
 
 
 
 
 
 

RebFS:	
  A	
  High-­‐Performance	
  Versioning	
  File	
  System	
  

 
  

Eric Lubin 
eblubin@mit.edu 

R07 T1, Adam Chlipala 
6.033 Design Project 1 

March 22nd, 2013 



1	
  Introduction	
  
The Resident Bit File System (RebFS) is a modified version of the UNIX file system that 
maintains the version history of files in a space-efficient manner. It allows for automatic garbage 
collection, exclusion from versioning, and searching across old versions of a file. To accomplish 
this, the file system creates a new inode for every version of a file and references common blocks 
from multiple versions of the same file.  
 

1.1 Design	
  Overview	
  
Versioning information is stored within version sets that are maintained for every versioned file 
on the file system. Old versions may be accessed or listed using a path name convention 
discussed below. Files may be excluded or included from versioning on a per file basis, and 
entire subsets of directories may be excluded all at once.	
  RebFS allows blocks to be referenced 
by multiple versions of the same versioned file by maintaining a resident bit in each block 
pointer. 	
  
 
To make sure that versioned files are correctly created, maintained, and deleted, RebFS modifies 
the default Unix implementation of write(), open(), and read(). Additionally, the system 
adds a Set_Versioned() system call to customize which files and directories should be 
included in automatic versioning. 
 

1.2 Trade-­‐Offs	
  and	
  Design	
  Decisions	
  
A significant design decision made in RebFS is to store every version in a unique inode and 
allow multiple inodes to reference the same block. Complicating the manner by which blocks are 
stored in the file system requires a comprehensive set of rules for block reference counting. 
However, the reference counting remains transparent to the system when reading files. An 
alternative diff-based approach that describes only the changed blocks and their locations might 
be simpler in implementation, but the high performance cost when reading old versions of files is 
unacceptable for this design. 
 
For block reference counting, the resident bit approach used in RebFS requires an additional bit 
to be stored for each block pointer in the file system. The usage of the high-order bit shortens the 
address space of accessible blocks by a factor of two. To accommodate for this, we double the 
size of every block in the file system to make the entire disk accessible with one less bit. The 
notion of resident and nonresident blocks extends directly to the indirect block paradigm as well. 
 
2	
  File	
  System	
  Design	
  
RebFS uses version sets to store information about all versions of a file. We allow multiple 
versions of a file to reference the same blocks to minimize the additional amount of disk space 
required for versioning. 
 



2.1	
  Versioning	
  Hierarchy	
  
On the highest level, we organize a file and all of its past versions into a new data structure 
called a version set. Each version set keeps a pointer to the current version of the file. We 
support version sets by adding a new type of inode to the existing Unix file system. Analogous to 
those of a directory, the blocks of an inode of this type contain a list of pointers to other inodes 
that represent different versions of the same file (Figure 1). The read() system call will forward 
all attempts to read a versioned file to the current version, or head, of the file. This behavior 
allows the versioning system to remain transparent to the user and all other applications, except 
when explicitly called. 

 

2.2	
  Accessing	
  Previous	
  Versions	
  
Versioning info is built directly into the path name layer. This strategy minimizes the complexity 
of adding additional system calls. The user and other applications may retrieve old versions and 
list all versions of a particular file using the following set of conventions. 
	
  

• open(<path_to_versioned_file>,flags)	
  –	
  opens the versioned file for reading 
and/or writing. All reads will get forwarded to the head, as mentioned above. All writes 
follow the automatic versioning pattern described in section 2.4.3.	
  

• open(<path_to_versioned_file>/,READ)	
  –	
  lists all previous versions of the 
versioned file. The system opens the versioned file inode as it would a directory. Writing 
to this virtual directory is unsupported. 	
  

• open(<path_to_versioned_file>/v<version_number>,READ)	
  –	
  opens a read-
only previous version of the versioned file. 	
  

	
  
To support these operations, we modify the Lookup() system call discussed in section 2.5 of the 
textbook.	
  Lookup() must now be allowed to look for files in both directories and versioned file 
inodes.  

Inode	
  table	
  

8	
  

15	
  

10	
   30	
   31	
  

Numbered	
  blocks	
  

head	
  
v2	
  
v1	
  
	
  

18	
  
19	
  
30	
  
	
  

9	
  
10	
  

75	
  

17	
  

log.txt	
  	
  	
  	
  	
  	
  	
  	
  	
  17	
  75	
  
76	
  
78	
  

A	
  directory	
  
containing	
  a	
  
versioned	
  file	
  

30	
  
32	
  

30	
  
31	
  

18	
   19	
  

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
0101010101010	
  
	
  

11111100000000
00000100000000
10000000	
  
	
  

…	
  
Block	
  numbers	
  

…	
  

Inode	
  #’s	
  

Inode	
  #’s	
  

Inode	
  for	
  a	
  
directory	
  

A	
  listing	
  of	
  all	
  
versions	
  of	
  a	
  file	
  

A	
  block	
  that	
  two	
  
versions	
  of	
  the	
  
same	
  file	
  have	
  in	
  

common.	
  

A	
  block	
  of	
  data	
  
referenced	
  by	
  an	
  
old	
  version	
  of	
  

log.txt.	
  

New	
  versioned	
  file	
  
inode	
  

Regular	
  file	
  inodes	
  

Figure	
  1.	
  Shows	
  the	
  directory-­‐like	
  behavior	
  of	
  versioned	
  files	
  as	
  well	
  as	
  how	
  blocks	
  may	
  be	
  referenced	
  
from	
  multiple	
  versions	
  of	
  the	
  same	
  file.	
  



	
  

2.3	
  Excluding	
  Files	
  from	
  Versioning	
  
RebFS contains a set of user configurable rules to determine which files will be versioned.  By 
default, all user files, but not system files, are enabled for versioning. All inodes that are the 
versioned file type are automatically versioned. All inodes that are the regular file type are not 
versioned. We add one new system call, Set_Versioned(path,versioned), to give the user 
control over setting a file to a particular type. The pseudocode for this new system call is 
included in Figure 2 below. 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

procedure Set_Versioned(path_name,versioned): 
   if Traverses_Versioned_File(path_name) return FAILURE 
   //do not allow user to version a version  
   //(i.e. Set_Versioned(~/file.txt/v4,True)) 
   inode_number = GeneralPath_To_Inode_Number(path_name) 
   inode = Inode_Number_To_Inode(inode_number) 
   if inode.type = DIRECTORY return FAILURE //directories cannot be versioned 
   if inode.type = VERSIONED_FILE 
      if versioned = True return 
      //delete all old versions of the file 
      //delete the versioned file inode 
      //move the head to the `inode_number` location in the inode table 
   if inode.type = FILE 
      if versioned = False return 
      //move the inode to a new empty location in the inode table 
      //create a new versioned file inode at the `inode_number` location 
      //hard links referencing ‘inode’ will now reference the versioned file  
      //set ‘inode’ to the head of the versioned file, with all resident bits = 1 

 
Figure	
  2.	
  Pseudocode	
  depicting	
  the	
  implementation	
  details	
  of	
  the	
  Set_Versioned()	
  system	
  call	
  that	
  converts	
  a	
  
file	
  between	
  the	
  versioned	
  and	
  unversioned	
  states.	
  We	
  shuffle	
  inode	
  numbers	
  to	
  verify	
  hard	
  links	
  are	
  not	
  
broken.	
  	
  
 
We must be careful not to break hard links when creating and deleting versions. We do not allow 
hard links to reference inodes within a version set. Users are still permitted to make hard links to 
the versioned file inode. The behavior of hard links for unversioned files remains unchanged. 
 
All files within a directory may also be excluded from versioning. We add a bit to each inode, 
only relevant for directories, that stores this information. When a versioned file is opened, we 
add an additional bit to the file descriptor table that indicates whether any of its parent directories 
have been disabled for versioning. If so, no new versions are created. When we exclude a 
directory from versioning, we prompt the user whether all contained versioned files should be 
converted to regular files. 
 

2.4	
  Ensuring	
  Space	
  Efficiency	
  	
  
The cornerstone of the versioning file system is its storage of only the changed blocks of a file. 
When dealing with large files, it is critical not to have to copy thousands of blocks every time a 
new version is created. For this reason, we allow a block to be referenced more than once by 
different versions of the same file.  
 



2.4.1	
  Block	
  Reference	
  Counting	
  
To decide when blocks should be marked as free in the system bitmap, we augment the 32-bit 
block pointer in versioned files with a high-order resident bit. For a given physical block on disk, 
only the most recent version of a file that contains this block will have the resident bit set in its 
pointer to the block. If a block’s pointer is set to nonresident, there must be a newer version 
referencing the block. An example is shown in Figure 3 below. 
 

 

head	
  	
   A1	
   B3	
   C3	
   D2	
   	
   	
  

v4	
   A1	
   B2	
   C3	
   D2	
   E2	
   F1	
  

v3	
   A1	
   B2	
   C2	
   D2	
   E2	
   F1	
  

v2	
   A1	
   B2	
   C1	
   D1	
   E1	
   	
  

v1	
   A1	
   B1	
   C1	
   D1	
   	
   	
  

	
  
Key:	
  	
  	
  	
  	
  	
  Resident	
  bit	
  =	
  1	
  	
  	
  	
  	
  	
  	
  	
  Resident	
  bit	
  =	
  0	
  

	
  
Figure	
  3.	
  An	
  abstracted	
  version	
  of	
  the	
  file	
  system	
  showing	
  resident	
  bit	
  values	
  in	
  a	
  version	
  set.	
  Each	
  row	
  
represents	
  a	
  different	
  version	
  of	
  the	
  file.	
  Each	
  cell	
  represents	
  a	
  block	
  pointer	
  to	
  a	
  physical	
  block.	
  Numbering	
  
of	
  the	
  blocks	
  denotes	
  specific	
  changes	
  in	
  a	
  block	
  across	
  versions.	
  An	
  empty	
  cell	
  indicates	
  the	
  end	
  of	
  the	
  file.	
  	
  	
  
	
  

2.4.2	
  Garbage	
  Collection	
  
We allow deletion of a version as long as all older versions of the same file will be deleted as 
well. To delete, we iterate over the blocks of a version and mark the block as free in the system 
bitmap if the pointer’s resident bit was set to 1. If an indirect block is nonresident, we do not 
explore its children because they cannot be resident to this version. 
 
Automatic garbage collection is performed based on user configurable metrics that are checked 
before new versions are created. For example, the user may specify that when a version set is 
taking up 100 times more space than its head, delete as many old versions as needed so that the 
resulting version set takes only 50 times more space than the head. Rules can also be made to 
delete versions when they get too old. In addition, when the disk gets close to full, we clear up 
space by deleting all versions older than a specific date.  

2.4.3	
  Automatic	
  Versioning	
  
Using a variation on the copy-on-write mechanism, we automatically version all files that are not 
disabled from versioning, either explicitly or through a parent directory. At most one new 
version of a file will be created between open() and close() of a file, regardless of how many 
writes. To achieve this, the file descriptor table stores an additional has_copied bit for 
versioned files opened with write flags. When write() is called on a versioned file we: 

1. Check has_copied. If it is 0, make a new version of the file with the same block 
pointers as the head, but with all resident bits set to 0. This new inode represents the 
newest version other than the head. Set has_copied to 1. 

N
ew

er
 V

er
si

on
s 



2. Write the new block to an empty location on the disk. 
3. Update the block pointer in the head at the file descriptor’s offset to this new location.  
4. Set the resident bit to 1 for the block pointer at index offset in the inode created in step 

1. 
 

We demonstrate the versioning process using the example in Figure 3 above. Assume that there 
are versions v1, v2, v3, and head and that the top row of the table is about to be written to disk. 
The steps are outlined below. 
 

1. write(fd, ‘B3’) 
a. Creates a new version, v4, with all the same block pointers as the head but all resident 

bits set to 0. 
b. Sets the has_copied bit to 1 in the file descriptor table. 
c. Writes the block ‘B3’ to an empty location on disk. 
d. Changes the B block pointer in head to point to ‘B3’. 
e. Updates the B block pointer in v4 to be resident. 

2. lseek(fd, BLOCK_SIZE*2, SEEK_CUR) 
a. Changes offset in the file descriptor table so the next write location is block E. 

3. write(fd, END_OF_FILE) 
a. Reads has_copied = 1 and does not create a new version. 
b. Sets the E block pointer to 0, indicating the end of the file. 
c. Updates the block pointers for E and F to be resident. 

 
3	
  Analysis	
  
The following section analyzes and provides metrics for the performance of RebFS under three 
particular use cases.  

3.1	
  Repeatedly	
  Writing	
  to	
  a	
  Small	
  File	
  
As described in section 2.4.3, writing to a small file results in the creation of a new version at 
most once between the open() and close() system calls. We analyze the worst case when a 
write is being performed for the first time and a new version is created. Creating a new inode for 
a small file and setting all resident bits to 0 takes a constant amount of work. For every block that 
is written, we must update the corresponding block pointer in the previous version to be resident. 
This method takes time in proportion to the number of blocks being written. In terms of space, 
each new version requires an additional inode and a number of blocks equal to the number of 
blocks being written.  
 

3.2	
  Repeatedly	
  Writing	
  a	
  Block	
  of	
  a	
  Large	
  File	
  
RebFS excels when repeatedly writing a block to a large file. We assume that the file is large 
enough that it has data referenced by double or triply indirect blocks. Writing to the beginning of 
the file results in identical performance as writing to a small file. When creating a new version of 
the file, the resident bits in all block pointers are set to 0. No indirect block pointers need to be 
followed. Writing to a block later in the file requires only a small amount of additional work. For 
any block not directly referenced by the inode, before setting its pointer to resident, its parent 



block must also be resident. A versioned file is not permitted to modify a block it does not own. 
Thus, writing blocks referenced triply indirectly requires space equal to the number of blocks 
being written plus three additional blocks.  
 
Alternative designs using other types of block reference counting would be inherently slower 
when handling large files. For example, keeping track of counts in the block bitmap would 
require every indirect block to be expanded to update reference counts during garbage collection 
as well as automatic versioning. This overhead would result in poor performance when 
repeatedly writing blocks to a large file.   
 

3.3	
  Searching	
  All	
  Versions	
  of	
  a	
  Small	
  File	
  
Searching through all versions of a small file is similar in performance to searching for a 
particular string in all files in a directory.  Each version in a version set references its blocks in 
the same way as regular inodes. To optimize the search, we hash the results of searching in each 
block by the corresponding block pointer. Since each block may be referenced more than once, 
we lookup the result of the search in the hash table before following the block pointer and 
performing the search. This method makes searching for an occurrence of a string across all 
versions of a file higher in performance than looking for the string in the same number of 
individual files of the similar length.  
 
 
4	
  Conclusion	
  
RebFS is a high-performance versioning file system based off of the UNIX file system that 
stores versioning information into data structures called version sets. By reusing blocks that 
versions of a file have in common, it stores many versions of a file in a space-efficient manner. 
Automatic garbage collection and customization of which files are versioned allow for a high 
degree of user control. Further investigation regarding optimizing the storage of the blocks of a 
version in a sequential manner might improve the overall performance of the system. In addition, 
a defragging algorithm should be designed to work with version sets. A viable testing plan must 
be in place to ensure the implementation of this versioning file system is a successful one.  
 
 
5	
  References	
  
[1] K. Muniswamy-Reddy. (2004, April). A Versatile and User-Oriented Versioning File System 

[Online]. Available: http://www.eecs.harvard.edu/~kiran/pubs/versionfs-fast04.pdf 

 
Word Count: 2498 


