A Versioning File System Based on UNIX V6

Ellen Finch
Rudolph T11, F1
March 1, 2013



Overview

The goal of this design project is to produce a space-efficient versioning file
system based on the UNIX V6 file system. The system will save both an old and a
new version of a file each time a file is saved; the old version will be read-only to
prevent branching. Directories will not be versioned, because it is assumed that all
important files will be versioned. The proposed system will provide the desired
versioning functionality by copying a file’s inode when it is opened and only
modifying the blocks that are directly affected by a write. This system is
space-eflicient because versions will share most of the same memory blocks, and
will only use additional space for the blocks that are changed.

Design Description

Modifications to Data Structures

To support the desired operations, additional metadata will be added to the inodes
and to the file descriptors. The inodes will be extended to keep track of whether or
not a file is to be versioned, a maximum lifetime for versions, and a timestamp.
Each inode will also be given a prev__inode field which points to the inode of
the immediately preceding version. The file descriptors will be extended with a
modi fied flag that tracks whether or not an opened file has been written to.

Summary of Basic Operations

When the current version of a versioned file is opened, its inode information is
copied to a new inode; the returned file descriptor refers to the original. The
timestamp associated with the original inode is set to the current time, and its
prev_inode field is set to the copy. The copy is not associated with any name,
but it is referenced by the original inode and has a refcnt of 1. The copy is
always created in read-only mode.

On a write call, the system copies each block which is to be modified into a new
block, edits the contents of the new block, and updates the file to reference the
new block instead of the old one. The write call also sets the modified flag in
the file descriptor to true.

On close, if the modi fied flag is set, the system closes the file and does a
garbage-collection check: it runs back through the prev_inode chain of
versions and checks timestamps, deleting any that are older than the specified
maximum lifetime. If the modified flag is not set, the system closes the open file,
changes its prev__inode to the prev_inode of the copy, and deletes the copy.



Viewing Older Versions

The names of older versions are not explicitly stored in a directory. Instead, when
the user calls 1s to list the contents of a directory, the system will traverse the
prev_inode list and list each older version as filename. [timestamp].
The user can then specify the version to open by this name, and the system will
look through the prev_inode links from f£ilename until it finds the
appropriate timestamp, and will then return that inode.

my_files
filename inode number
my_notes 5
inode number 5 23 31
. 1 2013-3-1- 2013-2-28- 2013-2-28-
imestamp 10:13:47 20:24:15 12:42:06
previous inode 23 31 null

name_to_inode_number(my_notes.2013-2-28-20:24:15)
my_notes -> inode 5; timestamp 2013-3-1-10:13:47
inode 5 prev_inode -> inode 23; timestamp 2013-2-28-20:24:15
return inode 23

Figure 1. Older Version Lookup By Timestamp

Links

The implementation of symbolic links will be unmodified. Since only the current
version of a file is stored by name, symbolic links will only allow linkage to the
most recent version of a file.

The implementation of hard links relies on the prev_inode field. Since the
inode number of the current version remains unchanged while the prev_inode
field is updated, a single hard link to the current version inode gives access to all
saved versions.

The unlink function will be essentially unchanged, with the addition that if any
inode’s refcnt is decremented to 0, the system should set the refcnt of its



prev_inode to 0 as well, and so on until an inode with no previous inode is
found.

Additional System Calls

In order to make the system more user-friendly, two new system calls will be
added to support marking files as to-be-versioned or not and setting the maximum
lifetime for a file’s versions. There will also be a garbage-collect call added to
delete expired versions of a file without having to open and close it. The current
version of a file is never garbage collected.

Conclusion

The proposed design provides a space-efficient solution for a versioning file
system by storing minimal additional data for each version of a file. The
remaining concerns for this implementation are the specific implementation of the
copy-on-write functionality, which involves heavy modification of the write
system call, as well as the implementations of other modified or added system
calls.

References

The description of the UNIX file system on which this versioning file system is
built is from Principles of Computer Design by Jerome H. Saltzer and M. Frans
Kaashoek. The design is indebted to the paper "Ext3cow: A Time-Shifting File
System for Regulatory Compliance" by Zachary N.J. Peterson and Randall Burns,
located at http://hssl.cs.jhu.edu/~zachary/papers/peterson-tos05.pdf. The design
development was also aided by discussion with Eugenio Fortanely.



http://hssl.cs.jhu.edu/~zachary/papers/peterson-tos05.pdf

	Overview
	Design Description
	Modifications to Data Structures
	Summary of Basic Operations
	Viewing Older Versions
	Links
	Additional System Calls

	Conclusion
	References

