
Katrina LaCurts | lacurts@mit | 6.033 2015

6.033 Spring 2015!
Lecture #4

• Operating systems
• Virtual memory
• OS abstractions

Katrina LaCurts | lacurts@mit | 6.033 2015

Lingering Problem

Client Serverinternet

load(amazon.com/buy.html?fishtank)

what if we don’t want our modules to be on entirely
separate machines? how can we enforce

modularity on a single machine?

Katrina LaCurts | lacurts@mit | 6.033 2015

operating systems: enforce
modularity on a single machine via

virtualization

Katrina LaCurts | lacurts@mit | 6.033 2015

Enforcing Modularity via Virtualization

in order to enforce modularity + build an effective operating system

today’s goal: virtualize memory so that programs cannot refer
to each others’ memory

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

assume that they
don’t need to

(for today)

assume one program
per CPU
(for today)

Katrina LaCurts | lacurts@mit | 6.033 2015

Single Program

CPU main memory

for8(;;)8{8
888next8instruction8
} instructions

data

interprets instructions

holds instructions

Katrina LaCurts | lacurts@mit | 6.033 2015

Single Program

CPU main memory

instructions

data

31 0

EIP

instruction pointer
232@1

0

Katrina LaCurts | lacurts@mit | 6.033 2015

Multiple Programs

CPU1 main memory

for8(;;)8{8
888next8instruction8
}

CPU2

for8(;;)8{8
888next8instruction8
}

(used by program1)

(used by program2)

instructions8for8
program1

instructions8for8
program2

data8for8program1

data8for8program2

232@1

0

Katrina LaCurts | lacurts@mit | 6.033 2015

Multiple Programs
CPU1 main memory

instructions8for8
program1

CPU2

(used by program1)

(used by program2)
instructions8for8

program2

data8for8program1

data8for8program2

problem: no boundaries

232@1

0

31 0

EIP

31 0

EIP

Katrina LaCurts | lacurts@mit | 6.033 2015

Solution: Virtualize Memory

CPU1

main memory

(used by program1)
232@1

0

31 0

EIP

MMU

table8for8program1

table8for8program2

instructions8for8
program1

instructions8for8
program2

data8for8program1

data8for8program2

virtual!
address

physical
memory

virtual
address

0

0

232@1

232@1

MMU uses program1’s table to translate
the virtual address to a physical address

physical!
address

Katrina LaCurts | lacurts@mit | 6.033 2015

Storing the Mapping

naive method: store every mapping; virtual address acts as
an index into the table

0xbe26dc98
0xc090f81c8
0xb762a5728
0x5dcc90ee8

…

0x000000008
0x000000018
0x000000028
0x000000038

…

= 16GB to store the table

232 entries

32 bits per entry

Katrina LaCurts | lacurts@mit | 6.033 2015

Storing the Mapping

space-efficient mapping: map to pages in memory
one page is (typically) 212 bits of memory.

232-12 = 220 entries

32 bits* per entry
= 4MB to store the table

* you’ll see why it’s not 20 bits in a second

Katrina LaCurts | lacurts@mit | 6.033 2015

Using Page Tables

CPU1(used by program1)

0x00002148
31 0

EIP

MMU
0x00002148

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

table for program1

…

0x00003
0x00000
0x00004
0x00005

(exists in main memory)

index into
page table

physical page number: 0x00004

0x00004148 to main
memory

Katrina LaCurts | lacurts@mit | 6.033 2015

Page Table Entries

physical8page8number

1231 11 0

page table entries are 32 bits because they contain a 20-bit
physical page number and 12 bits of additional information

present (P) bit: is the page currently in DRAM?

read/write (R/W) bit: is the program allowed to write
to this address?

user/supervisor (U/S) bit: does the program have
access to this address?

Katrina LaCurts | lacurts@mit | 6.033 2015

kernel manages page faults and
other interrupts

Katrina LaCurts | lacurts@mit | 6.033 2015

operating systems: enforce
modularity on a single machine via

virtualization and abstraction

Katrina LaCurts | lacurts@mit | 6.033 2015

• Operating systems  
 Operating systems enforce modularity on a single  
 machine via virtualization and abstraction 

• Virtual memory  
 Virtualizing memory prevents programs from referring  
 to (and corrupting) each other’s memory. The MMU  
 translates virtual addresses to physical addresses  
 using page tables  
 !

• OS abstractions  
 The OS presents abstractions for devices via system  
 calls, which are implemented with interrupts. Using  
 interrupts means the kernel directly accesses the  
 devices, not the user

