

Proposal for a Versioning File System

6.033 Design Project 1

Xinyue Ye

March 1, 2013

1 OVERVIEW

This proposal describes the design of a versioning file system which tracks old file versions. The

approach is to create individual log files for each file. The log files contain records that represent

modifications between versions. This design is space-efficient and provides all the functionality of

the Unix File System (UFS).

2 DESIGN DESCRIPTION

2.1 Data Structures

The key data object in the design is the log file that maintains the changes between each version

of a file.

2.1.1 On-Disk

Log File: Each file will have a .log file that is stored on-disk that keeps track of changes for that

file between each version. The .log file is created and stored in the same directory as the file and

consists of a sequence of records. A record is an entry that contains the version ID, or number, of

the file, the byte offset at which the modification begins, the length of the new data to be written,

and the original data in the file starting at the offset. Each new record is triggered by a write()

call to the file and created by making a write() call to the .log file that writes the record

metadata to the log. Then, the old data in the file will be overwritten with new data in a third

write() call. Figure 1 gives a more detailed description of the syntax and grammar of the

records in the .log file and Figure 2 gives a clear example of the logging process that takes place.

Inode: The log file’s inode needs to contain a field called num_versions that keeps track of the

total number of versions of the file. It should also store a configurable variable, max_size, for

the maximum size of the .log file; this will prove to be useful during garbage collection. The file

inode needs to store one additional attribute: a Boolean variable, is_versioned, which

represents whether the file or directory should be versioned.

2.1.2 In-Memory

B-trees: The in-memory data structure is nearly identical to the B-tree in-memory data structure

of the UFS.

Shadow Files: A shadow file copy is a temporary copy of a current file version and is used when

the user wants to access a previous version. After it is created, using the records in the .log file,

the changes are made one at a time to the shadow copy until it is at the correct version. This

shadow copy is then opened with read-only access and when the user closes the shadow file, it is

deleted from memory.

2.2 Functionality

The versioning file system supports several Unix operations as well as additional functionality

such as versioning options and garbage collection.

Versioning Options

The user can specify files and directories to be excluded from versioning. Each file’s inode and

directory’s inode (not including .log files) has a configurable Boolean variable, is_versioned,

which determines if the file or directory should be versioned.

Garbage Collection

There is default garbage collection that is built-in to the file system. If the size of a .log file

reaches the max_size of that .log file, then the oldest version in the .log file will be deleted. The

default max_size of a .log file is 1 Megabyte; however, the user is able to change that to

accommodate their needs.

2.3 Application Programming Interface

Applications will use the following API to interact with the versioning file system.

 read(filename,version_num): Reads the current version of the file if

version_num is 0. Otherwise, makes a shadow copy of the current file and “undos”

each change in the log file until the correct version.
 write(filename,buffer,count): Makes a read() call to the file and reads in the

old data that is about to be overwritten. This old data and other record metadata (see

Figure 1) is written to the .log file. Finally, a write() call is made to the file to overwrite

the old data with the new data.

 create(filename): Creates a file and a .log file with the filename.

 open(filename,version_num): Opens current version of the file and proceeds as

read(filename,version_num).

 search_all_versions(filename,string): Searches the file’s .log file and

current version for the string.

 search_all_files(string): Searches all files and .log files for the string.

 rename(filename,new_name): Renames the file and file’s .log file to new_name.

Linking is implemented as in the UFS.

3 CONCLUSION

The proposed design is a space efficient versioning file system; however, further optimizations

could be explored. For example, snapshots of older version can be stored to reduce the number of

“undos” required. Furthermore, future tasks include implementation details and additional

functionality.

[Type a quote from the document or

the summary of an interesting point.

You can position the text box

anywhere in the document. Use the

Drawing Tools tab to change the

formatting of the pull quote text box.]

