
6.033 Lecture 17 — Isolation 4/9/2014

Last time:
Saw how to implement atomicity in the presence of crashes, but only one

transaction running at a time

[show slides]

This time, going to see how we preserve atomicity when we run multiple 
transactions.  I.e., how to isolate running transactions from each other.

Remember our goal:  want state of the database after concurrent transactions run to be 
equivalent to running the transactions in some serial order, i.e., to be serializable

So why not just run transactions serially, i.e., one at a time?

Performance!  Can’t use multiple CPUs to execute multiple transactions at the same 
time that don’t touch the same data, and can’t make progress on some other 
transactions while one transactions is waiting for I/O or user input.

Can’t we just manually acquire locks on all records before we read / write them?

Maybe, but that’s pretty tricky — have to know exactly what objects a transaction will 
access, and insert acquire and release statements at the right point to ensure isolation.  
Would be better if system did this automatically.

Especially complex if using SQL, e.g., “UPDATE emp WHERE sal > 100k”

Some definitions:

  read-set = objects read by transactions
  write-set = objects written by transactions

For two transactions T1 and T2, if their neither their read sets nor their write sets 
intersection, can clearly be run in parallel.

If read sets intersect, but write sets don’t, also OK to run in parallel

If write set of one intersections write or read set of other, then trickier.  



Consider banking example:

  xfer(A, B, amt):
    begin
    A = A - amt
    B = B + amt
    commit

  int(rate):
    begin
    for each account x:
      x = x*(1+rate)
    commit

[show slide]

What happens if we have A=100, B=50, and concurrent xfer(A,B,10) & int(0.1)?
  Serial executions:
    .. -> [xfer] -> A=90,  B=60 -> [int]  -> A=99,  B=66
    .. -> [int]  -> A=110, B=55 -> [xfer] -> A=100, B=65

According to serializability def’n, either outcome is OK if xfer() & int() are executed 
concurrently.

What could happen if we run these operations concurrently?

  xfer:       int:
   RA [100]
   WA [90]
               RA [90]
               WA [99]
   RB [50]
   WB [60]
               RB [60]
               WB [66]

This is called a "schedule" for these two transactions.
  
The two transactions didn't run serially, but is this schedule serializable?   Yes: outcome 
is the same as if they ran sequentially.



What about:

  xfer:       int:
   RA [100] //before WA in int
               RA [100]  //before WA in xfer
   WA [90] //before WA in int
               WA [110]  //after WA in xfer  
   RB [50]
   WB [60]
               RB [60]
               WB [66]
  Not serializable: could not have possibly gotten (A=110,B=66) serially.

[show slide]

Suppose we have two transactions T1 & T2.  For a read of object o in T1, define 
conflicts  to be all writes of o in T2.  For a write of object o in T1, define conflicts to be all 
reads or writes of o in T2.

Formally, a schedule is serializable if, for two transactions T1 & T2,  if:

for all conflicts in T1, every conflicting read or write is ordered before the operation it 
conflicts with in T2, 

OR

for all conflicts in T2, every conflicting read or write is ordered before the operation it 
conflicts with in T1

In example, neither xfer nor int sees each other’s write to A, which couldn’t have 
happened in a serializable schedule

So how can we ensure we get serializability?

Introduce a locking protocol that our transaction system follows as it runs to ensure a 
serializable execution

  Plan: Associate a lock with every variable; grab lock before accessing var.
  [ slide: locking protocol ]



  Q: When should we release?
    Should not release right after read/write operation.
    Can we release after txn is done with some variable (e.g., A or B)?
    xfer:       int:
     RA [100]              \ T1 holds A.lock
     WA [90]               /
                 RA [90]      \ T2 holds A.lock
                 WA [99]      /
                 RB [50]      \ T2 holds B.lock
                 WB [55]      /
     RB [55]               \ T1 holds B.lock
     WB [65]               /

    No good: (99,65) is not serial-equivalent. 

Violates conflict serializability rule since xfer does WA before int reads it, but int does 
WB before xfer reads it.

If we wait until after commit to release, we will be good.

This ensures our conflict serializability goal, since for the first conflicting operation in T1 
(RA):

- either T2 already has lock (in which case T2 will complete all of its conflict operations 
before T1 does any of them), 

or

-  T1 will get the lock, in which case T2 will have to wait for T1 to finish all of it’s 
conflicting operations.

Demo: waiting transactions
postgres -D /usr/local/var/postgres
test=# select * from accounts;
 username | balance 
----------+---------
 mike     |     100
 sam      |     200
(2 rows)



   one terminal (blue):
      begin; update accounts set balance=balance+5 where 
username='mike';
   other terminal (red):
      begin; update accounts set balance=balance-10 where 
username='mike';

   transaction in red terminal hangs:
      why?  because it conflicts with T1
      would result in non-serializable behavior if it didnt; must block
   abort blue transaction
      2nd one commits
      cool!

Hands-on: several isolation levels in Postgres
   Snapshot isolation (which is slightly different from serializability as defined above)
   Read committed isolation  (which is weaker than snapshot and serializability)
   I'll pretend that Postgres is using locking, even though it isn't for reads
   (it use an optimistic multiversion scheme; see textbook 9.4.3).

What’s a problem we can have here?

Deadlock!

Terminal 1:

begin; update accounts set balance=balance-10 where 
username='sam';
update accounts set balance=balance-10 where username='mike';

Terminal 2:

begin; update accounts set balance=balance+5 where 
username='mike';
update accounts set balance=balance+5 where username='sam';

What is the problem here?

Terminal 1 is waiting for terminal 2, and terminal 2 is waiting for terminal 1.

What do we think Postgres will do?

(Kill one)



How did it do that?

ERROR:  deadlock detected
DETAIL:  Process 2101 waits for ShareLock on transaction 1008; 
blocked by process 2099.
Process 2099 waits for ShareLock on transaction 1007; blocked by 
process 2101.
HINT:  See server log for query details.

You can see what it did — it detected that T1 was waiting for T2, and T2 was waiting for 
T1.

“Waits for graph” — graph of which other transaction a transaction is waiting to have 
complete

      “sam”
T1 —— > T2
     <——
       “mike” 

When there is a cycle in this graph, it indicates a deadlock

To resolve, kill one transaction

Ok - -couple of things that are inefficient about what we have so far.

Optimization 1) First, transactions always wait for each other, even when they are just 
reading the same data.

Conflicts are only when at least one operation is a writer.

Multiple readers should be able to operate on the same data concurrently.

Introduce a new idea — reader/writer locks

  [ slide: locking with rw locks ]

  A reader can acquire lock at the same time as other readers (but no writers).

  A writer can acquire lock only if no other readers or writers.

Optimization 2) Release locks early

Suppose we knew all the objects we were going to access and when we were done with 
them — then we could lock them up front, and release locks as we finish w/ objects.  



This will be fine because all conflicting operations in other transactions will still run after 
all conflicting operations in our transactions.

  Our earlier example:
    xfer:       int:
     RA [100]              \ T1 locks A and B — lock point
     WA [90]               /
      ...                  > T1 releases A.lock — it’s done w/ A
                 RA [90]      \ T2 holds A.lock
                 WA [99]      /
                 lock B: wait
     RB [50]               \ T1 holds B.lock
     WB [60]               / T1 releases B.lock
                 RB [60]      \ T2 holds B.lock, lock point, waited for T1
                 WB [66]      /

  This is called "two-phase locking" (2PL).
    Phase 1: acquire read and write locks, until transaction reaches lock point.
    Phase 2: release locks, after lock point & done with object.

If we don’t know locks up front, we can still release early if we know we are done, but 
programmer would have to tell us this.

What is problem with releasing write locks early?

What if xfer() aborts?  Now int will have read uncommitted data, and will have to abort 
— this is called cascading aborts.

In practice most systems implement what is known as strict 2PL, i.e., they hold write 
locks til end of transaction.

Optimization 3:  relaxed consistency

Don’t always need to enforce serializability

Ex, read committed

[show slide]

W/	
  serializable,	
  T1	
  will	
  wait	
  for	
  T2

W/	
  read	
  commi7ed,	
  T2	
  will	
  release	
  read	
  lock	
  a9er	
  select,	
  which	
  will	
  allow	
  T1	
  to	
  run;	
  	
  T2	
  will	
  see	
  
T1’s	
  update	
  (but	
  do	
  we	
  care)?



Recap:  saw how reason about concurrent action using conflicts, and how to ensure 
serializability

2PL protocol allows transaction system to implement locking for us

Have now  developed a complete protocol for providing atomicity in the presence of 
concurrent operations and crashes.  Next time will start talking about how this works in 
a multi-node system.

What to do about external actions, e.g., dispensed cash, or fire a missile, or shipped a 
package?  Can’t undo those things (usually).  And aren’t idempotent, so don’t want to 
redo them!

Require special care.  One approach: wait for software that controls action to commit, 
then take the action afterwards, but have some special way to detect if action already 
happened (e.g., sensor of amount of cash, or whether missile bay is empty / full.) 


