
L7: Performance

Frans Kaashoek
kaashoek@mit.edu
6.033 Spring 2013

Overview	

•  Technology fixes some performance problems	

– Ride the technology curves if you can	

•  Some performance requirements require thinking	

•  An increase in load may need redesign:	

– Batching	

– Caching	

– Scheduling	

– Concurrency	

•  Important numbers	

Moore’s law	

“Cramming More Components Onto Integrated Circuits”, Electronics, April
1965

co
st

pe
r t

ra
ns

ist
or
	

transistors per die	

Transistors/die doubles every ~18 months	

Moore’s law sets a clear goal	

•  Tremendous investment in technology	

•  Technology improvement is proportional to technology	

•  Example: processors	

•  Better processors ⇒	

•  Better layout tools ⇒ 	

•  Better processors	

•  Mathematically: d(technology)/dt ≈ technology	

Ø  technology ≈ et	

5	

CPU performance	

DRAM density	

Disk: Price per GByte drops ���
at ~30-35% per year	

Latency improves slowly	

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11
Year #	

Im
pr

ov
em

en
t w

rt
ye

ar
 #

1	

Moore’s law (~70% per year)	

DRAM access latency ���
(~7% per year)	

Speed of light���
(0% per year)	

Performance and system design	

•  Improvements in technology can “fix” performance
problems	

•  Some performance problems are intrinsic	

– E.g., design project 1	

– Technology doesn’t fix it; you have think	

•  Handling increasing load can require re-design	

– Not every aspect of the system improves over time	

Approach to performance problems	

•  Users complaint the system is too slow	

– Measure the system to find bottleneck	

– Relax the bottleneck	

•  Add hardware, change system design	

Client	

Internet	
 Server	
 Disk	

Client	

….	

Performance metrics	

•  Performance metrics:	

– Throughput: request/time for many requests	

– Latency: time / request for single request	

•  Latency = 1/throughput?	

– Often not; e.g., server may have two CPUs	

	

Server	

Client	

Client	

…	

Heavily-loaded systems	

•  Once system busy, requests queue up	

users	

bottleneck	

Latency	

users	

Throughput	

Approaches to finding bottleneck	

•  Measure utilization of each resource	

– CPU is 100% busy, disk is 20% busy	

– CPU is 50% busy, disk is 50% busy, alternating	

•  Model performance of your system	

– What performance do you expect?	

– Say net takes 10ms, CPU 50 ms, disk 10ms	

•  Guess, check, and iterate	

Client	
 Network	
 Server	
 Disk	

Fixing a bottleneck	

•  Get faster hardware	

•  Fix application	

– Better algorithm, fewer features	

–  6.033 cannot help you here	

•  General system techniques:	

– Batching	

– Caching	

– Concurrency	

– Scheduling	

Case study: I/O bottleneck	

Hitachi 7K400 	

	

Inside a disk	

7200 rpm	

8.3 ms per rotation	

Top view	

88,283 tracks per platter	

576 to 1170 sectors per track	

Performance of reading a sector	

•  Latency = seek + rotation + reading/writing:	

– Seek time: 1-15 ms	

	
 	
avg 8.2msec for read, avg 9.2ms for write	

– Rotation time: 0-8.3 ms	

– Read/writing bits: 35-62MB/s (inner to outer)	

•  Read(4KB): 	

– Latency: 8.2msec+4.1msec+~0.1ms = 12.4ms	

– Throughput: 4KB/12.4 msec = 322 KB/s	

•  99% of time spent moving disk; 1% reading!	

Batching	

•  Batch into reads/writes into large sequential
transfers (e.g., a track)	

•  Time for a track (1,000×512 bytes):	

–  0.8 msec to seek to next track 	

–  8.3 msec to read track 	

•  Throughput: 512KB/9.1 msec = 55MB/s	

•  As fast as LAN; less likely to be a bottleneck	

System design implications	

•  If system reads/writes large files:	

– Lay them out contiguously on disk	

•  If system reads/writes many small files:	

– Group them together into a single track	

	

•  Modern Unix: put dir + inodes + data
together	

Caching	

•  Use DRAM to remember recently-read sectors	

– Most operating systems use much DRAM for

caching	

– DRAM latency and throughput orders of

magnitude better	

•  Challenge: what to cache?	

– DRAM is often much smaller than disk	

	

Performance model	

•  Average time to read/write sector with cache:	

hit_time × hit_rate + miss_time × miss_rate	

	

–  Example: 100 sectors, 90% hit 10 sectors	

•  Without cache: 10 ms for each sector	

•  With cache: 0ms * 0.9 + 10ms*0.1 = 1ms	

–  Hit rate must be high to make cache work well!	

	

Replacement policy	

•  Many caches have bounded size	

•  Goal: evict cache entry that’s unlikely to be

used soon	

•  Approach: predict future behavior on past

behavior	

•  Extend with hints from application	

	

Least-Recently Used (LRU) policy	

•  If used recently, likely to be used again	

•  Easy to implement in software	

•  Works well for popular data (e.g., “/”)	

Is LRU always the best policy?	

•  LRU fails for sequential access of file larger
than cache	

– LRU would evict all useful data	

•  Better policy for this work load: 	

– Most-recently Used (MRU)	

When do caches work?	

1.  All data fits in cache	

2.  Access pattern has:	

– Temporal locality	

•  E.g., home directories of users currently logged in	

– Spatial locality	

•  E.g., all inodes in a directory (“ls –l”)	

•  Not all patterns have locality	

– E.g., reading large files	

Simple server	

while (true) {	

	
wait for request	

	
data = read(name)	

	
response = compute(data)	

	
send response	

}	

Caching often cannot help writes	

•  Writes often must to go disk for durability	

– After power failure, new data must be available	

•  Result: disk performance dominates write-
intensive workloads	

•  Worst case: many random small writes	

– Mail server storing each message in a separate file	

•  Logging can help	

– Writing data to sequential log (see later in semester)	

I/O concurrency motivation	

•  Simple server alternates between waiting
for disk and computing:	

CPU: --- A --- --- B ---	

Disk: --- A --- --- B ---	

Use several threads to overlap I/O	

•  Thread 1 works on A and Thread 2 works

on B, keeping both CPU and disk busy:	

CPU: --- A --- --- B --- --- C --- ….	

Disk: --- A --- --- B --- …	

	

•  Other benefit: fast requests can get ahead of

slow requests	

•  Downside: need locks, etc.!	

Scheduling	

•  Suppose many threads issuing disk requests:	

	
 	
71, 10, 92, 45, 29	

•  Naïve algorithm: random reads (8-15ms seek)	

•  Better: Shortest-seek first (1 ms seek):	

	
 	
10, 29, 45, 71, 92	

High load -> smaller seeks -> higher throughput	

Downside: unfair, risk of starvation	

•  Elevator algorithm avoids starvation	

	

Parallel hardware	

•  Use several disks to increase performance:	

– Many small requests: group files on disks	

•  Minimizes seeks	

– Many large requests: strip files across disks	

•  Increase throughout	

•  Use many computers:	

– Balance work across computers?	

– What if one computer fails?	

– How to program? MapReduce?	

Solid State Disk (SSD)	

•  Faster storage technology than disk	

– Flash memory that exports disk interface	

– No moving parts	

•  OCZ Vertex 3: 256GB SSD	

– Sequential read: 400 MB/s	

– Sequential write: 200-300 MB/s	

– Random 4KB read: 5700/s (23 MB/s)	

– Random 4KB write: 2200/s (9 MB/s)	

SSDs and writes	

•  Writes performance is slower:	

– Flash can erase only large units (e.g, 512 KB)	

•  Writing a small block:	

1.  Read 512 KB 	

2.  Update 4KB of 512 KB	

3.  Write 512 KB	

	

•  Controllers try to avoid this using logging	

SSD versus Disk	

•  Disk: ~$100 for 2 TB	

–  $0.05 per GB	

•  SSD: ~$300 for 256 GB 	

–  $1.00 per GB	

•  Many performance issues still the same:	

– Both SSD and Disks much slower than RAM	

– Avoid random small writes using batching	

Important numbers	

•  Latency:	

–  0.00000001 ms: instruction time (1 ns)	

–  0.0001 ms: DRAM load (100 ns)	

–  0.1 ms: LAN network	

–  10 ms: random disk I/O	

–  25 ms: Internet east -> west coast	

•  Throughput:	

–  10,000 MB/s: DRAM	

–  1,000 MB/s: LAN (or100 MB/s)	

–  100 MB/s: sequential disk (or 500 MB/s)	

–  1 MB/s: random disk I/O	

Summary	

•  Technology fixes some performance problems	

•  If performance problem is intrinsic:	

– Batching	

– Caching	

– Concurrency	

– Scheduling	

•  Important numbers	

