
Introduction to Transactions
(Atomicity, in particular)

Hari Balakrishnan

6.033 Spring 2015
April 6, 2015

xfer(fromacct, toacct, amt)

xfer(from, to, amt):
 # debit “from”
 f = read_disk(from)
f ß f – amt

 write_disk(from, f)
credit “to”
t = read_disk(to)
t = t + amt
write_disk(to, t)

xfer(from, to, amt):
 # debit “from”
 x = read_disk(from)
x = x – amt
write_disk(from, x)

credit “to”
t = read_disk(to)
t = t + amt
write_disk(to, t)

CRASH!
CRASH! CRASH!

CRASH!

All-or-nothing atomicity

A sequence of steps is an all-or-nothing action
if, from the point of view of its invoker, the
sequence always either
 completes, or
 aborts in such a way that it appears that

 the sequence had never been undertaken
 (i.e., it backs out).

All-or-nothing:“Do it all or not at all”

Now consider concurrent xfer()s

xfer(from, to, amt):
 # debit “from”
 f = read_disk(from)
f = f – amt
write_disk(from, f)

credit “to”
t = read_disk(to)
t = t + amt
write_disk(to, t)

audit(from, to, TOTAL) {
 sum = read_disk(TOTAL)
 f = read_disk(from)
 t = read_disk(to)
 if f + t != sum:
 raise_alarm()

Before-or-after atomicity

Concurrent actions have the before-or-after
property if their effect from the point of view of
their invokers is as if the actions occurred
either completely before or completely after
one another.

Isn’t this just locking?

•  Well, yes...

•  But developers need to do it

•  And what if you want to atomically do
xfer(A, B)
xfer(B,C)
xfer(C,D)

Atomicity

•  Atomic = All-or-nothing + Before-or-after

•  An invoker (a higher layer) cannot
discover the internal structure of an
atomic action’s implementation

Implementing all-or-nothing atomicity

•  Special case: all_or_nothing disk sector put
and get – today

•  General approaches
•  Version histories (in book; not covered)
•  Logging à Wednesday (write-ahead logging) and

Thursday recitation (log-structured file system)

Golden Rule of Atomicity

Never modify the only copy!

All-or-nothing disk sectors

•  Failure model: crash in the middle of a disk
sector write, corrupting data

•  careful_get(sector, data): returns OK if and
only if data is good (correct, via checksum)

•  careful_put(sector, data): may fail if crash
occurs during operation (e.g., power failure or
other crash)

•  How to achieve all_or_nothing_put(sector,
data) so that all_or_nothing_get(sector, data)
returns last successful put()?

All-or-nothing disk sector write (“put”)
all_or_nothing_put(s, data):
s is a disk sector address

 status = careful_get(s.D0, buffer)
 if status == OK:
 careful_put(s.D1, data)
 careful_put(s.D0, data)
else:

 careful_put(s.D0, data)
 careful_put(s.D1, data)

All-or-nothing disk sector read (“get”)

all_or_nothing_get(s, data):
status = careful_get(s.D0, data)
 if status == OK:
 return OK
 return careful_get(virtual_sector.D1, data)

Transactions: A Programming Model

•  All-or-nothing (“Atomic” in the database
literature, but “All-or-nothing” in 6.033)

•  Before-or-after (“Isolation”)
•  Effects persist (“Durable)
•  “Consistent”: satisfies higher-level

constraints (e.g., all salaries > 0)

•  Aka “ACID”

Transactions

BEGIN TRANSACTION
 …
 …

COMMIT
à At this point effects are visible to other

actions (transactions)
à Post-commit operations here
END TRANSACTION

Could ABORT anywhere
before COMMIT

Pre-commit phase

Simple programming model
xfer(from, to, amt) {

 /* debit “from” */
 f ß read_disk(from);
f ß f – amt;
write_disk(fromacct, f);

/* credit “to” */
t ß read_disk(to);
t ß t + amt;
write_disk(to, t);

}

audit(from, to, TOTAL) {
 sum = read_disk(TOTAL);
 f ß read_disk(from);
 t ß read_disk(to);
 if (f + t != sum)
 raise_alarm();

}

BEGIN TRANSACTION
 xfer(savings, checking, 1000)
 COMMIT
 issue_receipt
END TRANSACTION

BEGIN TRANSACTION
 audit(savings, checking, TOTAL)
 COMMIT
 print_audit_report
END TRANSACTION

Benefits of the transaction model

•  User doesn’t have to explicitly invoke locks
•  All-or-nothing
•  Before-or-after (= isolation = “serial

equivalence” = “conflict serializability”)
•  No need to pre-declare operations: outcomes

become visible at COMMIT point
•  Extremely powerful abstraction for users

(hard to implement for system designer)

