
IntelliNet: A Campus-Wide Internet of Things

Anelise Newman, Christopher Wang, Eric Luu, Giancarlo Delfin

March 23, 2018

Contents
1 Introduction 2

2 Network Topology 2

3 Network Protocols 3
3.1 Naming . 3
3.2 Network Protocols and Routing . 3

3.2.1 Hierarchical Routing . 3
3.2.2 Network Layer Routing . 4
3.2.3 Announcements . 4

3.3 Transport Protocols (TCP) . 4
3.4 Temporary Data Storage . 4
3.5 Fault tolerance . 4

4 Data processing 4
4.1 Data Requests . 5
4.2 Temperature and motion data. 5
4.3 Camera data . 5
4.4 Data Ingestion . 5
4.5 Data Processing . 5

4.5.1 Thermostat updates . 5
4.5.2 Responding to a crisis . 6
4.5.3 Responding to an update . 6

4.6 Clearing out data and checking for malfunctions 6

5 Data Storage 6
5.1 Data Organization . 6
5.2 Data Backups . 6

6 Design Goals 6
6.1 Simplicity . 6
6.2 Performance . 7
6.3 Fault Tolerance . 7
6.4 Scalability . 7

7 Conclusion 7

1

1 Introduction
The MIT campus contains many devices such as thermostats, cameras, and motion detectors that
monitor and control the state of MIT’s buildings. Currently, these devices lack persistent storage
and the ability to intelligently respond to real-time events. MIT Facilities wants to modernize this
system by creating a network of “smart” devices connected to a central server (the FCS) that is
capable of aggregating data, issuing commands, and responding to campus crises. This network
will allow Facilities to automatically adjust the temperature of vacant rooms, collect crowd data
for space allocation projects, detect the failure of individual devices, and perform other intelligent
tasks.

To meet these goals, our proposed system collects video, temperature, and motion data gener-
ated by the smart devices through a network of Bluetooth nodes and Internet-compatible gateways.
Our modular network design combined with a hierarchical routing protocol provides a simple and
robust system for routing data between devices and the FCS. Upon receiving this data, the FCS
can analyze it, dispatch appropriate instructions to smart devices, and reliably store it for future
analysis. The sections that follow will specify our proposed network topology, communication
protocol, and FCS procedures, as well as how they achieve our main design goals of simplicity,
performance, fault tolerance, and scalability.

2 Network Topology
We propose a modular, campus-agnostic network topology that is both simple and extensible. It
divides the campus into hierarchical domains that provide the basis for our routing protocol.

The basic unit of our network is a 42′ × 42′ × 42′ cube. In the middle of the cube are one or
more BLE+ repeaters. We choose a side length of 42 feet so that every point in the cube is within
30 feet of the repeater, which is the maximum range for a smart device (in the absence of walls).
We place enough BLE+ repeaters in a cube to maintain connections with all the devices that fall
within the cube. Each device connects to a single “parent” BLE+ repeater.

These cubes are composed into 3D blocks of variable dimensions each containing between 20
and 30 BLE+ repeaters. Each block contains two gateways. These blocks can be arranged to cover
the entire campus.

Figure 1: An example of a flat block consisting of 25 cubes arranged in a 5× 5× 1 grid. Note that there
is also a BLE+ repeater in the center square, which has been omitted for clarity.

Walls limit the range of smart devices and may put them out of range of their parent BLE+
repeater. To resolve this problem, we also place chains of normal BLE repeaters, where required,
to extend the range of smart devices.

2

Our topology makes no assumptions about the layout of MIT’s buildings. It ensures network
coverage across campus and can be extended to future buildings or other institutions.

3 Network Protocols
Our hierarchical network protocol provides fault tolerance and performance while maintaining
simplicity.

3.1 Naming
Each device in our network has a unique 48 bit ID. The first 10 bits specify which block the device
is in. The next bit specifies one of the two gateways in the block. The higher bits designate the
parent BLE+ repeater and the device itself (Figure 2). If the device is a gateway or a BLE+
repeater, all higher bits corresponding to lower levels in the hierarchy are set to 0.

Figure 2: ID breakdown

3.2 Network Protocols and Routing
Packets in our network are routed in a hierarchical manner that reflects the structure of our
network.

Figure 3: Our system diagram. Requests for data are sent from the FCS to one of two parent gateways per
block, where they travel through the grid of BLE+ repeaters to get to the device. Device data follows a similar
path to the FCS, which analyses and aggregates the data and responds with device-specific instructions.

3.2.1 Hierarchical Routing

The path a packet takes to get between a smart device and the FCS is illustrated in Figure 3.
Packets from a device to the FCS are routed first to a device’s parent BLE+ repeater and then
to one of the two gateways in its block. If a device is in range of its parent BLE+ repeater, it
sends its packets directly; otherwise, its packets pass through a chain of BLE repeaters first. Once
packets reach the BLE+ parent, they are routed through a mesh of link-state-connected BLE+
nodes until they reach one of the two parent gateways which can contact the FCS. The process for
getting from the FCS to a device is symmetric.

3

3.2.2 Network Layer Routing

A smart device communicates only with its parent BLE+ repeater or any BLE repeaters that are
in range. Within each block, gateways and BLE+ repeaters transfer packets between each other
using a link-state routing protocol. Gateways communicate with the FCS via the Internet. There
is no communication between devices in different blocks.

The system balances simplicity and reliability. Although link-state routing adds complexity, it
is only used to route between the 20-30 BLE+ repeaters and two gateways within a given block.
Within this limited scope, the flood overhead required by link-state routing will be a constant
factor, and will not scale with the size of the overall system. The flexible routing between BLE+
repeaters means that alternate paths can be found if a BLE+ repeater goes down.

In cases where BLE repeaters are necessary to extend range, these repeaters will accept con-
nections from any device and broadcast packets that they receive to anyone in their range. This
protocol is simple but may generate some extra congestion. However, since the repeaters have a
very limited range (30 feet) and are only used in cases where range is already limited, we do not
think this will cause significant slowdown in the network as a whole.

The network layer protocol is best effort. Since repeaters and devices are inherently unreliable,
we rely on the transport layer to enforce reliable communication.

3.2.3 Announcements

Periodically (every second), devices broadcast their presence to all neighbors within range. Devices
only accept connections from their parents, their children, and range-extending BLE repeaters.

3.3 Transport Protocols (TCP)
Our transport layer uses TCP to ensure that messages are delivered reliably in spite of unreliable
hardware. Our packet headers will include the source and destination ID of the message, as well
as a packet ID (to be used for sending ACKs).

3.4 Temporary Data Storage
Data accumulates in our network until explicitly requested by the FCS. This allows the FCS to
load balance and manage congestion and allows for controlled data accumulation if the FCS goes
down temporarily.

Temperature and motion data are stored on the two gateways in each block. As soon as smart
devices generate data, they send it to one of their parent gateways. Video data is stored on the
camera itself. Gateways and cameras wait for an FCS request to upload their saved data.

3.5 Fault tolerance
Our design is resilient to gateway failure. If a gateway fails, its sibling in the same block will take
over its load until it is repaired. In the absence of a gateway failure, packets will be routed by
randomly setting the “gateway bit” in the destination address to 0 or 1. If a problem is detected
in one of the gateways, all packets are routed through its sibling.

Regarding BLE+ repeater failure, our design balances resiliency and simplicity. If a BLE+
repeater fails, connection will be lost to its immediate children, but all other data will be sent
to the FCS as normal because link-state routing allows for finding alternate paths from any live
BLE+ repeater to the gateway. Since BLE+ repeaters take only 5 minutes to repair, we feel that
the simplicity gained in terms of naming, routing, and topology from having one parent per device
justifies losing connection to the children for this short window.

4 Data processing
As depicted in our system diagram (Figure 3), the FCS has three main jobs for data collection:
requesting data from smart devices, processing incoming data, and responding to input from smart
devices and Facilities employees. The FCS’s processes are designed to be as modular and fault-
tolerant as possible.

4

4.1 Data Requests
Our system of request-driven data collection allows the FCS to intelligently coordinate data flow
through the network to reduce latency and congestion, leading to a more performant system.

4.2 Temperature and motion data.
The FCS requests temperature and motion data from gateways every two minutes, well within
the 5-minute interval requested by Facilities. Requests to the various gateways are staggered
throughout the 2-minute window to balance the load on the FCS. When a gateway receives a
request from the FCS, it sends the data in its backlog, starting with the most recent data, up to
a threshold. This same procedure applies to both crisis and normal mode.

4.3 Camera data
By default, the FCS will collect camera data from one camera per block at a time and will cycle
between the cameras in a block. This prevents excessive camera data from overwhelming the
network. In normal mode, the FCS requests all data in the camera’s backlog.

In crisis mode, the FCS requests data from only the crisis cameras in each block and only
requests real-time data, meaning that old data frames are kept in the backlog. Given that the
non-crisis cameras can buffer up to 40 hours of data at one frame per second, delaying collection
from them should not cause data loss in most circumstances.

4.4 Data Ingestion
All data enters the FCS via the same FIFO queue. Thus, it is necessary to split up the incoming
data by type and pass it to the appropriate handler.

The FCS’s main thread spawns child threads that pop data from the input queue and distribute
it to several specialized queues, each with their own workers. We designate special queues for
temperature data, motion data, video data from non-crisis cameras, video data from crisis cameras,
and update confirmations. Each queue’s handlers take care of calling the appropriate methods to
store the data for subsequent analysis. In addition to storing the collected data, these handlers
call a method that updates the timestamp of the most recently received data for the smart device,
it’s BLE+ parent, and the gateway it routed through.

This design is robust to failure because even if one thread fails, having multiple workers allows
data ingestion to continue until the main thread can restart it. It is scalable because the amount
of workers can be increased to handle throughput, and if multiple processors are required, the
modularity of having specialized queues means that work can be split between processors.

4.5 Data Processing
Certain information needs to be handled by the FCS in real-time: changing thermostat temper-
atures in response to motion data, responding to crises or update requests, and keeping track of
failures. Special threads are assigned to each task.

Threads for data analysis are separated from threads for data ingestion: they read from data
storage as opposed to directly from the input FIFO queue. Thus a failure of the analysis module
will not disrupt data ingestion. Also, this division of labor means that these two tasks can be run
on different servers if Facilities decides to scale in the future.

4.5.1 Thermostat updates

Thermostat temperatures must be adjusted depending on whether there has been motion in the
room in the past two hours or not. Every five minutes, a thread is awakened that determines
if temperature adjustments are needed and sends temperature-update commands to appropriate
thermostats.

5

4.5.2 Responding to a crisis

Handlers that read from the crisis video data queue wait on the event start_crisis_processing
to begin operation. The event enable_crisis(camera_ID) has two effects: camera_ID is added
to a global set storing the ids of cameras in crisis, and the event start_crisis_processing
is emitted. disable_crisis(camera_ID) results in camera_ID being removed from the set of
cameras in crisis. Once all cameras have been removed from this set and the crisis queue has been
cleared out, crisis queue handlers will resume waiting.

4.5.3 Responding to an update

On the event update(device_type, software_binary), a thread awakens that sends the binary
to devices of the correct type. This is done in a staggered way so that only a fraction of the devices
within each block receive the update at once. Particularly, the two gateways in each block should
not be updated concurrently. The thread returns once all devices have responded with an update
confirmation message (processed via the update queue) or a timeout has expired, in which case
the devices who did not respond are reported to Facilities as having failed.

4.6 Clearing out data and checking for malfunctions
Once per every five minutes, a process runs that deletes all stale data (video data more than a
week old and temperature data more than two weeks old). This thread also checks the timestamp
of the last message received from each smart device. If the message is more than ten minutes old
for a smart device or 5 minutes old for a gateway/repeater, the device is marked as broken and this
list is returned to Facilities for maintenance. If a gateway is broken, this is considered a serious
threat to network efficiency, so the FCS slows down data requested from the corresponding block
by asking cameras to send their video data at 3 instead of 5 frames per second until the issue is
marked as resolved by Facilities.

5 Data Storage
The FCS’s data storage unit stores data in the file system and makes use of backups to protect
data.

5.1 Data Organization
The FCS will store its data in a hierarchical directory structure. The top level has three directories:
Temperature, Motion, and Video. Each device category is separated out by room number and
then device ID. Data received from smart devices is stored as .txt files. This simple arrangement
allows Facilities to access any piece of data by traversing three directories.

5.2 Data Backups
The FCS has 100 TB of storage to store a week’s worth of camera footage, two weeks’ worth
of thermostat data, and various motion detector timestamps. Its hard drive will be divided into
two partitions: one with 90 TB for normal data and one with 10 TB for backups. The 90 TB
partition will store a week’s worth of video data recorded at five frames per second. It will also
store two weeks’ worth of thermostat data and motion timestamps, which together require less
than 0.00025 TB of storage. The 10 TB partition will store camera footage compressed using the
HEVC standard, which reduces size by a factor of up to 1000, along with duplicates of thermostat
and motion detector readings, since their storage requirements are minimal.

6 Design Goals

6.1 Simplicity
Our network topology is made of composable blocks that can be independently reasoned about
and easily extended. Our block-based, hierarchical routing protocol lets us leverage the flexibility
of link-state routing while limiting its complexity. Finally, modularization of functions on the FCS

6

means that each thread only has to worry about a specific task instead of coordinating with a host
of other processes.

6.2 Performance
Our system was designed to smooth out data flow between the network and the FCS, which will
reduce congestion and latency. Furthermore, the FCS is highly parallelized and can quickly process
large quantities of data.

6.3 Fault Tolerance
Our network handles gateway failures and limits the damage from BLE+ failures. We limit the
amount of device data stored in the network itself to prevent loss from device failures, while
maintaining the capacity to buffer some data if the FCS goes down. Finally, the modularization
of the FCS means that the death of one thread does not interrupt the others.

6.4 Scalability
Both our network layout and our processing pipeline scale easily. Our network topology is campus-
agnostic and easily extensible and the modularity of the FCS means that it would be easy to divide
its functionality between multiple machines if more processing power were required.

7 Conclusion
Our proposed system fulfills the three main goals of MIT Facilities: collecting data for future
project planning, reducing temperatures of inactive rooms to save energy, and automatically de-
tecting infrastructure failures to facilitate faster repairs. Our system ensures reliable communi-
cation of commands and requests for data, even when individual machines fail. Our system also
has mechanisms to prevent data loss if the FCS fails. Designed with simplicity, performance, fault
tolerance, and scalability in mind, our system will provide the infrastructure needed to improve
the quality of campus life.

7

	Introduction
	Network Topology
	Network Protocols
	Naming
	Network Protocols and Routing
	Hierarchical Routing
	Network Layer Routing
	Announcements

	Transport Protocols (TCP)
	Temporary Data Storage
	Fault tolerance

	Data processing
	Data Requests
	Temperature and motion data.
	Camera data
	Data Ingestion
	Data Processing
	Thermostat updates
	Responding to a crisis
	Responding to an update

	Clearing out data and checking for malfunctions

	Data Storage
	Data Organization
	Data Backups

	Design Goals
	Simplicity
	Performance
	Fault Tolerance
	Scalability

	Conclusion

