
L6: Operating Systems
Structures

Frans Kaashoek
kaashoek@mit.edu
6.033 Spring 2013

Overview
•  Theme: strong isolation for operating

systems
•  OS organizations:

– Monolithic kernels
– Microkernel
– Virtual machines

OS abstractions

•  Virtual memory
•  Threads
•  File system
•  IPC (e.g., pipes)
•  …

Monolithic kernel (e.g., Linux)

•  Kernel is one large C program
•  Internal structure

– E.g., object-oriented programming style
•  But, no enforced modularity

Kernel

sh ls

K

U

Kernel program is growing

•  1975 Unix kernel: 10,500 lines of code
•  2012: Linux 3.2

 300,000 lines: header files (data structures, APIs)
 490,000 lines: networking

 530,000 lines: sound
 700,000 lines: support for 60+ file systems

1,880,000 lines: support for 25+ CPU architectures
5,620,000 lines: drivers

9,930,000 Total lines of code

Linux kernel has bugs

5,000 bug report fixed in ~7 years, 2+ day

How bad is a bug?

•  Demo:
–  Insert kernel module
– Every 10 seconds overwrites N locations in

physical memory
– N = 1, 2, 4, 8, 16, 32, 64, ….

•  What N makes Linux crash?

Observations

•  Linux lasted that long
•  Maybe files were corrupted
•  Every bug is an opportunity for attacker

•  Can we enforce modularity within
kernel?

Microkernel organization:
Apply Client/Server to kernel

•  User programs interact w. OS using RPC
•  Examples: QNX, L4, Minix, etc.

IPC, threads, page tables

sh ls pager net driver … FS

Challenges

•  Communication cost is high
– Much higher than procedure call

•  Isolating big components doesn’t help
–  If entire FS crashes, system unusable

•  Sharing between subsystems is difficult
– Share buffer cache between pager and FS

•  Requires careful redesign

Why is Linux not a pure
microkernel?

•  Many dependencies between components
•  Redesign is challenging

– Trade-off: new design or new features?
•  Some services are run as user programs:

– X server, some USB drivers, SQL database,
DNS server, SSH, etc.

Goal: isolation and compatibility

•  Idea: run different programs on different
computers

•  Each computer has its on own kernel
–  If one crashes, others unaffected
– Strong isolation

•  But, cannot afford that many computers
– Virtualization and abstraction ….
– New constraint: compatibility

Approach: virtual machines

•  Pure virtualization of hardware
– CPU, memory, devices, etc.

•  Provides strong isolation

Virtual machine monitor

sh ls

Linux kernel Linux kernel

Host

Guest

x86 x86

How to implement VMM?

•  One approach: pure emulation (e.g., QEMU)
– VMM interprets every guest instruction

Emulation of CPU

Goal: “emulate” fast

•  Observation: guest instructions are
same has hardware instructions

•  Idea: run most instructions directly
– Fine for user instructions (add, sub, mul)
– But not for, e.g., privileged instructions
– What hardware state must be virtualized to

run several existing kernel?

Kernel virtualization

•  Each kernel assumes its manages:
– Physical memory
– Page-table pointer
– U/K bit
–  Interrupts, registers, etc.

•  How to virtualize these?

Memory virtualization

•  Idea: an extra level of page tables

Guest virtual address

Guest physical addresses

Host physical addresses

Kernel page table

VMM page table

Virtualizing page table pointer

•  Guest OS cannot load PTP
–  Isolation violated
– Guest OS will specify guest physical

addresses
•  Not an actual DRAM location

A solution: shadow page tables

•  VMM intercepts guest OS loading PTP
•  VMM iterates over guest PT and

constructs shadow PT:
– Replacing guest physical addresses with

corresponding host physical addresses
•  VMM loads host physical address of

shadow PT into PTP

Computing shadow PT

compute_shadow_pt(guest_pt)
For gva in 0 .. 220:

 if guest_pt[gva] & PTE_P:
 gpa = guest_pt[gva] >> 12
 hpa = host_pt[gpa] >> 12
 shadow_pt[gva] = (hpa << 12)| PTE_P
 else:
 shadow_pt[gva] = 0

Guest modifies its PT

•  Host maps guest PT read-only
•  If guest modifies, hardware generates

page fault
•  Page fault handled by host:

– Update shadow page table
– Restart guest

Virtualizing U/K bit

•  Hardware U/K bit must be U when guest
OS runs
– Strong isolation

•  But now guest cannot:
– Execute privileged instructions
– …

A solution: trap-and-emulate

•  VMM stores guest U/K bit in some location
•  VMM runs guest kernel with U set
•  Privileged instructions will cause an

exception
•  VMM emulates privileged instructions, e.g.,

– Set or read virtual U/K
–  if load PTP in virtual K mode, load shadow

page table
– Otherwise, raise exception in guest OS

Hardware support for virtualization

•  AMD and Intel added hardware support
– VMM operating mode, in addition to U/K
– Two levels of page tables

•  Simplifies job of VMM implementer:
– Let the guest VM manipulate the U/K bit,

as long as VMM bit is cleared.
– Let the guest VM manipulate the guest PT,

as long as host PT is set.

Virtualizing devices (e.g., disk)

•  Guest accesses disk through special
instructions:

•  Trap-and-emulate:
– Write “disk” block to a file in host file

system
– Read “disk” block from file in host file

system

Benefits of virtual machines

•  Can share hardware between unrelated
services, with enforced modularity
–  “Server consolidation”

•  Can run different operating systems
•  Level-of-indirection tricks:

– Snapshots
– Can move guest from one physical

machine to another

VMs versus microkernels

•  Solving orthogonal problems
– Microkernel: splitting up monolithic designs
– VMs: run many instances of existing OS

Summary

•  Monolithic kernels are complex, error-prone
– But, not that unreliable …

•  Microkernels
– Enforce OS modularity with client/server
– Designing modular OS services is challenging

•  Virtual machines
– Multiplex hardware between several operating

systems

