
L7: Performance

Frans Kaashoek kaashoek@mit.edu

6.033 Spring 2013

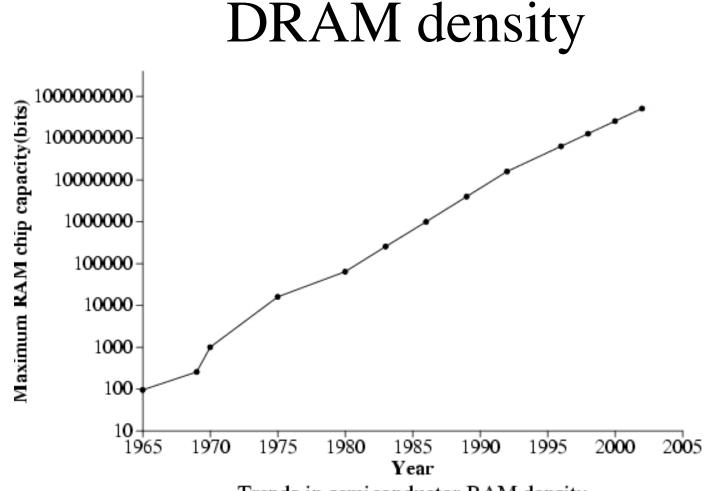
Overview


- Technology fixes some performance problems
 Ride the technology curves if you can
- Some performance requirements require thinking
- An increase in load may need redesign:
 - Batching
 - Caching
 - Scheduling
 - Concurrency
- Important numbers

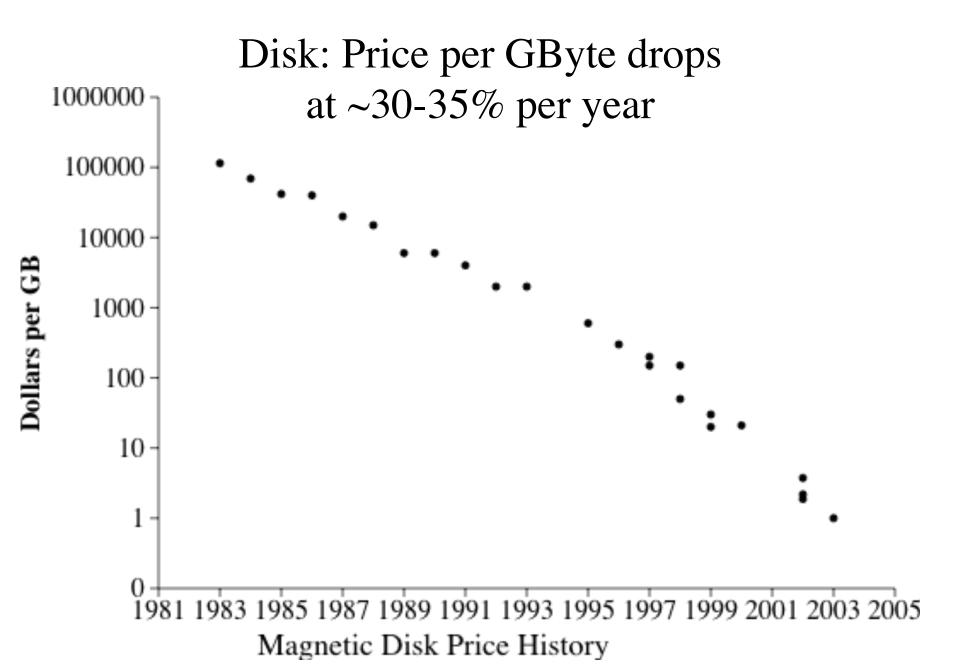
"Cramming More Components Onto Integrated Circuits", *Electronics*, April 1965

Transistors/die doubles every ~18 months


transistors

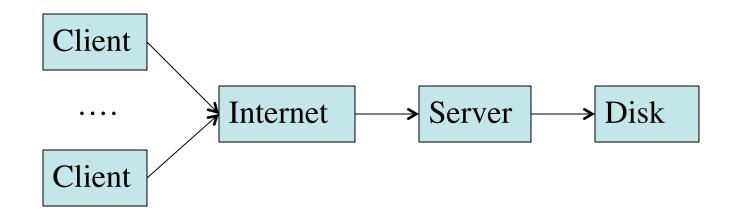

Moore's law sets a clear goal

- Tremendous investment in technology
- Technology improvement is proportional to technology
- Example: processors
 - Better processors \Rightarrow
 - Better layout tools \Rightarrow
 - Better processors
- Mathematically: $d(technology)/dt \approx technology$
 - \blacktriangleright technology $\approx e^t$


CPU performance

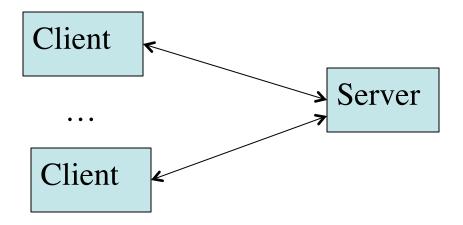
Trends in CPU performance growth, from microprocessors to supercomputers

Trends in semiconductor RAM density

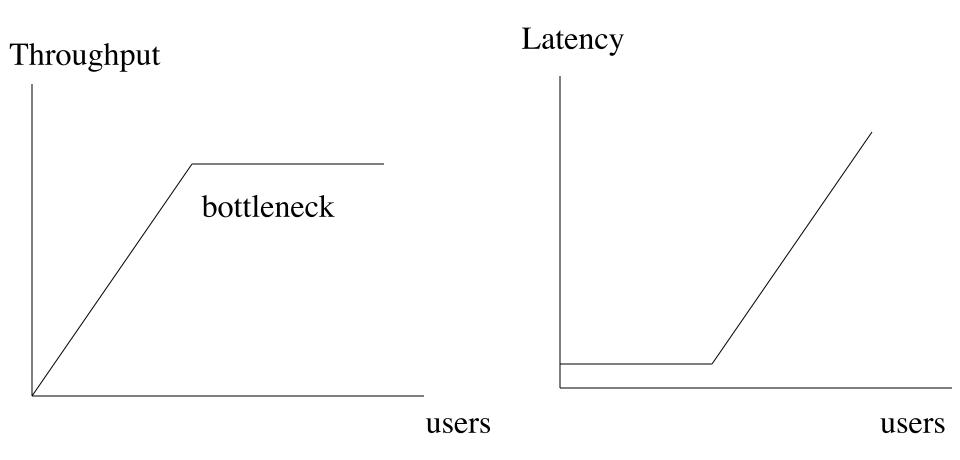


Year #

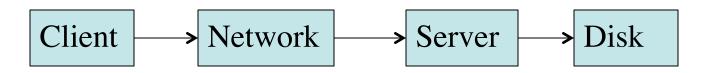
Performance and system design


- Improvements in technology can "fix" performance problems
- Some performance problems are intrinsic
 - E.g., design project 1
 - Technology doesn't fix it; you have think
- Handling increasing load can require re-design
 - Not every aspect of the system improves over time

Approach to performance problems


- Users complaint the system is too slow
 - Measure the system to find bottleneck
 - Relax the bottleneck
 - Add hardware, change system design

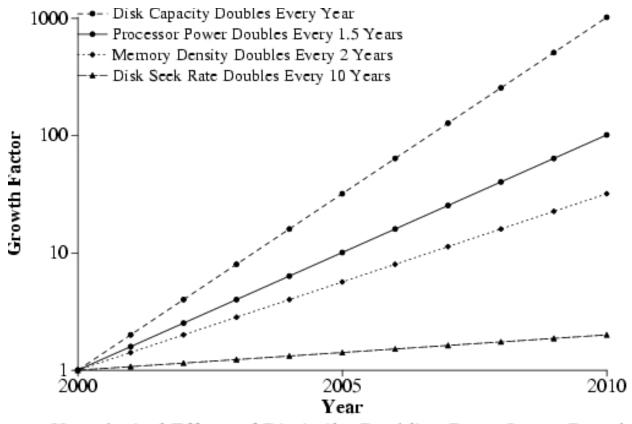
Performance metrics


- Performance metrics:
 - Throughput: request/time for many requests
 - Latency: time / request for single request
- Latency = 1/throughput?
 - Often not; e.g., server may have two CPUs

Heavily-loaded systems

• Once system busy, requests queue up

Approaches to finding bottleneck

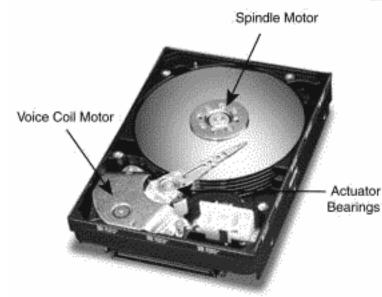


- Measure utilization of each resource
 - CPU is 100% busy, disk is 20% busy
 - CPU is 50% busy, disk is 50% busy, alternating
- Model performance of your system
 - What performance do you expect?
 - Say net takes 10ms, CPU 50 ms, disk 10ms
- Guess, check, and iterate

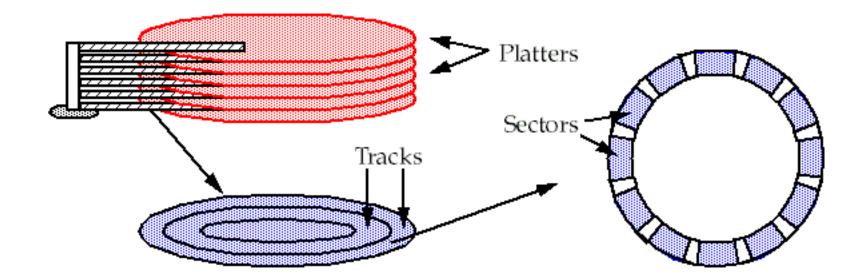
Fixing a bottleneck

- Get faster hardware
- Fix application
 - Better algorithm, fewer features
 - 6.033 cannot help you here
- General system techniques:
 - Batching
 - Caching
 - Concurrency
 - Scheduling

Case study: I/O bottleneck


Hypothetical Effects of Dissimilar Doubling Rates Over a Decade

Hitachi 7K400


Inside a disk

7200 rpm8.3 ms per rotation

Top view

88,283 tracks per platter576 to 1170 sectors per track

Performance of reading a sector

- Latency = seek + rotation + reading/writing:
 - Seek time: 1-15 ms
 - avg 8.2msec for read, avg 9.2ms for write
 - Rotation time: 0-8.3 ms
 - Read/writing bits: 35-62MB/s (inner to outer)
- Read(4KB):
 - Latency: 8.2msec+4.1msec+ ~ 0.1 ms = 12.4ms
 - Throughput: 4KB/12.4 msec = 322 KB/s
- 99% of time spent moving disk; 1% reading!

Batching

- Batch into reads/writes into large sequential transfers (e.g., a track)
- Time for a track (1,000×512 bytes):
 - -0.8 msec to seek to next track
 - 8.3 msec to read track
- Throughput: 512KB/9.1 msec = 55MB/s
- As fast as LAN; less likely to be a bottleneck

System design implications

- If system reads/writes large files:
 Lay them out contiguously on disk
- If system reads/writes many small files:
 Group them together into a single track

• Modern Unix: put dir + inodes + data together

Caching

- Use DRAM to remember recently-read sectors
 - Most operating systems use much DRAM for caching
 - DRAM latency and throughput orders of magnitude better
- Challenge: what to cache?
 - DRAM is often much smaller than disk

Performance model

- Average time to read/write sector with cache: hit_time × hit_rate + miss_time × miss_rate
- Example: 100 sectors, 90% hit 10 sectors
 - Without cache: 10 ms for each sector
 - With cache: 0 ms * 0.9 + 10 ms * 0.1 = 1 ms
- Hit rate must be high to make cache work well!

Replacement policy

- Many caches have bounded size
- Goal: evict cache entry that's unlikely to be used soon
- Approach: predict future behavior on past behavior
- Extend with hints from application

Least-Recently Used (LRU) policy

- If used recently, likely to be used again
- Easy to implement in software
- Works well for popular data (e.g., "/")

Is LRU always the best policy?

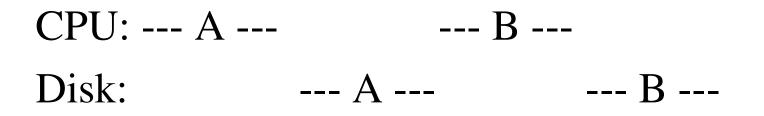
- LRU fails for sequential access of file larger than cache
 - LRU would evict all useful data
- Better policy for this work load:
 - Most-recently Used (MRU)

When do caches work?

- 1. All data fits in cache
- 2. Access pattern has:
 - Temporal locality
 - E.g., home directories of users currently logged in
 - Spatial locality
 - E.g., all inodes in a directory ("ls –l")
- Not all patterns have locality

 E.g., reading large files

Simple server


```
while (true) {
    wait for request
    data = read(name)
    response = compute(data)
    send response
}
```

Caching often cannot help writes

- Writes often must to go disk for durability – After power failure, new data must be available
- Result: disk performance dominates writeintensive workloads
- Worst case: many random small writes
 Mail server storing each message in a separate file
- Logging can help
 - Writing data to sequential log (see later in semester)

I/O concurrency motivation

• Simple server alternates between waiting for disk and computing:

Use several threads to overlap I/O

• Thread 1 works on A and Thread 2 works on B, keeping both CPU and disk busy:

- Other benefit: fast requests can get ahead of slow requests
- Downside: need locks, etc.!

Scheduling

- Suppose many threads issuing disk requests: 71, 10, 92, 45, 29
- Naïve algorithm: random reads (8-15ms seek)
- Better: Shortest-seek first (1 ms seek): 10, 29, 45, 71, 92

High load -> smaller seeks -> higher throughput Downside: unfair, risk of starvation

• Elevator algorithm avoids starvation

Parallel hardware

- Use several disks to increase performance:
 - Many small requests: group files on disks
 - Minimizes seeks
 - Many large requests: strip files across disks
 - Increase throughout
- Use many computers:
 - Balance work across computers?
 - What if one computer fails?
 - How to program? MapReduce?

Solid State Disk (SSD)

- Faster storage technology than disk
 - Flash memory that exports disk interface
 - No moving parts
- OCZ Vertex 3: 256GB SSD
 - Sequential read: 400 MB/s
 - Sequential write: 200-300 MB/s
 - Random 4KB read: 5700/s (23 MB/s)
 - Random 4KB write: 2200/s (9 MB/s)

SSDs and writes

- Writes performance is slower:
 Flash can erase only large units (e.g, 512 KB)
- Writing a small block:
 - 1. Read 512 KB
 - 2. Update 4KB of 512 KB
 - 3. Write 512 KB
- Controllers try to avoid this using logging

SSD versus Disk

- Disk: ~\$100 for 2 TB
 \$0.05 per GB
- SSD: ~\$300 for 256 GB

– \$1.00 per GB

- Many performance issues still the same:
 - Both SSD and Disks much slower than RAM
 - Avoid random small writes using batching

Important numbers

- Latency:
 - 0.0000001 ms: instruction time (1 ns)
 - 0.0001 ms: DRAM load (100 ns)
 - 0.1 ms: LAN network
 - 10 ms: random disk I/O
 - 25 ms: Internet east -> west coast
- Throughput:
 - 10,000 MB/s: DRAM
 - 1,000 MB/s: LAN (or100 MB/s)
 - 100 MB/s: sequential disk (or 500 MB/s)
 - 1 MB/s: random disk I/O

Summary

- Technology fixes some performance problems
- If performance problem is intrinsic:
 - Batching
 - Caching
 - Concurrency
 - Scheduling
- Important numbers