

SEV: a Storage-Efficient Versioning File System

Xunjie (Helen) Li

xunjieli@mit.edu

Design Proposal 1

Strauss T12

March 22, 2013

mailto:xunjieli@mit.edu

1 Introduction

Conventional file systems do not support automatic file versioning. To keep a record of file

changes, users would need to manually save copies of a file at different point in time. This

consumes a large amount of disk space, and brings users unnecessary operational overhead.

In this report, we outline the design of SEV -- a storage-efficient versioning file system,

designed specifically to solve the above-mentioned problem. SEV augments file inode structure,

implements an accompanying vnode for each versioned file, and uses an in-memory copy-on-

write scheme. Retrieving old versions does not involve any sort of reconstruction, and is as fast

as reading files in an ordinary file system. In addition, creating new user contents through

standard file system calls can be performed efficiently without compromising the integrity of

versioned data.

In order to keep the design as lightweight as possible, and to achieve reasonable speed and

space efficiency at the same time, we have made a few design trade-offs: (1) We choose not to

implement directory versioning. Even though it is a very desirable feature in some

circumstances, there are many tricky edge cases involved. (2) In preference to B-trees,

indirection is used to keep track of on-disk file blocks. This is to adhere more closely to the basic

UNIX File System. However, it is relatively straightforward to adapt SEV to the implementation

of B-trees, if a need for quicker random access to file blocks arises. (3) all old versions will be

read-only. The reason is that in SEV, versions can reference to the same file blocks. To avoid

massively rewiring during WRITEs, the design does not allow modification on old versions.

2 Design

The main components of SEV include an on-disk data structure, vnode (“version node”), and an

in-memory data structure, cblock (“cloned block”). Regular file inode and the in-memory

file_table are augmented. In addition, additional mappings are maintained in order to achieve

fast lookup and access.

2.1 Data Structures

2.1.1 On-Disk Data Structures

Every file inode contains a version-enabled bit, specifying whether the file is versioned by SEV.

It also contains a pointer to the vnode that records the version data of this file.

A vnode is stored in the same way as an inode, and is referenced by an inode number. The link

count of an initialized vnode is one. When the all references to the actual file inode is removed,

the link count of vnode drops to zero.

The data blocks of a vnode contain the following structured data:

● metadata_table: a table that keeps track of metadata on the versioning status of the file.

It includes

○ file_inode_pointer: a pointer to the actual file inode,

○ cur_num_versions: current number of versions,

○ cur_total_blocks: current number of total file blocks used,

○ last_commit_timestamp: timestamp of last commit.

● block_usage_map: a block usage map that contains block numbers used in the

versioning of this file, and how many versions are referencing to each. This map

includes indirect blocks and data blocks.

● version_object_list: a doubly linked list that contains version objects, which are

snapshots of file inodes taken at the time of version creation. In addition, two pointers,

one to the oldest version object and the other to the newest version object, are

maintained.

The structure of the vnode and the relationship between an augmented file inode and its

accompanying vnode are illustrated in Figure 1.

Figure 1. Augmented file inode and the structure of a vnode

Note that each vnode only has an inode number. It is otherwise unnamed. Even though a file

inode can have multiple links, version objects are bound to the vnode of the file, independent of

which name (hard link) is used by processes.

2.1.2 In-Memory Data Structures

cblock

In SEV, all WRITE and READ system calls operate on in-memory block caches. When a

process attempts to modify an in-memory file block that belongs to a versioned file, an in-

memory clone of that block, called cblock (stands for “cloned block”), is created. Instead of

directly modifying the file block, the process will modify the corresponding cblock.

To enable fast-lookups, mappings from processes to cblock numbers are also maintained in

memory.

file_table

SEV augments the in-memory file_table to contain a counter, num_of_writes, which records

how many WRITEs a process and its children have made to a file.

2.2 Versioning Policy

A system-wide SEV configuration file is stored in the root directory. This configuration file is a

formatted text file containing,

● max_num_ver: maximum number of versions allowed. Initial value is 50.

● max_num_block: maximum number of file blocks allowed for a versioned file. Initial

value is 214.

● num_write_calls: the number of WRITEs after which a new version is created. Initial

value is 10.

● lines_of_regular_expressions: All files are versioned by default. However, if a file is

matched by any line of regular expressions at its creation time, the inode of the file has

version_enabled bit set to false. Similarly, if a directory path is matched, all files in that

directory are opted out of versioning.

Root users can customize this configuration file according to their needs through a few SEV

utility functions.

2.3 Versioning Procedures

SEV versioning procedures consist of 4 stages: (1) file creation, (2) copy-on-write, (3) version

creation, and (4) file deletion.

As illustrated in Figure 2, Stage 1 and 4 only occur once in the lifetime of a file, and Stage 2

followed by Stage 3 can repeat many times.

Figure 2. Stages of versioning procedures

Stage 1: File Creation

When a file is created, the version_enabled bit is set according to the configuration file. An

inode is allocated to be the accompanying vnode, if the version_enabled bit is true. A user is

unable to change the version_enabled bit afterwards.

Stage 2: Copy-on-Write Scheme

For each process that tries to write to an in-memory file block, a cblock is created. Subsequently

the process will execute READ and WRITE calls on the assigned cblocks. If new data cannot be

contained in a cblock, ordinary in-memory blocks are allocated. After num_write_calls WRITEs,

or before a CLOSE on files that have cblocks, Stage 3 is invoked.

Stage 3: Creation of a New Version

A new version is created by

i taking a snapshot of the current file inode to make a new version object,

ii updating metadata_table, block_usage_map and version_object_list in vnode,

iii allocating new disk blocks to write each cblock, and any additional in-memory blocks

back to disk,

iv updating block_numbers in file inode to replace block numbers of the overwritten

blocks with block numbers of the new disk blocks in (iii). If an overwritten block is a data

block listed by an indirect block, the pointer in the indirect block is also updated. This is a

recursive process.

This stage is illustrated in Figure 3.

Figure 3. Creation of a new version (The green block represents an additional in-memory block

used to contain new data. The pointers to red data blocks are replaced with the pointers to the

newly allocated blocks. In the process, two indirect blocks, illustrated in yellow, are written with

updated references.)

Stage 4: File Deletion

When a file is deleted by an application, SEV recursively frees all data blocks used by all

versions by going through block_usage_map. It also frees the vnode after all data blocks are

freed.

2.4 Garbage Collection

SEV periodically reclaims versions of file to restore disk space. It deletes the oldest version of a

file, if the version data of that file exceeds the limits set in the configuration file (Section 2.2).

In deleting an oldest version, the following is handled by the garbage collection routine:

● updating reference counts in block_usage_map. If a reference count drops to 0, the

block is freed.

● removing the corresponding version object from version_object_list, and updating its

end pointer to point to the next version.

2.5 Application Programming Interface (API)

SEV supports all standard file system calls of Unix V6. There are a few modifications and

additions.

Modifications:

● WRITE is intercepted to implement the copy-on-write scheme. In addition, WRITE is also

modified to read the num_of_writes stored in file_table to determine whether it should

invoke the creation of a new version.

● READ is intercepted to read old versions, if the filename is of the format of a version (i.e.

name followed by “_v”, a version number and the file extension). Reading an old version

is straightforward, which only involves finding the correct inode snapshot in

version_object_list, and reading the block_numbers in that snapshot.

● CLOSE is intercepted to execute creation of a new version.

● STAT is intercepted to parse a filename. If the filename specifies a file version, STAT

finds the corresponding snapshot in version_object_list, and prints out the metadata in

the snapshot inode.

Additions:

● SEV_GREP(regexPattern, filename) searches a file or a specific version of it (if filename

specifies a version) for strings matching the regular expression regexPattern.

● SEV_GREP_ALL(regexPattern, filename) searches all versions of a file for strings

matching the regular expression regexPattern.

● SEV_STATUS(filename) displays metadata stored in metadata_table of the vnode of the

file with filename filename.

SEV_GREP and SEV_GREP_ALL employ SEV’s READ system call and the GREP utility of

Unix file system.

3 Analysis

The following sections present several use cases and performance metrics to determine how

well SEV performs.

3.1 Uses Cases

File Creation

When a file is created, we need to parse the configuration file to determine whether the file

should be versioned. If we regard every regex rule is of the same complexity, each file creation

call incurs a delay that is linear to the number of regex rules in the configuration file.

A possible mitigation to the increased latency of creation calls could be to cache configuration

settings in memory. However, this is not currently implemented.

Version Retrieving and String Searching

Each version is stored as a directly readable format in vnode. Retrieving an version only takes

an additional amount of time that is bounded by max_num_ver in the configuration setting, as

SEV needs to walk the doubly linked list (version_object_list) to find the version object.

Usually max_num_ver is small, ~O(100). Therefore, reading a version is as fast as reading a

file in a non-versioning file system.

For string searching in old versions, SEV also performs well, as version retrieving is just as

efficient as retrieving an ordinary file.

Frequent Commits

Some applications, such as a text-editor, might make frequent WRITEs. In order to avoid

creating numerous new versions in a short period of time, SEV delays the creation of a new

version after num_write_calls WRITEs or until a CLOSE (whichever happens earlier).

However, this design is not optimal, as num_write_calls is a system-wide setting. Some

applications might need to create a version after a single WRITE, while others do not. A more

granular approach is to customize settings on an application-specific level rather than on a

system level.

Other Edge Cases

SEV does not optimize for WRITEs that only insert small amount of new data in a file block.

Data with offset larger than the inserted data might all be shifted and re-written. SEV relies on

the application layer to do such optimization.

An alternative design is to do byte-level diffing on new data and old data, and to store byte-level

changes on disk. However, this makes the storage of the file system too fragmented, which

might affect garbage collection negatively. Therefore, in SEV, a block is considered as the

smallest unit.

3.2 Performance Analysis on Different Workloads

The performance of SEV is evaluated on three different workloads: (1) repeatedly writing to a

small file; (2) repeatedly writing a block of a large file; and (3) searching through all versions of a

small file.

The following assumptions are made:

○ size of a file block: 4 KB

○ size of a small file ~ 32 KB = 8 file blocks

○ size of a large file ~ 2 TiB = 229 file blocks

○ number of versions made ~ n

○ system-wide configuration,

- num_write_calls = 10

 - max_num_block = 230

Table 1. Performance of SEV under different workloads

workloads disk blocks read on-disk storage in-memory space

(1) 8 for every 10 WRITEs O(8n x 4) = O(32n) KB 8 in-memory block, 8 cblocks

(2) 1 for every 10 WRITEs O(2
19

 + 4n) KB 1 in-memory block, 1 cblock

(3) n x 8 = 8n worst-case*:
O(8n*4) = O(32n) KB

worst-case*:
O(8n in-memory blocks)

*For the third workload, the on-disk storage and in-memory space depend on whether and how the

application stores the query results.

It is clear from the calculation that the amount of storage and space needed is proportional to

the amount of changes (in terms of the number of modified blocks). Small edits on large files are

less costly in version creation. Search time on versions is linear to the number of versions

searched, and is as efficient as searching ordinary files.

3.3 Scalability Limits

SEV does have some scalability limits. Even though the additional time spent in retrieving a

specific version is negligible, the time required by garbage collection increases linearly with the

number and the size of versions. Therefore, when deleting versions of enormous sizes, SEV

might experience temporary hiccups. In addition, versioning depletes disk space at a faster rate,

which places a limit on the extensiveness of version control the user could do.

4 Conclusion

SEV provides a storage-efficient way to create and keep track of different versions of files. It

does so by employing a copy-on-write scheme, minimally augmenting existing data structures,

and creating an additional data structure (vnode) to systematically store snapshots of file inodes.

With handy utilities and standard file system calls in place, SEV presents users and applications

an easy interface to interact with versioned data and to customize version control settings.

Before the design of SEV is final, challenges that remain include handling hardware crashes,

ensuring better access control of versioned data, and supporting version control settings with

finer granularity.

5 Acknowledgement

I am grateful for the numerous writing comments received from Janis Melvold, for the discussion

with my classmates (Siyao Xu, Kelly Zhang and Kojo Acquah), and for the extremely helpful

design feedback given by my TA, Jorge Simosa.

6 References

[1] Z.N.J. Peterson and R. Burns. Ext3cow: A Time-Shifting File System for Regulatory

Compliance. In: ACM Transactions on Storage, 1(2), May, 2005

[2] Saltzer, J. H., and Frans Kaashoek. Principles of Computer System Design: An Introduction.

Burlington, MA: Morgan Kaufmann, 2009. Print.

Word Count: 2419

http://znjp.com/papers/peterson-tos05.pdf
http://znjp.com/papers/peterson-tos05.pdf

