
6.033 Spring 2018 Design Project

See also: DP FAQ (last update: 4/24/2018), DP Errata (last update: 3/19/2018)

Due Dates and Deliverables

There are four deliverables for this design project.

1. A preliminary report of approximately 2500 words, due on March 23, 2018 at 5:00pm.

2. A brief oral presentation given to your recitation instructor, to be scheduled with your
recitation instructor, for some time between April 18, 2018 and April 24, 2018. The oral
presentation will assess your progress and provide some feedback prior to your final report
submission.

3. A design report of approximately 6000 words, due on May 7, 2018 at 11:59pm.

4. A peer review of approximately 500 words, due May 11, 2018, at 5:00pm.

Each deliverable will have specific guidelines, which will be linked above.

The preliminary report, final report, and peer review should be submitted via the submission site
on the 6.033 website. As with real-life system designs, the 6.033 design project is under-specified,
and it is your job to complete the specification in a sensible way given the stated requirements
of the project. As with designs in practice, the specifications often need some adjustment as the
design is fleshed out. Moreover, requirements will likely be added or modified as time goes on.
We recommend that you start early so that you can evolve your design over time. A good design
is likely to take more than just a few days to develop. A good design will avoid unnecessary
complexity and be as modular as possible, to enable it to evolve to changing requirements.

Large systems are never built by a single person. To that end, you will be working in teams of
three for this project. Part of the project is learning how to work productively on a long-term
team project. All three people on a team must be in the same tutorial.

Although this is a team project, some of the deliverables may have individual components. See
the individual assignment links for more information.

Late submission grading policy: If you submit any deliverable late, we will penalize you one
letter grade per 48 hours, starting from the time of the deadline. For example, if you submit the
report anywhere from 1 minute to 48 hours late, and your report would have otherwise received
a grade of A, you will receive a B; if you submitted 49 hours late, you will receive a C.

As stated on the syllabus, youmust complete each design project component to pass 6.033.
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1 Introduction

Around campus, you’ll find many different mechanical or electronic devices performing small
tasks:

• Thermostats monitor room temperatures and adjust them as needed.

• Motion detectors detect whether people are using a room, and turn lights off when a room
is not in use (and back on when it is).

• Video cameras capture video of traffic in classrooms or other common areas.

There are a variety of situations in which it would be useful for MIT Facilities staff to be able to
monitor these devices:

• To collect data for long-term projects. For example, if Facilities can use a camera feed to
figure out how many people use a particular space over some period of days or months, they
can better allocate space and plan for new buildings.

• To intelligently adjust the temperature in rooms depending on whether they’re in use, which
can lead to significant cost savings for the Institute.

• To detect mechanical failures so that they can send someone to fix the problem in a timely
manner, rather than waiting until it gets reported by an employee.

MIT is looking to move some of these devices towards “smart” functionality: the smart devices
will be able to transmit data back to a server that Facilities owns. Facilities will be able to use that
data to improve the campus environment.

Your primary job in this project will be to design a system that supports these smart devices, and
thus enables MIT Facilities to monitor them, collect data, and respond to failures or events. Your
system will be comprised of a network of nodes that communicate with the above smart devices,
and transmit data back to a centralized server.

In designing this system, you will find that there are many constraints. The smart devices, the
communication network, and the capabilities of the server all place constraints on the amount of
data that can be transmitted and processed at once.

2 Existing Infrastructure

2.1 Smart Devices

Although there are many electronic and mechanical devices around MIT’s main campus, Facilities
is only interested in upgrading three types of devices at this time: thermostats, motion detectors,
and video cameras. Your system will need to transmit some type of data from each smart device
back to a centralized server at Facilities, known as the FCS. Details on the communication between
the smart devices and the FCS are in §2.2.

Each smart device has a small Bluetooth radio built in. This radio allows the smart device to trans-
mit data up to 30 feet at up to 2Mbit/sec using the Bluetooth Low Energy (BLE) Communications
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Command Action
get_temp() Returns the current temperature.
set_temp(t) Sets the desired temperature for this thermostat to t.
update(binary) Initiates a software update.

Table 1: Thermostat Software Abstractions

Protocol (see §2.2.5). Your design will specify what data is transmitted by each smart device, and
when.

The sections below detail specific functionality provided by each type of smart device. In addi-
tion, assume that all smart devices are able to retrieve a 32-bit timestamp reflecting the current
time.

2.1.1 Thermostats

Thermostats monitor room temperatures and adjust temperatures as needed. There are roughly
15,000 thermostats on MIT’s main campus: on average, there is one per room, though some rooms
have more than one thermostat in them.

Each thermostat has a single desired temperature, stored as 32-bit floating-point value. The
thermostat—which is connected to the larger HVAC system for the room—turns heating or cool-
ing devices on or off as needed to achieve that desired temperature. Thus, thermostats have both
a passive and active component: they passively monitor temperature in the room, and actively set
the temperature by turning various components on or off. For the purposes of this project, you do
not need to worry about the thermostat’s connection to the HVAC system, or how the thermostat
itself is powered (via battery or otherwise).

Facilities uses temperature data from thermostats to detect problems: If the temperature is con-
sistently rising (or falling), there may be a problem with the thermostat itself or the HVAC system
as a whole. On the FCS, the temperature reading for each thermostat should be no more than five
minutes old.

Thermostats can receive commands from Facilities that explicitly set their desired temperature,
but do not have an interface for people in the space to set the temperature.

To facilitate the above actions, the thermostat software provides the function calls described in
Table 1.

2.1.2 Motion Detectors

Motion detectors use infrared radiation to detect whether people are using a room. Similar to the
thermostats, there are 15,000 motion detectors on MIT’s main campus: roughly one per room,
though some rooms will have multiple motion detectors.

Each motion detector is directly connected to some component of the lighting system in a room,
and can automate the process of turning lights on and off depending on whether a room is in
use. Each motion detector stores the last time that motion was detected in the room (as a 32-bit
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Command Action
get_time() Returns the last time that motion was detected in the room.
turn_lights_off() Turns the lights off
turn_lights_on() Turns the lights on
get_light_status() Returns a bit representing the status of the lights (1=on)
update(binary) Initiates a software update.

Table 2: Motion Detector Software Abstractions

timestamp). For the purposes of this project, you do not need to worry about the motion detector’s
connection to the lighting system, or how the motion detector itself is powered.

Facilities would like to know how long it has been since the room was last in use. The FCS uses
this data to set the temperature in rooms: if a room has not been in use for awhile, Facilities will
send a command to the relevant thermostat(s) to lower the temperature (see §2.3).

To facilitate the above actions, the motion-detector software provides the function calls described
in Table 2.

2.1.3 Video Cameras

Video camera capture video of common areas on campus. These cameras capture five frames per
second; each frame is 28 kbytes. Unlike thermostats and motion detectors, most classrooms do not
have video cameras in them. The cameras are largely in hallways and common areas, and there
are about 1,000 on MIT’s main campus. There is an average of 100 feet between any two cameras,
though the variance is high because of the layout of various buildings (in particular, it’s certainly
possible that two or more cameras could be quite close together).

Facilities uses the data from the video-camera feeds for a variety of things:

• To collect long-term data on the number of people who use different areas of campus at
different times. Facilities uses this data for a variety of projects (e.g., optimizing pedestrian
flow in various places). The algorithms that Facilities uses to do people-counting run on the
FCS (see §2.3 for more details).

• To capture potentially-illegal activity on certain areas of campus. After a crime has occurred,
Facilities wants to be able to review the footage; to do this, they need to store one week worth
of data from each of the cameras.

In both cases, Facilities requires your system to provide them with at least one frame per second;
however, having access to additional frames can offer improvements (e.g., more accurate count-
ing).

Under normal operation, video frames from the cameras should be available at the FCS within five
hours. However, when in crisis mode, Facilities will need to receive data from certain cameras in
real-time. See §3.2 for more details.

The cameras themselves are more powerful than thermostats or motion detectors. They are capa-
ble of buffering 4 GB of frame data. By default, they will store all five frames per second that the
camera records (this works out to about eight hours of video). However, the cameras can be set
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Command Action
start_filter(fps) Puts the camera in smart-filtering mode. It will store

fps frames per second, instead of five frames per sec-
ond.

stop_filter() Stops smart filtering. The camera goes back to storing
five frames per second.

get_frame(frame_id) Returns the frame with the specified ID. If this frame
is not in the buffer, returns NULL.

get_latest_frame() Gets the latest frame from the buffer. This command
returns the frame as well as an associated 32-bit frame
ID.

is_equal(frame_id_1, frame_id_2) Returns True if the two frames depict effectively the
same image. Returns False otherwise, including if one
(or both) frames are not in the buffer.

delete_frame(frame_id) Deletes the frame with the specified ID. If this frame
is not in the buffer, does nothing.

update(binary) Initiates a software update.

Table 3: Camera Software Abstractions

to automatically filter before buffering, and capture fewer than five frames per second, thereby
storing frames from more than eight hours ago.

Each frame has an ID stored as a 32-bit integer. The first frame ID is 0, and increases with each
frame. When the last frame ID is reached (ID = 232 −1), the frame IDs roll over and start again at
zero.

Cameras are capable of determining whether any two frames depict essentially the same image
(this might happen at night, in common areas that are not in use), and deleting specific frames
from their buffer.

You do not need to worry about how the cameras are powered.

To facilitate the above actions, the camera software provides the function calls described in Ta-
ble 3.

2.2 Building the Network

2.2.1 Smart Devices and Gateways

In addition to having a small transmission range, smart devices themselves cannot connect di-
rectly to the Internet, as shown below.

Thus, to get data from a smart device to the FCS, you’ll need some additional components.

Gateways are devices that can connect to the Internet, and so can communicate directly with the
FCS. Gateways can also communicate with the smart devices using the Bluetooth Low Energy
(BLE) Communications Protocol (§2.2.5); in this way, gateways act as a bridge between compo-
nents that speak Bluetooth and the rest of the Internet. A smart device in range of a gateway
could communicate with the FCS through that gateway, as shown below.

5



In addition to acting as a bridge between Bluetooth components and the rest of the Internet, gate-
ways can send transmit data via Bluetooth with a range of 100 feet and have 32 GB of persistent
storage. If a gateway has to transmit through a wall or floor, its range will decrease by about ten
feet for each impediment (e.g., if the signal needs to pass through a single wall, it will have a
transmission range of 90 feet).

Because they do so much, gateways cost a lot: five hundred dollars per gateway. Gateways have
an average lifetime of one to five years. When they fail, the replacement process is somewhat
involved; it takes an hour to swap the old gateway for a new, working one, and to configure the
new one to work correctly.

Your design will specify where to place these gateways such that data can get from each smart
device to the FCS. One possible solution is to place at least one gateway within range of every
single smart device; smart devices would send data to their nearest gateway, which would then
send data to FCS (as shown in the previous figure).

This design comes with a high monetary cost, among other things.

2.2.2 Repeaters

As an alternative to placing a gateway within range of every smart device, Facilities is allowing
you utilize repeaters. The repeaters have Bluetooth radios, and so can communicate with smart
devices as well as gateways. Repeaters allow you to effectively extend the range of smart devices,
as shown below.

There are two different types of repeaters available to you:

• BLE repeaters are ultra-low-powered devices. They have no persistent storage and 4 MB
of RAM. These repeaters can transmit data within a range of 30 feet; if their range is inter-
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rupted by a wall or a floor, that range will decrease to 20 feet. BLE repeaters are extremely
cheap (ten dollars per repeater) and draw very little power from their built-in battery. For
the purposes of this project, you can assume that the batteries never need to be replaced.

• BLE+ repeaters also communicate using only the BLE Communications Protocol. However,
they are slightly more powerful than BLE repeaters: they have 64 MB of persistent storage,
and have a transmission range of 100 feet; as such, they also cost a bit more (fifty dollars per
repeater), and draw more power.. Like gateways, if BLE+ repeaters transmit through a wall
or floor, their range will decrease by about ten feet for each impediment.

BLE+ repeaters have a battery life of around six months to one year. When their battery
runs out, someone at Facilities needs to replace the battery. The battery replacement is fast:
once a Facilities staff member is there, it only takes five minutes to replace the battery.

2.2.3 Node Discovery

Before any communication can happen, components of your system will need to “discover” each
other.

Smart devices advertise their existence periodically using beacons, which broadcast their 48-bit
identifier. Your system should specify how this ID is constructed. When Facilities installs a smart
device, however, there is a small probability that they will set the ID incorrectly. Your system
should be able to recover in this case. You can assume that, even if an ID is set incorrectly, all
IDs will still be unique (unless you have designed an ID scheme that intentionally duplicates
IDs).

To ensure a sufficient battery life, the smart devices are configured to broadcast these beacons
once per second. A BLE repeater, BLE+ repeater, or gateway can discover any smart device within
range by listening for these beacons.

On the other end of the network, the FCS has an IP address that is fixed and known to all of the
gateways in the system. Similarly, each gateway has a unique IP address that is fixed and known
to the FCS.

If your design requires smart devices to communicate with gateways via additional repeaters,
you will need to specify a node-discovery process. Like the smart devices, you can assume that
BLE repeaters and BLE+ repeaters have fixed, 48-bit identifier; your system should specify how
those are set as well. This identifier is known to the repeater itself, but not to any other part
of the system unless your design specifies otherwise. The repeaters and gateways are capable of
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broadcasting information in the same way that the smart devices are, i.e., you could set them up
to send out beacons. But you are also free to choose other ways to handle this process.

2.2.4 Routing

In order for your system to work, it will need to be able to route data from the smart devices to
the FCS and from the FCS back to various smart devices. Your system design should specify how
data gets to the correct place. Note, for instance, that Facilities does not, by default, have a way
to route data directly to any smart device. In some cases, Facilities will also need to know that its
data was received by the appropriate smart devices.

It’s possible that some data will traverse multiple hops in your network (e.g., smart device →
repeater#1→ repeater#2→ gateway). Assume that each hop will introduce a latency of 100ms.
If your topology requires any component to disconnect from one component and reconnect to
another mid-transmission, assume that the same latency will apply. (There may also be additional
affects, depending on your system design.)

With what we’ve given you so far, it would be possible to set up an arbitrarily complicated “mesh
network”, where nodes attempt to connect to many other nodes, and where nodes can rapidly
change the nodes to which they’re connected. This will quickly bring up a few challenges:

• Routing in a mesh network is a complex problem in and of itself.

• Data will accumulate as it travels through the mesh. For instance, if two smart devices are
each transmitting .5Mbit/sec of data to the same repeater, that repeater now has 1Mbit/sec
of data to transmit somewhere else. This will likely lead to all sorts of “max flow” problems.

• The more hops a piece of data has to travel, the more latency it will incur.

It is not our intent to have you focus on complex mesh-networking problems in this project. We
have not trained you to handle them; moreover, the complexity of mesh network will be a very
difficult thing to justify for this project. There are a variety of good designs for this system that do
not require such complexity.

That said, we are not limiting your routing algorithm or your network topology. If absolutely you
cannot resist the pull of a large mesh network, go for it. But be prepared to justify the complexity
to your audience. It would be wise to remember that good design is iterative: start with a simple
design that works, and build up from there.

2.2.5 BLE (Wireless) Communications Protocol

Any data that goes between smart devices and repeaters, smart devices and gateways, or between
one repeater and another, follows the BLE communications protocol.1 For one component to send
to another, the receiving component must first initiate a connection to the sender. Once a connec-
tion is established, the sender will be able to send packets to the receiver. The maximum packet
size is 20 Bytes of data, plus a header; the maximum header size is 64 bits. How much data the
sender can send depends on how many other connections are running through the receiver.

1The protocol that we’ve given you for this project is based on an actual BLE protocol, but is not exactly the same.
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At most 8 connections can be active at a time on a BLE repeater, at most 16 connections can be
active at a time on a BLE+ repeater, and at most 64 connections can be active at a time on a
gateway. Beacons from smart devices do not count towards this connection limit.2 If there are n
connections active on a repeater (or gateway), each connection will get at most 1/nth of the total
bandwidth that that repeater (or gateway) is capable of. BLE repeaters are capable of 2Mbit/sec;
BLE+ repeaters are capable of 4Mbit/sec; and gateways are capable of 16Mbit/sec.

The BLE Communications Protocol does not, by default, guarantee perfect reliability. The net-
work drops about .0001% of all packets.

2.2.6 Wired Communications Protocol

The gateways can communicate with the FCS over wires, via a standard TCP protocol. For the
purposes of this project, you can assume that TCP provides perfect reliability. Each gateway can
communicate with the FCS at a rate of up to 1GB/sec, with data packets up to size 1500 bytes.
The minimum round-trip-time between the gateways and the FCS is negligible, but that latency
may increase depending on your system design (e.g., if queues grow).

In both the wired and wireless cases, it is your job to specify the format of the messages that
traverse the network.

2.3 The FCS

Facilities has a single centralized machine—the FCS—to store its data, with 100 TB of storage.
You can assume that the FCS has the specs of a standard modern server. The IP address of the FCS
is fixed and known by all gateways in your system.

Any packets sent to the FCS will arrive in a buffer that is treated as a FIFO queue to be processed
by the server’s processing unit. Facilities uses the FCS to store data, as well as to perform some
computations on the data; the processing unit—which you will design—takes care of sending data
to storage as well as to code that performs those computations.

The processing unit is comprised of a pool of threads that run concurrently. Your system will
specify some of the details of these threads.

2.3.1 The Main Thread

The primary thread of the processor is responsible for monitoring the queue of incoming packets
and performing the following actions:

• Storing all video frames it receives—unless there is a compelling reason for it to discard
some—along with a timestamp and the number of people in the frame. The system call
process_frame(frame) will return that number.

• Deciding whether to adjust a thermostat in response to motion (or lack-of-motion) in a room.
If a location has not been in use for the past two hours, the relevant thermostat(s) should be

2In terms of how this would work in practice: the beacons would be sent on a different frequency than the
connection-oriented protocol.
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set to ten degrees cooler than their current desired temperatures. If a location is newly in
use, the relevant thermostat(s) should be set back to their desired temperatures.

This thread is not responsible for calling the code that looks for historical anomalies in temper-
ature readings; that code is run as a separate background process. However, to work well, the
anomaly-detection code needs to be able to access the last two weeks of temperature readings for
a particular room. It should be able to retrieve a time-ordered list of these readings.

Your system should describe how the main thread of the processing unit completes these ac-
tions. You are welcome to have the main thread spawn child threads, via a system call such as
fork().

2.3.2 Crisis and Update Threads

Additional threads in the processing unit’s thread pool deal with crisis mode and software up-
dates.

When a Facilities staff member enables crisis mode on a particular room, a thread waiting on that
event will be resumed, and call the function enable crisis(camera ID) for each camera in the
room. When a Facilities staff member disables crisis mode on a room, a thread waiting on that
event will be resumed, and call the function disable crisis(camera ID) for each camera in the
room. Your system should specify the details of those two functions.

Similarly, when a Facilities staff member requests to perform a software update on all devices of
type device type, a thread waiting on that event will be resumed, and call the function
update(device type, software binary). Your system should specify the details of this func-
tion. This function should not return until it can guarantee that the update has been received by
all smart devices.

2.3.3 Data Storage

You can assume that Facilities has already stored a mapping of each smart device’s ID to a location
at MIT. Locations are given as a building number and room (even hallways have “room” numbers;
for instance, you can see all of the rooms in building 38 here). If you would like to extend this
mapping, to store additional or different location information, you may; just describe how that
process is done.

How the rest of the data is stored on the FCS is largely up to you. In some cases, you may store
data as a series of files; in those cases, you should specify the filesystem structure. You do not need
to specify details of the file format unless you’re doing something creative (e.g., it’s fine to say you
store something “as a .txt file” rather than giving us the specifications of the .txt file format).

In some other cases, you may find a database more appropriate. In those cases, you can assume
that you have access to a modern DBMS, but you should detail your database schema and relevant
interactions with the database.

Regardless of how you store your data, you will need to support the goals that have been outlined
in this project (e.g., that Facilities needs access to one week of historical data from cameras, that
they need two weeks of data from thermostats, etc.).
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3 Requirements

3.1 Components of Your Design

Using the infrastructure specified in the previous section, your design should specify the imple-
mentation and functionality of the following components:

• The network topology. You have, at your disposal, repeaters as well as gateways. Your design
should describe a basic scheme for connecting these devices. Is every smart device in range
of a gateway? Of multiple gateways? Is every repeater? Are some repeaters not in range of
gateways? On average, how many smart devices is each repeater responsible for? Etc. Note
that you also have the ability to create a naming scheme for the smart device (and repeater)
IDs.

• The communication protocol. At a minimum, you should specify message formats, the
circumstances under which messages are sent (periodically? in reaction to some event?),
and any network mechanisms that you need to add to meet the requirements of the sys-
tem. In particular, the network between the smart devices and the gateways is unreliable;
you should specify any mechanisms you use to provide reliability, if you feel that they are
needed.

As part of this specification, you should detail how the smart device retrieves the data that
it sends (what function does it use to retrieve it?), whether it performs any computations
before sending, and what it does in reaction to any data that it may receive.

• The processing unit on the FCS. You should describe the implementation of this software in
detail. Does the main thread spawn any child threads? What do they do? Do any threads
need to hold locks on any piece of data? If so, how/when do they acquire those locks? Etc.

• The data storage mechanism on the FCS. How is data stored? Is it possible for your system
to collect duplicate pieces of data? If so, how is that handled? Does your system guarantee
the reception of every piece of data?

• What happens during certain failures. For example, both BLE+ repeaters and gateways
can fail. What does your system do in those cases? Is it easy for Facilities to know that a
component has failed?

The existing infrastructure already imposes some requirements on your system: you cannot ex-
ceed the storage or processing power of any component, nor the maximum speed of the networks
involved.

You must also meet Facilities’ requirements for data storage, as well as allow Facilities to send
commands and push software updates to smart devices.

Moreover, your system must work at scale. The intended scale of the system is the main MIT
campus. However, if your system performs well, other larger universities may be interested in
adapting it.
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3.2 Use-cases

As you design your system, you should consider its performance under the following use cases
(as well as under normal operation). You will be required to address these use cases in your final
report.

• Inconsistent Readings: Two motion detectors in the same room give inconsistent readings:
one reports that the room is in-use, the other does not. What does your system do in this
case?

• Crisis Mode: In general, data from the video cameras does not have to arrive at the FCS
immediately. However, during a campus crisis, Facilities will need data from certain cameras
immediately (within five seconds is acceptable, but the faster the better).

The software running on the FCS that supports this operation allows Facilities to specify
a room number on campus; video feeds from the cameras in that location should be sent
to Facilities immediately. As the crisis occurs, it’s possible that Facilities will update their
location-of-interest (for example, if they are tracking an intruder down a hallway).

A crisis situation does not obviate the need to eventually store data from all cameras. Even
though some data may need to be prioritized and delivered immediately, data from all cam-
eras should still be available to Facilities within five hours.

• Server Maintenance: Suppose the Facilities server is taken down for maintenance. When
it comes back online, will your system still be able to deliver all relevant data? When it is
offline, can your system replicate any of its functionality? In particular, can your system still
intelligently set the temperature in rooms?

• Software update: Facilities has to push an important security update out to all video cam-
eras. How quickly can your system make this happen? How can you guarantee that every
video camera gets the update?

In addition to those specific scenarios, you should also think about what will happen to your
system over time. Currently, Facilities is only upgrading devices in the main campus buildings.
Suppose MIT wants to adapt your system to the rest of campus, or to new buildings that the In-
stitute purchases. Could your system scale to meet this need? What about if a different university
adopted your system? Similarly, suppose Facilities decided to upgrade a particular smart device,
or support a new type of smart device. Could your system handle that?

3.3 Trade-offs

As you design, you will encounter many places where you have to trade off one aspect of your
design for another. We’ve highlighted some below, although these are not the only tradeoffs.

• Cost vs. complexity: Facilities has not restricted your budget for this project; however, they
would prefer to spend less money. How much does your design cost? Could you get similar
functionality for less money?

• Data timeliness vs. congestion: In some scenarios, you may not be able to send all of
the data you’re collecting to the FCS at once, either because of the limit on the maximum
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number of connections per repeater, or because the wireless network cannot handle that
much traffic.

• Reliability vs. Performance: BLE repeaters effectively never fail, since their batteries never
need replacing. BLE+ repeaters can fail occasionally, but are more powerful. Gateways can
also fail, and are extremely powerful. How do you balance these issues?

• Reliability vs. Overhead: The wireless network is unreliable, dropping .0001% of all pack-
ets. Should you run an end-to-end reliability protocol, such as TCP, across this network?
Should you create your own reliability mechanisms, which might be lighter-weight than
TCP? Are there any times when you don’t need perfect reliability?
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