lower endpoints; so a, b, and c are each a factor of 10 wide.)

abc

a2b

Both quantities have the same width.

Both choices have b in them, so ignore it and instead compare ac versus a2. When computing ac
there is a chance that an overestimate in a will compensate an underestimate in c (and vice versa).
However, when computing a2, any error in estimating a is magnified – a factor of 2 error in a becomes
a factor of 4 error in a2. So, a2 has a wider plausible range than ac. Numerically,

ac = 2 . . . 50.
a2 = 1 . . . 100.

(9)
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Problem 6 Golf-ball dimples
Why do golf balls have dimples?

The dimples make the main airflow around the ball become turbulent.

The dimples stabilize the flight.

The dimples are there by tradition but have no physical justification.

The dimples make the airflow turbulent in the thin boundary layer adjacent to the ball.

Let’s first calculate the Reynolds number (a good first instinct in understanding a fluid flow). Let’s
say that the golf ball is hit at 30ms−1 (70 mph!). It’s diameter is a few centimeters, say 3 cm. Using
ν ∼ 10−5 m2 s−1 for the viscosity of air, the Reynolds number is

Re ∼ 30ms−1
× 3 ·10−2 m

10−5 m2 s−1 ∼ 105. (10)

That means the Reynolds number in the boundary layer is roughly
√
Re ∼ 102.5

∼ 300. This is not
high enough for turbulence, so the boundary layer is laminar.

A laminar boundary layer separates easily on the back of the golf ball, creating a large turbulent,
low-pressure region behind the ball – that means lots of drag. If only the boundary layer could be
made turbulent! Then the boundary layer would stick to the golf ball farther along the back side,
and the drag would be lower. That’s just what the dimples do: They trip the boundary layer into
turbulence at a lower Reynolds number than is otherwise required (Choice D).
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Problem 7 Singing logarithms to combine plausible ranges
You are trying to esimate the plausible range for the volume of an object. You have assigned the
length, width, and height the plausible ranges

l = 1 . . . 10m
w = 1 . . . 10m
h = 1 . . . 10m.

(11)

In other words, each range is a factor of 10 wide (the ‘width’ is the ratio of the upper to lower
endpoints). Convince yourself that the plausible range for the volume V = lwh is a factor of 10

√
3

wide and is centered on 101.5 m3.

Each factor in lwh is centered at 100.5 m (the geometric mean of the lower and upper endpoints).
Therefore lwh is centered on(

100.5 m
)3

= 101.5 m3. (12)

To compute the width of the range for lwh, note that each factor in lwh is 1 factor of 10 in width.
For plausible ranges, add the squares of the (logarithmic) widths to get the square of the final
(logarithmic) width:

12 + 12 + 12 = 3. (13)

So the plausible range for V is
√

3 wide (in its base-10 logarithm); in other words, the range has
width 10

√
3.

For the answer box, use
√

3 ≈ 1.7 or
√

3 ≈ 1.73 and the singing-logarithm method from lecture (a
copy of the handout is on the course website) to estimate 10

√
3.

± or . . .

I’ll first use
√

3 = 1.7. Then

10
√

3 = 101.7 = 10 × 100.7. (14)

But 100.7 is 28 semitones (40 semitones is a factor of 10).

28 semitones =
5
4︸︷︷︸

4 semitones

× 2︸︷︷︸
12 semitones

× 2︸︷︷︸
12 semitones

= 5. (15)

So, 101.7
≈ 50.

For fun, let’s correct that estimation slightly by using
√

3 = 1.73. The extra factor is 100.03. Since 0.03
is roughly 1/40, 100.03 is roughly 1 semitone. Based on the observation that 1.25 is 4 semitones, 1
semitone is given by

1.251/4 = (1 + 0.25)1/4
≈ 1 +

0.25
4
≈ 1.06. (16)

So, we should raise the earlier estimate of 101.7 by 6%, which gives 53. [An exact calculation gives
10
√

3
≈ 53.96.]
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Problem 8 Perfume
If the diffusion constant (in air) for small perfume molecules is 10−6 m2 s−1, estimate the time for
perfume molecules to diffuse across the lecture room.

10
±

s or 10 . . . s

To include in the explanation box: Now try the experiment, at least mentally. How long does it
actually take to smell the perfume from across the room? Explain the large discrepancy between the
theoretical estimate and the experimental value.

The dimensions of a diffusion constant D are L2T−1, so the diffusion time is given by τ ∼ x2/D,
where x is a length. The lecture room is perhaps 10m deep (and maybe 15m wide). It doesn’t
matter exactly which length I use, so I’ll use the one that is simpler to square: x ∼ 10m. Then

τ ∼
10m2

10−6 m2 s−1 ∼ 108 s ∼ 3years. (17)

That time does not agree with experiment! In reality, it takes perhaps a minute to notice that someone
has opened a bottle of aromatic stuff. The discrepancy is that the molecules must travel not just by
diffusion; in fact, the unavoidable air currents in the room transport the molecules much farther and
faster than diffusion can.
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Problem 9 Teacup spindown
You stir your afternoon tea to mix the milk (and sugar if you have a sweet tooth). Once you remove
the stirring spoon, the rotation starts to slow. In this problem you’ll estimate the spindown time τ:
the time for the angular velocity of the tea to drop by a significant fraction.

teal

l

To estimate τ, consider first a physicist’s idea of a teacup: a cylinder with height
l and diameter l, filled with a water-like liquid. Tea near the edge of the teacup
– and near the base, but for simplicity we’ll neglect the effect of the base – is
slowed by the presence of the edge.

Because of the no-slip boundary condition, the edge creates a velocity gradient.
Because of the tea’s viscosity, the velocity gradient produces a force along the
edge. This force tries to accelerate each piece of the edge along the direction
of the tea’s motion. The piece in return exerts an equal and opposite force on
the tea. That is how the edge slows the rotation. Now analyze this model quantitatively using
the following steps. Keep the results in symbolic form until the final step (Step e) when you get a
numerical value for τ.

a. Convince yourself that the spindown time τ is given by

τ ∼
ρl5ω
σl3

=
ρl2ω
σ
, (18)

where ρ is the density of tea, σ is the viscous stress (the viscous tangential force per unit area),
and ω is the initial angular velocity. Hint: Consider the torque on and the angular momentum of
the rotating blob of tea. In addition, drop all dimensionless constants like π and 2 by invoking
the Estimation Theorem 1 = 2.

If the tea is spinning at angular velocity ω, then it has angular momentum L = Iω, where I is the
moment of inertia. The moment of inertia is given by mass times a squared distance from the
origin:

I ∼ ρl3︸︷︷︸
m

× l2 = ρl5. (19)

Not all of the mass is at a distance l from the center, but the twiddle accounts for the omitted
dimensionless constant. With that I, the angular momentum is

L ∼ ρl5ω. (20)

The viscous stress produces a torque that reduces this angular momentum. The viscous torque
is

viscous torque ∼ viscous stress︸ ︷︷ ︸
σ

× area︸︷︷︸
l2

× lever arm︸ ︷︷ ︸
l

∼ σl3. (21)

Because torque is dL/dt, it has dimensions of L/t. So a time is given by L/torque:

τ ∼
ρl5ω
σl3

. (22)

b. Now estimate the viscous stress σ by using the idea that

viscous stress ∼ ρν × velocity gradient. (23)

The velocity gradient is determined by the thickness of the region over which the the edge
significantly affects the flow; this region is the boundary layer. Let δ be its thickness (you’ll find δ
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in Step d). In terms of δ, estimate the velocity gradient near the edge. Then estimate the viscous
stress σ.

The velocity gradient is
∆v
∆x
∼
ωl
δ
. (24)

Therefore the viscous stress is

σ ∼ ρν
ωl
δ
. (25)

c. Insert your expression for the viscous stress σ into the earlier estimate for the spindown time τ.
Your new expression for τ should contain only the boundary-layer thickness δ, the cup’s size l,
and the viscosity ν.

After substituting,

τ ∼
ρl5ω

l3 × ρνωl/δ
∼

lδ
ν
. (26)

[The information in the problem statement is sufficient to arrive at this result, because lδ/ν is the
only way to make a time from l, δ, and ν.]

d. Now estimate the boundary-layer thickness δ using your knowledge of random walks. The
boundary layer is a result of momentum diffusion – and ν is the momentum-diffusion coefficient.
In a given time t, how far can momentum diffuse? This distance is δ. Estimate a reasonable t
for the rotating blob of tea. [Hint: After rotating by 1 radian, the fluid is moving in a signifi-
cantly different direction than before, so the momentum fluxes no longer add.] Use that time to
estimate δ.

A reasonable time is the time to rotate 1 radian, namely t ∼ 1/ω. In that time, the diffusion
distance δ is

δ ∼
√
νt ∼

√
ν/ω. (27)

e. Now put it all together. For a typical teacup stirred with a typical stirring motion, what is the
predicted spindown time τ? [Tea is roughly water, and νwater ∼ 10−6 m2 s−1.]

10
±

s or 10 . . . s

Substituting for δ in the expression for the spindown time τ gives

τ ∼
lδ
ν
∼

l
√
νω
. (28)

Now put in numbers. My nearby teacup is a few inches across, so l ∼ 10 cm. When I stir the tea,
it rotates at a frequency f ∼ fewHz, so ω = 2π f ∼ 20 s−1. The result is

τ ∼
0.1m

√

10−6 m2 s−1 × 20 s−1
∼ 20 s. (29)
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To include in the explanation box: Estimate τexp experimentally by stirring tea. Compare the experi-
mental time with the predicted time.

I just tried it, and τexperimental (the time for the rotation to slow significantly) was around 10 s. Not
bad!



6.055J/2.038J (Spring 2010)

Solution set 9
This homework is not for turning in (by MIT rules, no assignment may fall due after May 7). But I hope
that you enjoy thinking about the problems.
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Problem 1 Xylophones
If a 10-cm long slat of a xylophone rings with middle C ( f ∼ 260Hz), how long is the slat that rings
with low C ( f ∼ 130Hz)? (The slats of a xylophone all have the same thickness.)

5 cm

7 cm

14 cm

20 cm

I’ll follow the approach used in lecture: dimensional analysis along with the result of the wood-
blocks demonstration. But for fun I’ll do it slightly differently, by using dimensional analysis to
compute the slat’s bending stiffness.

The stiffness k depends on Y (the Young’s modulus) and the three dimensions of length, width,
and height (l, w, and h). The dimensions of k are force per length (it’s a spring constant) or energy
per area; the dimensions of Y are force per area or energy per volume. The other quantites are
all lengths. So, these five variables can be produced by two independent dimensions (energy and
length, for example). Therefore, there are three independent dimensionless groups.

One group can be k/Yl. Another is w/l, and a third is h/l. The most general statement using these
three groups is

k
Yl
= f

(
w
l
,
h
l

)
. (1)

The goal in this problem is to find out how k depends on the length l (and from there to find
how the frequency depends on the length). To that end, the first observation is that the stiffness is
proportional to the width w: Two identical slats side by side act like one wide slat, and have twice
the stored energy, therefore twice the stiffness k. The only way to make k proportional to w is

k
Yl
=

w
l

f
(
h
l

)
. (2)

The second observation is the argument from the reading (r33-springs-wood-blocks.pdf) and
lecture that the stiffness is proportional to h3. The only way to make that true is to make f a cubic:

k
Yl
=

w
l
×

h
l3
. (3)

Thus, the stiffness k is proportional to l−3. Because the mass is proportional to l, the oscillation
frequency is proportional to l−2:

ω =

√
k
m
∝

√
l−3

l
= l−2. (4)

Thus, to decrease the frequency by a factor of 2 (from 260Hz to 130Hz) requires increasing the
length by a factor of

√
2, i.e. from 10 cm to roughly 14 cm.

new length ≈ 14 cm (choice C). (5)
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Problem 2 Speed of sound
The speed of sound in oxygen (molecular mass 32) at standard temperature and pressure is 316ms−1.
What is the speed of sound for hydrogen (molecular mass 2)?

78ms−1

157ms−1

316ms−1

637ms−1

1284ms−1

The speed of sound in a gas depends on the density and pressure:

cs ∼
√

p
ρ
. (6)

The ideal gas law is

p = nkT, (7)

where n is the molecule’s number density, k is Boltzmann’s, constant and T is the temperature. The
density is ρ = mn, where m is the molecular mass. So,

cs ∼
√

p
ρ
=

√
nkT
mn
∝ m−1/2. (8)

(Everything else, including T, is held constant.)

Decreasing the molecular mass from 32 atomic mass units to 2 atomic mass units – a factor of 16
decrease – will increase the speed of sound by a factor of

√
16 = 4. Therefore,

chydrogens ≈ 1264ms−1 (choice E). (9)
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Problem 3 Blue skies
Which reason is part of the explanation for why the sky looks blue?

The power radiated by an oscillating charge decreases strongly with frequency.

The power radiated by an oscillating charge increases strongly with frequency.

Our eyes are more sensitive to blue than to red light.

The sun radiates more energy in the short-wavelength (blue) end of the visible spectrum than in the
long-wavelength (red) end of the spectrum.

The sun radiates more energy in the long-wavelength (red) end of the visible spectrum than in the
short-wavelength (blue) end of the spectrum.

In an earlier problem set (Problem 3 on Homework 5), you found that an accelerating charge’s
radiation power is proportional to the square of its acceleration. The accelerating itself is proportional
to the square of the frequency (as is true of any spring). So, the power radiated is proportional to
the fourth power of frequency – a strongly increasing function.

Thus, choice A is incorrect. The remaining question is which of choices B-E are true and relevant.
First, truth. Choice B is true. Choice C is false, but even if it were true, it would be a small effect.
Choices D and E, even if true, would again be only small effects.

Whereas choice B is true and is a large effect. The frequency ratio between red and blue light is
roughly 2 (the visible spectrum spans an octave). So any atoms, e.g. in the atmopshere, receiving
red and blue solar radiation will oscillate in a combination of red and blue frequencies, and that
combination will radiate predominantly (by a factor of 24 = 16) blue light. That’s why the sky looks
blue.

Choice B (10)
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Problem 4 Boiling away mercury
The surface tension of mercury (a liquid at room temperature) is roughly 0.5Nm−1. Roughly how
much energy is required to boil away 1m3 of mercury?

10
±

J or 10 . . . J

The simplest argument is from dimensions. Surface tension is energy per area. The required quantity
Lvap is energy per volume. Their ratio γ/Lvap is a length. Because both quantities are microscopic
in origin (they are based on atomic spacings and bond energies), the only plausible length is the
interatomic spacing a. Thus,

γ

Lvap
∼ a. (11)

A slightly more accurate result, as discussed in lecture, is to include a factor of 1/6:
γ

Lvap
∼

1
6

a, (12)

to account for the fact that making surface breaks only 1 out of, say, 6 bonds. Then

Lvap ∼
6γ
a
. (13)

For mercury,

Lvap ∼
6 × 0.5Nm−1

3 ·10−10 m
∼ 1010 Jm3. (14)

The true value is about 0.4 ·1010 Jm−3, so this simple dimensions argument is reasonably accurate.
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Problem 5 Waves on a swimming pool
Roughly what is the minimum speed of waves on the surface of a swimming pool filled with mercury
instead of water? [Surface tension γHg ∼ 0.5Nm−1; density ρHg ∼ 1.4 ·104 kgm−3.]

10
±

ms−1 or 10 . . . ms−1

Do it by dimensions. The minimum speed v depends on γ and ρ – and also on gravity g. The four
variables v, γ, ρ, and g are made up of three dimensions, so there is one independent dimensionless
group. The choice that gives the result most directly is

v
/ (γg

ρ

)1/4

. (15)

Therefore,

v ∼
(
γg
ρ

)1/4

. (16)

Numerically,

v ∼
(
0.5Nm−1

× 10ms−2

1.4 ·104 kgm−3

)1/4

∼ 0.14ms−1. (17)

For more on waves and the physical reasoning behind this result, see Section 9.3.11 of the full book
(now on the course website).

Problem 6 Cold day
You stand outside on a calm (i.e. not very windy) but cold winter day wearing only a thin T-shirt
and equally thin pants. Roughly at what rate does your body lose heat?

10
±

W or 10 . . . W

This situation is analyzed in the readings (r31-probabilistic-random-walks.pdf or Section 8.3
of the full book). The result is

P ∼ 600W. (18)
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Problem 7 Blackbody temperature of the earth
The earth’s surface temperature is mostly due to solar radiation.

The solar flux S ≈ 1350Wm−2 is the amount of solar energy reaching the top of the earth’s at-
mosphere. But that energy is spread over the surface of a sphere, so S/4 is the relevant flux for
calculating the surface temperature. Some of that energy is reflected back to space by clouds or
ocean before it can heat the ground, so the heating flux is slightly lower than S/4. A useful estimate
is S′ ≈ S/5 ∼ 250Wm−2.

Look up the Stefan–Boltzmann law and use it to find the blackbody temperature of the earth.

± K or . . . K

Your value should be close to room temperature but enough colder to make you wonder about the
discrepancy. Why is the actual average surface temperature warmer than the value calculated in this
problem?

According to the Stefan–Boltzmann law, the power per area radiated from a blackbody is F = σT4,
where σ is the Stefan–Boltzmann constant and T is the temperature of the body (the object). So

T = (F/σ)1/4.

The Stefan–Boltzmann constant σ is constructed from other fundamental constants (you can derive
most of σ using the method of ??). It’s value is

σ ≈ 5.7 ·10−8 J s−1 m−2 K−4.

So,

T ≈
(

250Wm−2

5.7 ·10−8 J s−1 m−2 K−4

)1/4

∼ 257K.

In normal units, that’s −16 ◦C or 3 ◦F. That’s very cold, colder than the average Boston winter day.

It is close to room temperature, but the discrepancy is a bit large. What’s wrong with the calculation?
The greenhouse effect! The earth absorbs the 250Wm−2 from the sun, and it radiates it to space.
Those parts of the calculation are correct. But the outgoing radiation is mostly infrared, which is
well absorbed by carbon dioxide and water molecules in the atmosphere. The absorbed radiation
is radiated in all directions, including back to the earth – warming the surface, and making life
bearable.

So, we need the greenhouse effect, just not too much of it.
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Problem 8 Painful integral
Estimate∫

∞

−∞

1
(1 + x2)200 dx (19)

with only paper and pencil (i.e. no calculators or computers).

± or . . .

Following the recipe for the Landau-Institute entrance problem, notice that

(1 + x2)200
≈ e200x2

, (20)

as long as x2 is small. (And when x2 is not small, the error is irrelevant because the denominator is
so huge anyway.) So, the integral is approximately∫

∞

−∞

e−200x2 dx =
√

π
200

. (21)

Since π/50 was about 1/16, here we’ll get∫
∞

−∞

1
(1 + x2)200 dx ≈

∫
∞

−∞

e−200x2 dx =
√

π
200
≈

√
1
64
= 0.125. (22)

The exact value, as integrated by maxima (an MIT invention), is
806332237902681962507643172935479219589684565954555515623817822493133868833426994034591130317798347051723438263680875π
20173827172553973356686868531273530268200826506478308693989526222973809547006571833044104322501076808092993531037089792

(23)

which is approximately 0.12556702371249.


