6.055J/2.038J (Spring 2010)

Homework 6

Submit your answers and explanations online by 10pm on Wednesday, 14 Apr 2010.
Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid looking up answers to the problem, or to subproblems, until you solve the problem or have tried hard. This policy helps you learn the most from the problems.
Homework is graded with a light touch: P (made a decent effort), D (made an indecent effort), or F (did not make an effort).

Problem 1 Guessing an integral using easy cases
Use easy cases to choose the correct value of the integral
$\int_{-\infty}^{\infty} e^{-a x^{2}} d x$.
(1)$\sqrt{\pi a}$$\sqrt{\pi / a}$

Problem 2 Differential-equation solution

Which sketch shows a solution of the differential equation

$$
\frac{d y}{d t}=A y(M-y),
$$

where A and M are positive constants?
Curve ACurve B
Curve CCurve D

Problem 6 Debugging

Use special (i.e. easy) cases of n to decide which of these two C functions correctly computes the sum of the first n odd numbers:

Program A:

int sum_of_odds (int n) \{
int i, total = 0;
for (i=1; $\mathrm{i}<=2 * \mathrm{n}+1$; $\mathrm{i}+=2$)
total += i;
return total;
\}
Program B:
int sum_of_odds (int n) \{ int i, total = 0;
for ($i=1$; $i<=2 * n-1$; $i+=2$)
total += i;
return total;
\}

Problem 7 Damped, driven spring

A damped, driven spring-mass system (e.g., in 18.03, 2.003 2.004, 6.003, and maybe also 8.01) is described by the differential equation

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=F_{0} e^{i \omega t} \tag{3}
\end{equation*}
$$

where m is the mass of the object, b is the damping constant, k is the spring constant, x is the displacement of the mass, ω is the (angular) frequency of the driving force, and F_{0} is the amplitude of the driving force. The solution has the form

$$
\begin{equation*}
x=x_{0} e^{i \omega t} \tag{4}
\end{equation*}
$$

where x_{0} is the (possibly complex) amplitude.
Which graph, on $\log -\log$ axes, eorrectly shows the transfer function F_{0} / x_{0} ? Don't solve the differential equation - use an approximation method to guess the answer!Curve B

How did you forget 8.03!?

I know! "And maybe also 8.01", psh.

F / x is the y axis, what is the x-axis?

omega or frequency
omega (oscillation frequency)
Curve C

