
2019	6.033	Design	Project:	
The	MIT	Uni*ied	Submission	and	Grading	System	(MUGS)	

See	also	DP	FAQ	and	DP	Errata	

Due	Dates	and	Deliverables	
There	are	four	deliverables	for	this	design	project:	
1) DP	Preliminary	Report	(DPPR):	This	preliminary	report	will	lay	out	your	key	design	

decisions,	including	both	a	functional	system	design	and	a	sketch	of	any	data	structures,	storage	
management,	and/or	network	protocols	required	to	achieve	your	design.	It	will	not	include	any	
signi*icant	evaluation.	It	will	be	approximately	2,500	words	and	is	due	March	22,	2019	at	
5:00pm.	

2) DP	Presentation:	This	presentation	will	address	the	feedback	received	on	the	DPPR,	and	any	
corrections	or	updates	to	the	design	project	speci*ication.	It	will	also	outline	evaluation	criteria	
and	use	cases	you	will	use	later	for	evaluating	your	design.	The	presentation	will	occur	during	
the	week	of	April	17-23.	

3) DP	Report	(DPR):	This	will	be	your	full	report.	It	will	include	your	*inal	design,	all	diagrams	
appropriate	for	that,	your	evaluation	of	your	design	and	a	review	of	how	effectively	your	design	
addresses	the	speci*ied	use	cases.	It	will	be	approximately	6,000		words	and	is	due	May	6,	2019	
at	11:59pm.	

4) Peer	Review:	In	Tutorial	your	team	will	have	done	an	early	“review,”	providing	informal	
feedback	to	another	team	on	their	design.	For	this	peer	review,	you	will	individually	review	a	
few	speci*ic	sections	of	that	(same)	other	team’s	*inal	report,	and	address	some	speci*ic	
questions	about	that	report.	It	will	be	approximately	250	words	and	is	due	May	10,	2019	at	
5:00pm.	

Your	assignment	for	each	of	the	four	parts	above	will	be	distributed	in	separate	“assignment”	
documents.	
The	preliminary	report,	*inal	report,	and	peer	review	should	be	submitted	via	the	submission	site	
on	the	6.033	website.	As	with	real-life	system	designs,	the	6.033	design	project	is	under-speci*ied,	
and	it	is	your	job	to	complete	the	speci*ication	in	a	sensible	way	given	the	stated	requirements	of	
the	project.	As	with	designs	in	practice,	the	speci*ications	often	need	some	adjustment	as	the	design	
is	*leshed	out.	Moreover,	requirements	will	likely	be	added	or	modi*ied	as	time	goes	on.	We	
recommend	that	you	start	early	so	that	you	can	evolve	your	design	over	time.	A	good	design	is	likely	
to	take	more	than	just	a	few	days	to	develop.	A	good	design	will	avoid	unnecessary	complexity	and	
be	as	modular	as	possible,	enabling	it	to	evolve	with	changing	requirements.		
Large	systems	are	never	built	by	a	single	person.	Accordingly,	you	will	be	working	in	teams	of	three	
for	this	project.	Part	of	the	project	is	learning	how	to	work	productively	on	a	long-term	team	effort.	
All	three	people	on	a	team	must	be	in	the	same	tutorial.		
Although	this	is	a	team	project,	some	of	the	deliverables	have	individual	components.	See	the	
individual	assignment	links	for	more	information.		
Late	submission	grading	policy:	If	you	submit	any	deliverable	late,	we	will	penalize	you	one	letter	
grade	per	48	hours,	starting	from	the	time	of	the	deadline.	For	example,	if	you	submit	the	report	
anywhere	from	1	minute	to	48	hours	late,	and	your	report	would	have	otherwise	received	a	grade	of	
A,	you	will	receive	a	B;	if	you	submitted	49	hours	late,	you	will	receive	a	C.		
As	stated	on	the	syllabus,	you	must	complete	every	design	project	component	to	pass	6.033.		

� 	1

http://mit.edu/6.033/www/assignments/dp_faq.pdf
http://mit.edu/6.033/www/assignments/dp_errata.pdf
http://mit.edu/6.033/2018/wwwdocs/assignments/dppr.pdf
http://web.mit.edu/6.033/2019/wwwdocs/assignments/dp_pres.pdf
http://web.mit.edu/6.033/2019/wwwdocs/assignments/dpr.pdf
http://mit.edu/6.033/www/assignments/dp_peer_review.pdf


I. Introduction	
6.033	is	MIT's	required	undergraduate	class	on	computer	systems	design,	and	MIT	is	by	some	
measures	the	world's	leading	undergraduate	institution	for	teaching	computer	science.	So	it	is	a	
little	awkward	that	grading	in	6.033	currently	uses	computer	systems	that	are	not	very	well-
designed	to	meet	the	needs	of	the	class.	Your	design	project	for	this	semester	is	to	design	a	better	
submission/grading	infrastructure	for	6.033,	retaining	the	parts	that	work	well	while	supplying	
improvements	for	the	parts	that	are	problematic.	You	will	be	designing	the	back-end	of	the	6.033	
submission	and	grading	system.	Others	will	design	and	build	a	user	interface	for	your	system,	and	
their	requirements	constrain	your	design	–	but	designing	that	user	interface	is	not	your	
responsibility.	
The	information	system	for	6.033	mediates	between	two	broad	groups	that	we'll	call	students	and	
staff.	Both	students	and	staff	have	capabilities	within	the	class	that	are	partly	related	to	their	
individual	identity	and	partly	related	to	their	membership	in	one	or	more	groups.	For	example,	
students	complete	some	assignments	individually	but	work	in	small	teams	on	other	assignments.	
Students	in	one	team	can	see	work	shared	by	other	team	members,	but	generally	can’t	see	the	work	
of	other	teams.	To	give	another	example,	much	of	the	teaching	staff	is	divided	into	teams	of	one	
recitation	instructor,	one	TA	and	one	or	two	WRAP	instructors.	Staff	on	a	recitation	team	can	see	the	
work	and	grades	of	students	in	their	recitations,	but	can’t	see	the	work	or	grades	of	students	in	
other	recitations.		
The	current	systems	used	for	6.033	don't	support	students	or	staff	very	well.	Here	are	some	of	
today’s	problems	that	we’d	like	to	solve:	
1) Grades	are	not	presented	to	students	or	staff	in	any	kind	of	uni*ied	way;	instead,	grades	are	split	

across	(at	least)	two	different	systems.	
2) The	submission	site	(used	for	assignments	such	as	the	critiques	and	design	project	reports)	has	

a	confusing	interface	with	poor	feedback.	A	common	error	is	for	a	student	to	submit	something	
like	a	Google	Docs	exception	webpage	rather	than	the	document	itself.	

3) Although	that	submission	site	is	used	for	the	submission	of	both	the	preliminary	and	*inal	
design	project	reports,	it	does	not	understand	teams	or	submissions	by	a	team.	This	de*iciency	
means	that	group	members	must	make	dif*icult	choices	about	whether	to	submit	their	own	
copy	vs.	trusting	someone	else	to	submit	on	their	behalf.	Correspondingly,	a	recitation	
instructor	or	TA	collecting	group	reports	must	engage	in	a	manual	process	to	determine	both	
(a)	whether	every	group	has	turned	in	a	report	and	(b)	which	of	multiple	submitted	reports	is	
the	last	one	for	a	group.		

4) There	is	little	or	no	system	support	for	forming	design	groups.	Groups	must	be	composed	of	
people	who	attend	the	same	tutorial,	but	that	constraint	is	only	enforced	manually.	

5) There	is	no	consistent	system	for	sharing	work	in	progress.	The	homework	submission	site	is	a	
place	where	*inal	reports	are	turned	in,	but	each	group	must	develop	its	own	approach	to	
sharing	information	among	team	members	or	with	staff.	

6) Deadlines	and	grading	penalties	are	handled	manually.	Grading	always	has	deadlines	with	
differing	consequences	for	being	late.	Some	submissions	simply	do	not	count	if	they	are	late.	For	
others	there	is	an	increasing	penalty	on	the	grade.	One	merit	of	the	current	system	is	that	it	
readily	accommodates	illnesses	and	other	extenuating	circumstances.	

However,	not	everything	is	terrible.	Today's	systems	work	well	at	ensuring	that	only	the	"right"	
people	can	see	submitted	work	or	grades,	and	the	teaching	staff	likes	using	Gradescope	for	grading	
quizzes.	Those	good	features	have	to	be	retained	in	a	"new	and	improved"	system.		
The	rest	of	this	document	provides	more	information.	First,	we	sketch	the	people	of	6.033	and	the	
*low	of	submission/grading	work	that	happens	in	the	class.	Next,	we	describe	some	of	the	

� 	2

http://www.gradescope.com/


components	that	you	can	incorporate	into	your	design.	After	that,	we	list	what	you	need	to	design	
and	how	we	will	evaluate	it.	Finally,	we	identify	some	of	the	design	issues	you'll	need	to	consider.		

II. Background	
Let	us	begin	*irst	with	who	the	players	are:	
1) Students:		about	400	registered	students,	who	are	assigned	*irst	into	recitation	sections	and	

tutorial	sections,	and	then	into	DP	teams.	
2) There	is	one	each	of	the	following:	a	Course	Lecturer,	a	Head	WRAP	Instructor,	and	an	

Administrative	TA.	This	staf*ing	may	change	from	year	to	year;	indeed,	this	year	there	are	two	
Head	WRAP	Instructors	(they	are	a	team),	so	the	headcount	of	this	group	is	4.	

3) For	each	pair	of	recitations	(and	associated	tutorials)	there	is	a	Recitation	Instructor,	a	
Recitation	TA,	and	one	or	two	WRAP	Instructors.	This	year	there	are	18	recitation	sections,	so	
there	are	9	recitation	teams.	The	students	in	each	tutorial	are	divided	into	DP	teams	of	3-4	
students,	thus	there	are	typically	15-20	DP	teams	for	each	recitation	team.		

4) Undergraduate	Graders:	Some	number	of	undergraduate	graders	(typically	at	least	a	handful,	
but	no	more	than	ten)	are	brought	in	from	time	to	time	to	help	on	some	of	the	simpler	grading	
tasks.		

With	these	in	mind,	the	grading	elements	of	the	course	are:	
1) Hands-on:	Each	individual	student	submits	each	one	through	Gradescope,	so	there	is	no	

submission	in	MUGS.	The	team	of	Undergraduate	Graders	grades	them	(via	Gradescope).	The	
grades	will	need	to	be	transferred	from	Gradescope	to	your	MUGS	system.	

2) Reading	questions:	Each	individual	student	submits	each	one	through	MUGS.	The	student’s	
Recitation	TA	reads	them	but	does	not	grade	them.	In	addition,	the	relevant	Recitation	
Instructor	may	also	read	them.	(Note	that	although	the	current	course	has	reading	questions,	
we	do	not	currently	treat	them	this	way.	However,	the	staff	wants	the	future	system	to	work	this	
way.)	

3) Quizzes:	Each	individual	student	takes	one,	and	the	completed	quizzes	are	entered	into	
Gradescope	by	staff	using	Gradescope-controlled	mechanisms	–	so	there	is	no	submission	in	
MUGS.	All	the	technical	teaching	staff	(all	staff	except	WRAP	Instructors)	grade	them	using	
Gradescope.	The	grades	will	need	to	be	transferred	from	Gradescope	to	your	MUGS	system.	

4) Critiques:	Each	individual	student	submits	each	one	through	MUGS.	The	student’s	WRAP	
Instructor(s)	and	Recitation	TA	both	grade	them.	The	WRAP	Instructor(s)	and	Recitation	TA	
take	their	actions	independently.	

5) Participation:	There	is	no	submission	through	MUGS.	Each	student	receives	a	grade	decided	
jointly	by	the	Recitation	Instructor	and	TA,	and	entered	by	either	one.		

6) Design	project	(DP):	The	elements	of	the	DP	are:	
a) Design	Project	Preliminary	Report	(DPPR):	Each	team	submits	a	single	joint	document	

through	MUGS.	The	WRAP	Instructor(s)	grade(s)	it,	and	the	Recitation	Instructor	comments	
on	it	(but	does	not	grade	it).	The	WRAP	Instructor(s)	and	Recitation	Instructor	take	their	
actions	independently.	

b) DP	Team	Presentation:	There	is	no	submission	through	MUGS.	The	Recitation	Instructor	
enters	a	grade	via	MUGS,	based	on	the	oral	presentation	by	the	team.	

c) Design	Project	Report	(DPR):	each	team	submits	a	single	joint	document	through	MUGS.	The	
Recitation	Instructor	grades	it.	

� 	3



d) Peer	review:	Each	individual	student	submits	their	own	review	through	MUGS.	The		
student’s	WRAP	Instructor(s)	grade(s)	it.	Note	that	the	Peer	Review	is	a	case	where	a	
student	sees	a	different	student	team’s	work	and	submits	comments	about	it,	which	is	
otherwise	the	sort	of	activity	that	only	staff	do.		

In	the	current	system,	there	is	a	kind	of	versioning.	Every	submission	by	a	student	is	recorded,	so	
staff	can	readily	access	the	most	recent	one,	or	the	last	one	before	a	deadline.	Students	can	submit	
many	versions	of	things	like	Hands-on,	Critiques,	and	Design	Project	Reports	(but	not	quizzes!).	
Notice	that	students	can	also	choose	not	to	submit	on	time,	but	rather	incur	the	penalty	of	a	late	
submission	if	they	choose.	Every	submission	is	a	potential	candidate	for	grading.	Ordinarily,	a	staff	
member	selects	the	last	submission	before	the	deadline	to	be	graded,	but	a	student	can	request	a	
different	one	to	be	graded	(usually	because	there	was	some	last-minute	problem).	You	can	decide	
whether	to	retain	this	manual	selection	system	as	is,	or	automate	some	of	this	process.	
Similarly,	staff	can	submit	versions	of	their	grades	and/or	comments,	so	that	students	can	see	the	
latest.	At	present,	when	grades	and	comments	are	uploaded,	students	can	immediately	see	them.	
For	a	consistent	experience	across	the	class,	grades	that	are	ready	early	are	often	delayed	so	that	
grades	from	the	whole	class	are	available	at	the	same	time.		
We	wish	to	retain	all	these	features	of	the	current	system.	In	addition,	we	would	like	to	add	a	new	
component	in	future	classes.	
In	future	classes,	there	will	be	an	additional	component	of	the	Design	Project:	a	short	video	of	the	
team	presenting	a	poster.		Each	video	will	be	5	to	8	minutes	long,	and	one	will	be	submitted	by	each	
team.	A	plausible	estimate	for	each	video’s	size	is	100	MB.	The	video	presentation	will	be	graded	by	
the	WRAP	Instructors.	In	addition,	each	student	can	vote	for	up	to	5	other	teams’	videos,	providing	
rankings	from	1	to	5.	This	voting	will	not	impact	the	teams’	*inal	grades,	but	there	will	be	prizes	for	
the	top	three	peer-rated	videos.	
To	summarize:	your	design	will	retain	the	good	features	of	the	current	system,	*ix	the	problems	of	
the	current	system,	and	accommodate	the	new	short-video	element	as	a	new	feature.	

III. Infrastructure	support	
We	provide	you	with	some	elements	of	infrastructure,	to	incorporate	into	your	design	as	you	deem	
appropriate.	Your	choices	of	whether	and	how	to	use	the	infrastructure	elements	should	be	both	
explained	and	justi*ied.	You	are	not	required	to	use	all	these	elements.	
There	are	*ive	services	provided:	an	identity	service,	a	*ile	service,	a	sync	service,	a	lock	service,	and	
an	external	grading	service	(Gradescope).	The	identity	service	and	Gradescope	are	outside	your	
control;	the	others	are	services	that	you	can	potentially	modify	or	extend	to	meet	your	
requirements.	Each	of	the	services	provides	some	facilities	that	are	rather	nice,	but	are	also	
somewhat	limited.	Your	task	is	to	assemble	them	into	a	system	that	supports	editing	of	*iles	by	both	
individuals	and	groups,	submission	of	assignments	by	both	individuals	and	groups,	and	the	grading	
of	assignments.	We	describe	each	service	and	then	include	a	simple	functional	interface	to	it.		
The	core	of	your	system	will	be	a	single,	central	server.	(That’s	not	necessarily	how	you	would	build	
this	system	in	real	life,	but	is	a	reasonable	simpli*ication.)	The	following	resources	of	the	server	are	
available	to	you:	

Processor	speed 2.1	GHz	clock	speed

Max	simultaneous	processes	executing 10	(10	cores)

Cache 11	MB

� 	4



There	are	two	terms	here	that	you	may	not	have	seen	before.	First,	in	a	mirrored	disk	system,	all	
data	is	duplicated	exactly	on	two	independent	devices.	This	provides	increased	reliability	and	
availability	of	the	storage	system,	at	the	cost	of	half	the	storage	capacity.	In	this	case,	the	storage	
capacity	you	will	have	available	will	be	240	GB	(which	will	be	duplicated	on	two	devices).		Second,	
disk	bandwidth	is	the	maximum	rate	of	transfer	between	the	processor	and	the	disk	system	total,	
for	all	processes	that	may	be	trying	to	access	the	disk	system.	
Note	that	this	table	re*lects	what	your	system	can	use.	The	actual	server	is	somewhat	larger	than	
this,	and	the	operating	system	consumes	some	of	its	resources.	The	OS	actually	consumes	a	varying	
amount	of	resources	depending	on	what	it’s	asked	to	do,	but	we	have	simpli*ied	its	behavior.	
The	server’s	operating	system	provides	processes.	One	of	your	tasks	will	be	to	decide	how	best	to	
utilize	processes	to	support	the	services	below,	in	addition	to	any	other	activities	you	design	on	the	
server.	
You	can	expect	that	each	student	and	staff	member	will	have	their	own	laptop	or	other	computer,	
and	all	computers	are	on	the	campus	network.	You	can	assume	that	all	the	personal	machines	have	
adequate	networking	capacity	for	the	tasks	at	hand,	but	the	other	capacities	(storage	and	
computation)	of	these	machines	will	be	varied	and	unknown	to	you.		
In	terms	of	the	network,	for	simplicity	we	assume	some	uniformity.	We	assume	that	the	MIT	
backbone	network	runs	at	100	Gb/s,	the	connection	outside	MIT	is	10Gb/s,	each	wired	Ethernet	
link	runs	at	a	maximum	of	1Gb/s,	and	each	wireless	link	can	support	up	to	600	Mb/s	(running	
802.11ac	WAVE	2,	although	that	should	not	matter	to	you).	You	can	also	assume	that	each	edge	
device	such	as	a	laptop,	tablet,	or	smart	phone	also	supports	802.11ac,	which	supports	at	least	
500Mb/s.	That	said,	there	will	be	times	and	locations	on	the	MIT	campus	where	network	latency	is	
extremely	variable.	There	are	occasional	“brown-outs”	with	the	following	character:	Each	second,	
there	is	a	0.00058%	chance	of	such	a	brown-out	starting.	This	corresponds	to	roughly	once	every	
48	hours,	on	average.	The	length	of	each	brown-out	is	uniformly	distributed,	with	a	minimum	of	10	
seconds	and	a	maximum	of	30	minutes.	The	available	bandwidth	during	each	brown-out	is	also	
uniformly	distributed,	with	a	minimum	of	1Kb/s	and	a	maximum	of	100	Kb/s.	Because	of	this	
potential	network	misbehavior,	we	anticipate	that	users	will	need	to	be	able	to	stop	or	kill	some	
kinds	of	*ile	transfers	while	they	are	in	progress.	Part	of	your	design	will	be	a	network	protocol	that	
supports	this	feature.	
A	note	on	interface	descriptions:	
First,	as	a	reminder,	although	we	are	providing	apparent	function	calls,	this	project	does	not	include	
any	code.	They	are	provided	to	give	you	a	more	speci*ic	view	of	the	functionality	provided	by	the	
services.	You	should	not	consider	submitting	code	in	any	of	your	reporting.	
Second,	in	the	interest	of	making	this	presentation	shorter	and	clearer,	we	have	omitted	some	
aspects	that	are	repeated	everywhere.	For	every	function	we	describe,	you	should	assume	that	the	
function	also	supports	access	control	as	follows:		
1) Each	function	call	must	include	a	Kerberos	ID	(see	next	section)	representing	on	whose	behalf	

the	function	call	should	be	executed.	
2) Each	function	can	signal	“permission	denied”	if	that	on-whose-behalf	Kerberos	ID	does	not	have	

adequate	permission	for	the	function.		
In	addition,	the	functions	may	signal	a	failure	if	they	fail	to	complete	for	some	other	reason.	It	is	up	
to	you	to	decide	how	to	respond	to	these	signals.		

Main	Memory 16	GB

Storage 240	GB	(effective)	SSD	in	mirrored	
con*iguration.	Bandwidth	is	6	Gb/s

� 	5



(Our	description	of	the	interfaces	in	terms	of	“signals”	is	simply	intended	to	capture	distinctions	
between	normal	processing	and	exceptional	or	error	situations.	We	are	not	mandating	any	
particular	implementation	language	or	error-handling	system,	and	your	design	should	not	depend	
on	using	a	particular	language.)	

1. Identity	service	(MIDS)	
The	MIT	ID	service	(MIDS)	is	based	on	Kerberos,	which	provides	every	individual	who	has	an	
“account”	at	MIT	a	unique	ID	and	an	approach	to	trustworthy	“logging	in”	to	verify	their	identity	and	
have	privileges	associated	with	that	identity.	Effectively,	MIDS	hides	all	of	the	messy	details	of	login	
and	authentication,	so	that	your	design	can	focus	on	what	happens	with	authenticated	identities.		
That	said,	you	need	to	know	that	Kerberos_IDs	are	unforgeable,	authenticatable	tokens;	associated	
with	each	one	is	a	Kerberos	name.	Currently,	at	MIT	each	member	of	the	community	has	a	Kerberos	
name,	which	is	also	used	as	their	MIT	email	address.	Each	person	also	has	an	unforgeable,	
authenticatable	token	to	use	for	a	variety	of	functions	on	campus.	
MIDS	is	an	“enhanced”	version	of	Kerberos	based	on	the	needs	of	MUGS,	and	provides	the	ability	to	
create	new	Kerberos	IDs:	these	additional	Kerberos	IDs	may	be	useful	in	supporting	the	groups	and	
teams	that	are	used	in	6.033.	It	is	important	to	note	that	these	new	IDs	are	just	IDs,	like	the	IDs	of	
“ordinary”	Kerberos.	Permission	to	create	these	new	IDs	in	Kerberos	is	restricted,	but	unlike	the	
creation	of	new	“individuals”	at	MIT,	permission	to	create	group	IDs	can	be	delegated.	The	original	
permission	for	the	class	is	delegated	to	the	Course	Lecturer,	who	in	turn	can	delegate	to	others.	
Thus,	for	example	the	Administrative	TA	might	be	able	to	create	recitation	section	IDs	and	each	
Recitation	TA	might	be	able	to	create	the	IDs	for	DP	teams.	Kerberos	provides	no	directory	or	other	
lookup	service;	to	use	these	new	IDs	effectively	for	groups	and	teams,	your	design	will	need	to	
include	additional	data	structures	and/or	services.	
That	all	said,	it	is	important	to	remember	that	Kerberos	does	not	keep	track	of	personal	information	
about	people,	such	as	names	or	roles	they	might	play	(such	as	student,	staff	member,	etc.).	It	also	
has	no	way	of	keeping	track	of	who	might	be	“sharing”	an	identity,	such	as	one	created	for	a	group.		
The	MIDS	IDs	are	used	by	the	*ile	system	described	below	for	access	control.	
The	functional	interfaces	to	MIDS	include:	

(Remember	the	“note	on	interface	de*initions”	earlier	in	Section	III.)	

2. File	service	(MFS)	
The	MIT	File	System	(MFS)	is	a	shared	*ile	system	that	provides	reliable,	stable,	sharable	*iles	in	a	
hierarchical	*ile	system.	The	*ile	service	has	typical	Unix	(open,	read,	write,	close,	etc.)	interfaces.	
Our	“enhanced”	*ile	system	supports	a	richer	access	control	model	than	standard	Unix,	because	any	
number	of	“users”	can	be	given	distinct	access	permissions	for	each	directory	or	*ile.	The	“users”	in	
MFS	are	Kerberos	IDs	from	MIDS,	including	those	for	both	individuals	and	groups.	Notice	that	an	
individual	can	have	their	one	individual	ID	as	well	as	one	or	more	group	IDs;	for	example,	each	
student	will	be	in	a	group	of	all	students,	in	a	recitation,	in	a	tutorial	and	in	a	DP	team,	and	therefore	

Command Action

create_id	()	returns	(new_kerb_id,	kerb_name,	
new_home-dir)

Creates	a	new	ID,	returns	the	ID	and	home	
directory	for	it

delegate_kerb_creation	(kerb_name) Delegates	the	ability	to	create	new	Kerberos	IDs

authenticate	(kerb_id)	returns	(kerb_name) Authenticates	a	Kerberos	ID	and	returns	the	
matching	Kerberos	name.

� 	6



have	access	to	the	IDs	for	all	three,	in	addition	to	their	own	individual	IDs.	This	means	that	when	
someone	wants	to	execute	an	operation,	they	can	act	using	their	own	individual	identity	or	any	
group	identity	of	which	they	are	a	member.	Different	identities	will	have	different	privileges,	so	they	
will	need	to	be	able	to	choose	which	identity	to	use	for	any	speci*ic	activity.	
In	addition,	MFS	offers	the	capability	to	snapshot	a	*ile	or	directory.	The	result	of	a	snapshot	is	an	
opaque	snapshotID	data	structure.	By	supplying	an	appropriate	snapshotID	to	a	revert	operation,	
it's	possible	to	cause	the	*ile	or	directory	to	return	to	its	exact	state	at	the	point	of	the	original	
snapshot.	It’s	pretty	easy	to	understand	how	snapshot	and	revert	work	for	a	single	*ile,	or	for	a	
directory	containing	only	simple	*iles.	Snapshot	and	revert	will	also	work	for	more	complex	
situations,	but	it	becomes	increasingly	dif*icult	to	be	sure	what	the	correct	or	expected	behavior	is.	
Your	system	should	avoid	relying	on	knowing	exactly	how	MFS	works	for	such	edge	cases.	
A	snapshotID	can	be	tested	for	equality	or	tested	for	order	(newer	vs.	older).	A	snapshotID	can	also	
be	tested	for	whether	it	was	generated	by	a	particular	*ile	or	directory,	but	does	not	otherwise	
reveal	any	aspect	of	the	snapshot	implementation.			
Concurrent	operations	on	any	*ile	or	directory	happen	in	an	unde*ined	order,	and	are	not	
guaranteed	to	be	atomic.	This	lack	of	ordering	guarantees	applies	to	both	conventional	*ile	
operations	and	snapshots.	
Each	Kerberos	ID	that	is	being	used	in	your	MUGS	system	has	a	corresponding	home	directory	in	
the	*ilesystem.	In	addition,	the	Kerberos	IDs	are	used	as	the	basis	for	setting	access	control	on	*iles	
in	the	*ilesystem,	including	control	over	who	can	change	the	access	control	on	a	*ile	or	directory.	
Access	control	is	at	the	whole-*ile	or	whole-directory	level	only,	not	at	any	*iner	grain.	
We	underscore	that	even	if	a	Kerberos	ID	from	MIDS	is	intended	to	represent	some	kind	of	team,	it	
still	looks	like	a	“user”	to	MFS	–	not	a	Unix	“group.”	
The	functional	interfaces	for	MFS	include:	

Command Action

create_*ile(*ilename) Creates	the	speci*ied	*ile	with	permissions	as	
speci*ied	by	the	parent	directory

read_*ile	(*ilename)	returns	(content) Reads	the	speci*ied	*ile

write_*ile	(*ilename,	content) Writes	the	content	to	the	speci*ied	*ile

create_dir	(directory	name) Creates	the	speci*ied	directory	with	
permissions	as	speci*ied	by	the	parent	directory

create_snapshot	(path)	returns	(snapshot) Takes	a	snapshot	of	a	*ile	or	directory

revert_to_snapshot	(snapshot) Reverts	*ile	or	directory	to	a	previous	snapshot

path_from_snapshot(snapshot)	returns(path) Identi*ies	*ile	or	directory	captured	by	this	
snapshot

snapshot_eq	(snapshot1,	snapshot2)	returns	
(bool)

Tests	for	equality	of	snapshots,	returns	true	if	
equal,	false	otherwise

snapshot_earlier	(snapshot1,	snapshot2)	
returns	(bool)

Tests	whether	snapshot1	is	earlier	than	
snapshot2,	returns	true	if	snapshot	1	is	earlier

� 	7



(Remember	the	“note	on	interface	de*initions”	earlier	in	Section	III.)	

3. Sync	service	(MSS)	
The	MIT	Sync	Service	(MSS)	supports	connections	from	a	client	(typically	the	laptop	of	a	student	or	
staff	member)	to	a	server	(typically	MFS).	For	any	*ile	on	the	server	that	is	accessible	to	the	client,	
the	client	can	download	the	*ile,	getting	both	a	local	copy	of	the	*ile	and	an	associated	(but	hidden	
from	you)	tag.	The	hidden	tag	of	a	*ile	consists	of	some	kind	of	timestamp,	version	number,	or	
checksum	–	its	precise	implementation	is	not	important	for	this	project,	and	your	project	should	not	
depend	on	the	characteristics	of	any	particular	implementation	approach.		
The	client	can	modify	the	local	copy	of	the	*ile	using	any	of	their	usual	local	ways	of	modifying	a	*ile,	
and	can	subsequently	attempt	to	upload	the	*ile	via	MSS.	The	upload	will	replace	the	server’s	copy	of	
the	*ile	with	the	client’s	version	if	and	only	if	the	server’s	copy	is	unmodi*ied	since	the	client’s	
download.	If	the	server’s	copy	has	been	modi*ied,	the	attempt	to	upload	will	fail.	You	will	need	to	
decide	what	(if	any)	action	is	taken	by	the	system	under	this	condition.		
The	sync	service	hides	the	details	of	the	data	encoding.	You	can	assume	that	a	scheme	like	delta	
encoding	is	in	use,	so	a	small	change	to	a	large	previously-transmitted	*ile	will	only	result	in	a	small	
amount	of	data	crossing	the	network	in	either	direction.		
Concurrent	uploads	on	the	same	*ile	happen	in	an	unde*ined	order,	but	each	*ile’s	upload	either	
succeeds	completely	or	fails	cleanly.	Concurrent	uploads	on	multiple	*iles	in	the	same	directory	
happen	in	an	unde*ined	order	and	are	not	guaranteed	to	be	atomic:	that	is,	some	*iles	may	upload	
while	others	fail.		
MSS	has	one	additional	feature:	the	client	can	kill	an	upload	or	download	while	it’s	in	progress.	This	
is	most	likely	to	be	used	if	the	transfer	is	taking	too	long.	As	mentioned	earlier,	the	network	
experiences	wide	swings	in	latency.	Killing	a	transfer	produces	the	same	effect	as	a	clean	failure:	
there	is	no	change	to	the	*ile(s)	involved	in	the	transfer.	
The	functional	interfaces	for	MSS	include:	

(Remember	the	“note	on	interface	de*initions”	earlier	in	Section	III.)	
We	will	ask	you	to	design	part	of	the	network	protocol	that	supports	transferring	data	between	
client	and	server.	A	different	part	of	the	implementation	of	upload/download	(not	designed	by	you)	
will	determine	what	bytes	need	to	be	transferred	–	some	transformation	of	the	bytes	in	the	*ile	
being	transferred.	Your	protocol	will	be	handed	these	(transformed)	bytes	and	a	*ile	identi*ier	
recognized	by	the	transformation	machinery.	On	the	other	side	of	the	network,	you	will	hand	off	the	

change_access_control	(kerb_id,	*ilename,	
permissions)

Changes	the	permissions	for	the	named	*ile	or	
directory	to	include	the	speci*ied	permissions	
for	the	speci*ied	Kerberos	ID

Command Action

sync_download	(*ilename)	returns	
(local_*ilename)

Downloads	a	copy	of	the	*ile	to	a	local	*ilename

sync_upload	(*ilename,	local_*ilename) Uploads	a	copy	of	the	local	*ile	to	the	remote	
*ilename

kill	(*ilename) Sends	a	kill	message	for	a	transfer	for	the	given	
*ilename	between	the	client	and	server.

� 	8



complete	collection	of	bytes	(in	the	same	order)	and	the	*ile	identi*ier;	or	you	will	indicate	the	
transfer	has	been	killed.		
The	total	number	of	bytes	to	be	transferred	will	often	be	larger	than	a	single	Ethernet	packet,	so	you	
will	need	to	*ind	a	way	to	transfer	a	large	quantity	of	bytes	while	preserving	their	order.	A	TCP	
connection	would	allow	you	to	transfer	a	large	number	of	bytes	in	order,	but	TCP	does	not	have	a	
well-de*ined	capability	to	cleanly	kill	a	partial	transfer.	You	will	design	some	solution	that	supports	
both	the	ordered	delivery	of	a	large	number	of	bytes,	and	also	allows	for	a	clean	“kill”	of	a	partial	
transfer.	

4. Lock	service	(MLS)	
The	MIT	Lock	Service	(MLS)	provides	a	single	shared	namespace	of	locks.	A	lock	is	a	mechanism	for	
coordinating	concurrent	activities,	by	ensuring	controlled	access	to	some	shared	resource.	Each	
lock	can	be	simple	(exclusive)	or	reader/writer.		
If	two	clients	use	the	same	name	(text	string)	in	referring	to	a	lock,	they	are	referring	to	the	same	
lock.	If	a	lock	is	currently	held,	the	lock	service	will	report	the	Kerberos	ID(s)	of	the	lock	holder(s).		
If	two	or	more	clients	use	the	same	lock	in	different	ways	(one	uses	as	exclusive,	another	as	reader/
writer)	then	the	lock’s	behavior	is	unde*ined.	You	will	need	to	address	this	in	your	design.	
The	functional	interfaces	for	MLS	include:	

(Remember	the	“note	on	interface	de*initions”	earlier	in	Section	III.)	

5. Gradescope	
Gradescope	is	an	online	grading	facility.	6.033	uses	Gradescope	for	grading	all	the	hands-on	
submissions	and	both	quizzes.	
Items	to	be	graded	are	entered	into	Gradescope	by	mechanisms	outside	the	scope	of	this	project.	
Grading	(and	regrading!)	are	likewise	handled	by	Gradescope’s	interfaces	and	mechanisms,	and	we	
won’t	consider	those	issues	further.	However,	you	will	need	to	extract	grades	from	Gradescope	into	
your	MUGS	system.	Our	Gradescope	interface	for	this	design	problem	is	*ictional,	but	derived	from	
the	real	interface.		
For	exporting	grades,	our	Gradescope	provides	an	export	function,	which	returns	a	CSV	(comma	
separated	values)	*ile	containing	a	snapshot	of	all	the	grades	available	at	that	time	for	all	students	
for	all	assignments	for	that	course	being	handled	by	Gradescope.	The	*ile	that	is	returned	is	static	

Command Action

Acquire_exclusive	(lock_name)	signals	
(held(kerb_id))

Acquires	the	speci*ied	lock,	excluding	all	others	
until	release.	May	signal	with	ID	of	holder	if	lock	
is	held.

Acquire_writer(lock_name)	
signals(held_writer(kerb_id),	
held_reader(set[kerb_id]))

Acquires	the	speci*ied	lock,	excluding	all	others	
until	release.	May	signal	held_writer	if	another	
ID	holds	lock	as	writer.	May	signal	held_reader	
if	one	or	more	other	IDs	hold	lock	as	reader.

Acquire_reader(lock_name)	signals	
(held_writer(kerb_id))

Acquires	the	speci*ied	lock,	allowing	other	
readers.	Would-be	writers	are	excluded	until	all	
readers	have	released.	May	signal	held_writer	if	
another	ID	holds	lock	as	writer.

Release_lock	(lock_name) Releases	the	named	lock

� 	9



and	is	not	updated	with	any	additional	or	changed	grades	in	Gradescope.	Successive	calls	to	the	
export	function	may	produce	different	sets	of	grades;	each	one	is	a	snapshot	of	the	grades	at	that	
time.	
Gradescope	is	con*igured	to	use	student	email	addresses	(@mit.edu)	to	identify	students.	This	
means	that	the	exported	CSV	*ile	will	have	text	names	that	can	be	easily	converted	to	Kerberos	IDs	
or	vice-versa;	however,	it	is	important	to	keep	in	mind	that	these	names	in	Gradescope	are	just	
pieces	of	text.	Gradescope	does	not	understand	Kerberos	IDs	in	the	same	way	that	MIDS	and	MFS	
do.	
Because	it	is	useful	to	know	when	grades	change	or	new	grades	are	added	(for	example	when	
students	take	make-up	quizzes),	Gradescope	provides	a	noti*ication	function:	this	function	will	
return	only	when	some	grade	(relevant	to	6.033	grading	in	Gradescope)	is	entered	or	changes.	
Unfortunately,	the	only	way	to	*igure	out	exactly	what	has	changed	is	to	export	the	CSV	version	of	
grades	again.	The	export	takes	longer	as	there	are	more	grades	to	report;	at	the	maximum	number	
of	grades	exported	for	6.033,	the	process	takes	about	10	seconds.	Although	it	may	be	useful	to	be	
noti*ied	when	a	regrade	happens,	you	likely	will	not	want	to	be	noti*ied	and	re-exporting	the	whole	
CSV	*ile	every	time	a	grader	enters	or	changes	a	single	student’s	grade	on	a	quiz	or	hands-on	
problem.	There	will	be	an	especially	high	rate	of	change	in	Gradescope	grades	as	the	quizzes	and	
hands-on	problems	are	graded.	At	a	lower	rate,	there	will	also	be	changes	in	the	grades	when	
regrading	occurs.	
Gradescope	is	operated	by	a	startup	company	in	Berkeley,	California.	Our	Gradescope	service	on	the	
server	at	MIT	makes	remote	calls	to	the	“real”	Gradescope	service.	The	functional	interface	for	our	
Gradescope	service	includes:	

(Remember	the	“note	on	interface	de*initions”	earlier	in	Section	III.)	

IV. The	Design	project	
In	this	section	we	outline	the	requirements	for	your	system,	as	well	as	the	criteria	we	will	use	to	
evaluate	your	design.		

A. Your	design	
Your	design	must	include	the	following	features.	
1) To	support	student	work:	

a) A	facility	for	teams	to	share	individual	and	team	*iles	consistently.	Team	members	can	edit	
*iles	of*line	independently,	so	your	design	must	avoid	losing	updates	due	to	con*licting	
changes.	(If	Alice	produces	a	new	version	of	some	*ile	and	Bob	produces	a	different	new	
version	of	the	exact	same	*ile,	the	*ile	sharing	facility	must	not	allow	Alice’s	version	to	
silently	overwrite	Bob’s	version,	or	vice-versa).	

Command Action

Pull_gradescope_grades()	returns	
(CSV_data_structure)

Acquires	a	snapshot	of	the	current	grades	
available	for	the	whole	course	through	
Gradescope.

Change_in_gradescope_grades	(timestamp) Returns	when	there	has	been	a	change	
somewhere	in	the	complete	set	of	Gradescope	
grades	for	the	course,	after	the	time	speci*ied	by	
“timestamp”

� 	10



b) A	coherent	approach	to	the	organization,	storage,	and	accessing	of	assignments,	
submissions	in	response	to	assignments,	and	grades	and	comments	on	those	submissions..	
This	will	need	to	include	a	submission	function	for	submitting	*iles	as	responses	to	
assignments.	Note	that	submitting	is	distinct	from	uploading	a	*ile	into	the	*ile	system,	and	
correspondingly	that	submissions	are	not	the	same	as	*iles.	The	submission	function	will	
allow	students	individually	and	in	teams	to	submit	their	*iles	to	be	associated	with	an	
assignment	when	they	choose.	Any	submission	may	be	made	repeatedly,	because	students	
may	want	to	submit	more	than	once	before	a	deadline.	The	system	must	keep	a	full	history	
of	submissions.	A	*ile	needs	to	be	designated	in	your	system	as	part	of	a	submission	to	a	
particular	assignment	by	a	particular	Kerberos	ID	(individual	or	team).	As	described	in	
Section	II,	submissions	may	be	either	documents	or	videos.	

c) Categorization	of	submissions	as	on-time	(before	the	deadline)	or	late.	Depending	on	the	
assignment,	there	may	be	several	different	categories	of	“late”	with	different	penalties.	

2) To	support	staff	work:	
a) A	collection	function	that	allows	staff	to	download	all	student/team	submissions	for	a	given	

assignment.	
b) A	grading	function	that	allows	staff	to	upload	comments	and	assign	grades.	Staff	may	upload	

multiple	versions	of	their	grades	and/or	comments,	singly	or	in	bulk.	In	contrast	to	student	
submissions,	these	successive	versions	are	not	recorded;	only	the	last	version	is	retained.	

c) The	grading	function	must	allow	more	than	one	kind	of	person	to	submit	comments.	For	the	
Critiques,	the	WRAP	Instructors	and	TAs	will	both	be	commenting.	For	the	DPPR,	the	Wrap	
Instructors	and	Recitation	Instructors	will	both	be	commenting.	

d) A	publication	function	that	makes	staff	comments	and	grades	visible	for	a	given	assignment.	
Before	publication,	no	student	sees	any	grade	or	comment	on	the	assignment.	After	
publication,	all	available	grades	and	comments	are	visible	to	the	appropriate	student.		

e) Gradescope	integration:	Hands-on	submissions	will	continue	to	be	handled	via	Gradescope	
and	not	through	MUGS	directly.	Likewise,	quizzes	will	be	handled	via	Gradescope.	However,	
grades	for	the	Hands-on	assignments	and	quizzes	will	need	to	be	exported	from	Gradescope	
and	into	your	system	in	such	a	way	that	they	become	grades	in	MUGS.		

3) To	support	grade	reporting:	
a) A	reporting	system	that	allows	recitation	teams	and	the	Course	Lecturer	to	appraise	the	

performance	of	individual	students,	whole	recitation	sections,	or	the	whole	class.	Staff	may	
request	such	reports	for	a	single	assignment	or	for	all	assignments.	

4) To	support	the	new	poster	video	submissions:	
a) Rank-ordered	voting	on	the	videos,	one	ballot	per	student,	in	order	to	compute	how	many	

students	voted	for	each	video.	
5) To	support	ef*icient	use	of	resources:	

a) A	sensible	allocation	of	tasks/functionality	to	processes	on	the	server.	The	process	structure	
will	include	both	the	infrastructure	services	described	in	Section	III	and	any	additional	
capabilities	you	will	need	to	provide	the	overall	MUGS	capabilities.	

b) A	sensible	allocation	of	storage	space	on	the	server,	dividing	it	between	uses	such	as	home	
directories,	shared	team	space,	storage	of	submissions,	storage	of	grades,	and	any	other	data	
your	design	needs	to	store.	

c) A	protocol	design	for	transport	of	sync	service	data,	supporting	the	capability	to	kill	a	
currently-active	sync	operation.		

� 	11



Your	design	choices	will	be	based	on	correctness	of	functionality,	performance,	and	*lexibility.	These	
are	discussed	in	the	following	section.	
We	are	not	asking	you	to	write	any	code;	indeed,	we	don’t	want	to	read	any	code.	We’re	asking	you	
to	architect	a	system	for	others	to	implement.	Your	reports	will	focus	on	major	choices	and	
tradeoffs.	You	will	need	to	write	clearly	and	precisely,	in	a	way	that	helps	the	reader	to	understand	
the	structure	of	the	system.	You	will	also	need	to	construct	diagrams	that	likewise	clarify	the	overall	
system	structure	or	particular	aspects	of	its	operation.		

B. Evaluation	Criteria	
The	system	you	design	must	meet	a	number	of	criteria	that	relate	to	correctness,	performance,	and	
*lexibility.	The	general	criteria	identi*ied	below	will	be	supplemented	with	additional	evaluation	
criteria	later	in	the	term.	

CORRECTNESS	
Your	system’s	operations	must	allow	the	necessary	*low	of	information.		
1) File	system	view:	Because	*iles	can	be	edited	of*line	and	some	*iles	are	being	managed	jointly	

by	teams,	it	is	important	to	avoid	lost	updates	due	to	independent	but	con*licting	edits.		
2) Individual	submissions:	Students	must	be	able	to	submit	their	individual	assignments;	

relevant	staff	must	be	able	to	see	those	assignments	and	grade	them.		
3) Team	submissions:	Students	on	the	same	design	team	must	be	able	to	share	*iles	that	are	part	

of	the	team’s	work.	Any	student	on	the	design	team	must	be	able	to	submit	those	team	
assignments.	Relevant	staff	must	be	able	to	see	those	assignments	and	grade	them.	In	addition,	
students	must	be	able	to	see	the	DP	Report	that	they	will	be	peer-reviewing	and	each	others’	
videos.	

4) Student	view:	Each	student	must	be	able	to	see	their	own	grades	and	comments,	as	well	as	the	
grades	and	comments	they	have	earned	as	a	team	member.	Each	student	must	be	able	to	see	the	
*inal	DP	Report	they	are	assigned	to	peer	review.	In	addition,	every	student	must	be	able	to	view	
all	other	student	videos.	

5) Staff	view:	Each	staff	member	must	be	able	to	see	all	submissions	that	they	are	currently	
grading,	as	well	as	any	partial	grades	or	comments	they	may	have	assigned	to	those	
submissions.	

6) Recitation	team	view:	Each	staff	member	of	a	recitation	team	must	be	able	to	see	all	
submissions	of	students	and	teams	in	that	recitation.	Each	staff	member	of	a	recitation	team	
must	be	able	to	see	all	completed	grades	or	comments	that	have	been	assigned.	

7) Course	Lecturer	view:	The	Course	Lecturer	must	be	able	to	see	all	submissions,	grades	and	
comments	for	any	student.	

However,	your	system	must	also	ensure	that	people	can	only	see	what	they	are	supposed	to	see.	In	
particular,	students	must	not	be	able	to	see	the	individual	grades	or	comments	of	other	students,	
even	on	the	same	team.		
Your	system	must	also	support	close	integration	with	Gradescope,	so	that	MUGS	is	a	reliable	source	
of	information	about	course	grades	overall.	At	the	same,	remember	that	MUGS	will	not	be	providing	
the	detailed	interface	to	Gradescope,	but	rather	students	and	staff	will	continue	to	use	Gradescope	
generally	as	they	do	now.	So	Gradescope	submissions,	detailed	grading,	and	regrading	will	all	
continue	to	be	handled	directly	in	Gradescope.	The	interface	between	Gradescope	and	MUGS	will	be	
only	in	the	form	of	the	two	functions	listed	early	in	this	document,	for	extracting	the	current	full	set	
of	grades	for	all	assignments,	and	the	signal	of	availability	of	some	new	grade(s).	Thus,	as	an	

� 	12



example,	MUGS	will	not	contain	the	details	of	grading	for	each	quiz	problem	for	each	student,	but	
only	the	total	quiz	grade	for	each	student.	For	the	detail	on	each	problem,	students	will	still	need	to	
access	Gradescope	directly.		

PERFORMANCE		
1) The	system	must	provide	rapid	and	reliable	feedback	to	students	during	submittal.	The	system	

responds	to	each	submission	promptly,	and	the	system’s	response	means	that	the	submittal	is	
guaranteed	to	be	stored	safely.		

2) The	system	must	perform	reliably	despite	spikes	in	demand.	You	can	expect	that	90%+	of	*inal	
submissions	are	likely	to	happen	in	the	last	two	minutes	before	a	deadline.	In	addition,	at	least	
50%	of	submissions	are	submitted	two	or	more	times	in	the	last	*ive	minutes	before	a	deadline.		

3) As	updates	occur	in	Gradescope,	your	system	will	sometimes	be	out	of	sync	with	it.	Your	design	
should	make	a	sensible	choice	about	how	large	you	can	allow	this	difference	to	be.	You	must	
decide	how	frequently	to	poll	for	new	data	from	Gradescope	and	defend	your	decision	about	the	
overhead	costs	incurred.	

4) The	system	must	be	able	to	deliver	all	student	grades	for	all	assignments	to	the	Course	
Instructor	in	a	reasonable	amount	of	time.	Less	than	10	seconds	is	certainly	acceptable,	
somewhat	longer	might	be	OK.		

5) We	do	not	give	a	speci*ic	requirement	for	how	rapidly	a	*ile	transfer	must	be	killed.	However,	we	
will	ask	you	to	estimate	how	rapidly	your	mechanism	will	do	so.	This	will	probably	be	
in*luenced	primarily	by	your	design	of	MUGS,	although	it	is	possible	that	the	network	
*luctuations	discussed	earlier	may	have	an	impact	on	this	as	well.	

FLEXIBILITY	
As	speci*ied,	MUGS	is	designed	only	to	support	6.033,	and	mostly	deals	with	text	documents	and	
grading.		Both	of	these	aspects	might	well	change	in	the	future.	Accordingly,	your	system	should	be	
designed	with	an	eye	on	these	two	possible	future	changes:	
1) Scaling	up	to	more	undergraduate	classes:	The	rest	of	MIT	is	watching	your	success.	First	

Course	6	plans	to	use	MUGS	for	all	Course	6	undergraduate	courses,	rolling	this	out	in	stages,	
noting	that	a	small	number	are	signi*icantly	larger	than	the	400	students	in	6.033.	In	addition,	
there	will	be	many	more	courses	to	be	handled	simultaneously.	In	the	longer	run,	all	of	MIT	is	
considering	using	MUGS.	As	an	estimate,	if	each	student	is	taking	4.5	courses	(some	are	taking	4	
and	some	5),	there	are	50	undergraduate	courses	being	taught	in	each	term,	and	there	are,	in	
round	numbers,	5,000	undergraduates,	consider	how	your	system	might	need	to	be	extended	to	
handle	larger	courses	and	increasingly	more	courses	simultaneously.		

2) Rich	media:	In	this	design	we	have	started	down	a	path	of	storing	video,	but	other	assignments	
in	the	class	could	also	be	video	or	audio	submissions.	For	example,	we	could	make	video	
recordings	of	design	presentations,	and	then	provide	audio	annotations	from	the	Recitation	
Instructor	as	commentary.	How	would	your	system	accommodate	this	evolution	in	stored/
processed	content?	

Note	that	your	system	as	speci*ied	in	your	report	does	NOT	need	to	meet	either	of	these	
requirements;	but	you	will	need	to	be	able	to	explain	how	you	could	modify	it	to	meet	them	in	the	
future.	

� 	13



V. Design	tradeoffs	and	use	cases	
A. Design	Tradeoffs	
There	are	a	number	of	design	tradeoffs	possible	in	this	project.	We	highlight	some	of	them	here,	but	
there	are	likely	to	be	more.	
1) You	will	need	to	organize	the	system’s	information,	both	data	and	metadata	(data	about	the	

data).	There	are	many	different	ways	of	organizing	the	relevant	information,	with	different	
advantages	and	disadvantages.	You	will	need	to	decide	how	to	do	this	and	justify	your	choice.	

2) Within	the	central	services,	you	have	choices	for	how	to	manage	coordination.	It	is	important	to	
notice	that	each	group	with	access	to	a	directory	or	*ile	provides	an	“opportunity”	for	con*licting	
modi*ications.	You	will	need	to	decide	how	those	con*licts	will	be	handled	(Prevented?	
Mitigated?	Ignored?)	and	explain	your	solution(s).	

3) As	described,	there	are	no	constraints	on	the	storage	or	computation	that	can	be	used	by	an	
individual	or	team	–	a	situation	that	seems	ripe	for	abuse.	How	should	the	resources	of	the	
central	services	be	managed,	so	as	to	provide	continuing	adequate	service?	

4) You	will	need	to	decide	which	aspects	of	the	course’s	operation	are	enforced	by	your	system	vs.	
which	aspects	are	enforced	only	by	convention	and	common	sense,	as	well	as	explaining	why	
those	are	the	right	choices.	

5) Gradescope	offers	only	a	limited	and	slow	means	of	extracting	grades	in	an	inconvenient	format.	
How	often	should	you	get	those	grades,	and	should	that	export	be	triggered	by	events,	time,	or	
some	combination?	How	should	you	maintain	Gradescope-derived	grades	in	your	system?	

6) The	“penalties”	on	late	grades	raise	interesting	tradeoffs.	Does	the	system	enforce	penalties	or	
simply	notify	the	user	that	the	condition	exists?	As	you	may	know,	there	are	late	submission	
conditions	under	which	penalties	may	not	be	applied,	such	as	illness	with	S3	support,	so	your	
system	must	allow	for	that	in	some	way,	but	how	that	is	handled	is	your	choice.	

B. Some	use	cases		
Here	are	some	examples	of	situations	that	are	likely	to	arise	when	your	system	is	in	use.	We	provide	
these	to	help	you	think	through	some	of	the	less-obvious	issues	in	your	design,	and	we	will	ask	you	
to	describe	your	system’s	behavior	in	at	least	some	of	these	use	cases.		
Note	that	you	are	not	in	any	way	limited	to	considering	only	these	situations	–	you	are	free	(and	
encouraged!)	to	consider	other	use	cases	as	well.	
1) Bulk	creation	of	accounts:	At	the	beginning	of	term,	accounts	need	to	be	set	up	for	roughly	

400	students	in	a	short	span	of	time.	Staff	accounts	have	most	likely	been	created	in	advance	of	
that	point	and	the	staff	accounts	arranged	into	recitation	teaching	teams.	You	should	be	able	to	
explain	how	your	system	goes	from	“no	students”	to	the	fully-functioning	“all	students”	
situation.	Note	that	this	most	likely	involves	more	than	just	creating	an	account	for	each	student,	
since	the	students	also	need	to	be	arranged	into	recitations	so	their	later	submissions	and	
grading	work	correctly.	As	part	of	this	use	case,	you	should	be	able	to	explain	approximately	
how	long	this	process	takes.	

2) 400	simultaneous	submissions:	It’s	deadline	time!	Everyone	has	been	procrastinating	and	
they	are	turning	in	the	assignment	at	pretty	much	the	last	possible	minute.	Does	your	design	
demand	resources	(processes,	network,	storage)	beyond	what’s	available?		(What’s	the	worst	
kind	of	assignment	for	your	system	in	this	scenario?)	

� 	14



3) NotiWication	of	400	students	simultaneously	that	a	grade	was	posted:	The	grading	is	all	
done	and	now	it’s	time	for	the	students	to	be	noti*ied.	What’s	the	state	of	the	system	just	before	
publication,	who’s	taking	the	publication	action,	and	what	happens	when	they	do?	

4) Regrade	of	quiz	question	for	one	student	in	Gradescope:	The	quiz	was	already	graded	and	
the	grades	from	Gradescope	have	been	merged	into	your	system	(however	that	happens).	But	
now	someone	has	successfully	appealed	the	grading	of	one	question	and	their	grade	has	
changed	in	Gradescope.	How	does	your	system	notice,	how	long	elapses	after	the	Gradescope	
change,	and	what	happens	in	your	system	to	incorporate	the	regrade?	

5) A	student	drops	the	course	late	in	the	term:	Because	MIT	allows	students	to	drop	the	course,	
you	must	consider	how	you	will	handle	the	impacts	of	that.	First,	your	system	will	have	been	
keeping	track	of	grades	for	every	student.	How	do	you	handle	the	fact	that	a	student	may	be	
removed	from	Gradescope,	so	the	list	of	grades	you	retrieve	of	Gradescope	may	not	be	perfectly	
synchronized	with	the	students	represented	in	MUGS.	In	addition,	if	DP	teams	were	already	
formed,	that	student	will	also	have	been	put	into	a	DP	team	with	the	access	privileges	of	that	
team.	How	will	you	handle	that?	

6) End-of-term	spreadsheet	for	grades	meeting:	The	*inal	output	of	6.033	–	as	far	as	the	
Registrar	is	concerned,	anyway	–	comes	after	the	*inal	exam	has	been	graded,	when	all	the	staff	
meet	to	assign	*inal	letter	grades.	For	that	meeting,	the	Course	Lecturer	produces	a	*inal	report	
of	all	the	grades,	for	all	students,	on	all	assignments.	How	does	that	work	in	your	system?	Do	
you	include	ALL	students,	even	the	ones	who’ve	dropped	the	class?

� 	15


