L3: Operating Systems

Frans Kaashoek
kaashoek@mit.edu
6.033 Spring 2013

OS: New topic [4 lectures]

Case study of widely-used interesting system
— Virtual memory system, file system, processes,

lllustrates ideas from first lectures:

— OSs supports client/server computing within a
single computer

— OSs have a naming system

Introduce new ideas and techniques: kernel,
files, locks, etc.

Example: UNIX (Linux, BSDs, etc.)

A Computer

how to make it to do something useful?

Inside the computer

— 4

' W
Pentium 130MHz -

L TErr fnes
72 pin SIMM RAM sockets

AN R
IR n LB T el ol AT DT
LU

OS goal

* Turn hardware into something usable
— Multiplexing: run many programs

— Isolation: enforce modularity between
programs

— Cooperation: allow programs to interact

— Portabillity: allow same program to run on
different hardware

— Performance: help programs to run fast

Main challenges

e |solation:

— Buggy or malicious program shouldn't
crash other programs

» Controlled sharing:
— Programs must be able to cooperate

Two main techniques

 Virtualization: interpose between
program & hardware, but provide same
interface

— Give the program the illusion of its own
memory

— Give the program the illusion of its own CPU
» Abstraction: define new hardware-

independent interfaces

— Disk -> Files system

— Display -> Window system

Running a single program

Main memory

CPU

for ()4 Instruction
next instruction <=
}

data

 Memory holds instructions and data
 CPU interpreter of instructions

X806 Iimplementation

31 Instruction Pointer 0

EIP

Instruction
data

 EIP is incremented after each instruction

 Instructions are different length

2321

« EIP modified by CALL, RET, JMP, and conditional JMP

Several programs

CPUs

Main memory

-

Instruction P1

Instruction P2

Data P1
Data P2

31

Problem: no boundaries

Main memory
Instruction Pointer 0 232-1

D
- rograml

Program 2

Data for P1
Data for P2

0

program can modify other programs data
brogram jumps into other program’ s code

program may get into an infinite loop

Goal: enforcing modularity

e Give each program its private memory
for code, stack, and data

e Prevent one program from getting out
of its memory

o Allowing sharing between programs
when needed

e Force programs to share processor
[next week]

Approach: memory virtualization

Virtual Physical
address address
31 Instruction Pointer 0 232_ 1 Prog rami 232- 1
EIP
0 Data for P1

Virtual|address

232-1| Program 2
0 Data for P2

MMU 0x1000

Table for P1 | 0x8000

Physical address Table for P2 | 0x1000
0

e« P1: LD r0, Ox0000 translated with Table 1
e« P2: LD r0, Ox0000 translated with Table 2

Table records mapping

31 Instruction Pointer

0

EIP

MMU

P2'ls PT

Page-map

0 |0x2000
P1's PT

"0

register

0x1000

e Each program has its own translation map
- Physical memory doesn’ t have to be contiguous

e« P1: 0x0000 -> 0x1000
e P2: Ox0000 -> 0x2000

Space-efficient map

Address |Page # Offset

20 bits 12 bits
VD | PP

WN FP,O
Ul O W

« 0x02020 -> 4 * 4096 + 0x20 = 0x4020

Intel x86-32 two-level page
table

Linecar Address
10 10 12

] ™ Dir Table| Pg Offset Physical Address
20 .
Page Table _ PPN |Pg Offset
| A
20 [12 '
Page Directory — % PPN | info

Pg Tbl Entry

20 12
» PPN info ° > ‘

[: ' (2712 = 4096 bytes)
Pg Dir Entry

3 | Phys Addr| > 2712 = 4096 butes) PPN = Physical Page Number

e Page size is 4,096 bytes
- 1,048,576 pages in 232
- Two-level structure to translate

31

x86 page table entry

12 11

9

8

6

5

Physical-Page Base Address

AVL

G

- > O |

D

OnMN ol &

- S o w

Vv~ CcC N

=S~=| -

« R/W: writable?
- Page fault when W = 0 and writing

e« U/S: user mode references allowed?

- Page fault when U = 0 and user references address

e P: present?
- Page fault when P =0

Page fault

e Switches processor to a predefined
handler in OS software

- Handler can stop program and raise error

- Handler can update the page map and
resume at faulted instruction

e Allows OS to change page tables while
program is running

Naming view
e Apply naming model:

- Name = virtual address
- Value = physical address
- Context = Page map
- Lookup algorithm: index into page map
 Naming benefits

- Sharing

- Hiding

- Indirection (demand paging, zero-fill,

copy-on-write, ...)

Problem: how to protect tables?

* Malicious program could change page
table address register

* Malicious program could change page
fault handler

User and kernel mode

Code in U mode

3z 10
Index T RPLJ

T

Table Indicator

K |Code in K mode ity

Requested Privilege Level (RPL)——

e Processor maintains U/K bit to distinguish between
user and kernel mode

e Code in K mode can set page table register and U/K
bit

What is a kernel?

sh Is

K Kernel

e The code running in kernel mode
- Trusted program: e.g., sets page-map, U/K register
- All interrupt handlers (e.g. page fault) run in kernel mode

How transfer from U to K, and
back?

e Special instruction: e.g., int #
e Processor actions on int #:
- Set U/K bit to K
- Lookup # in table of handlers
- Run handler
e Another instruction for return (e.g.,
reti)
- Kernel sets U/K bit to U
- Calls reti

How to protect kernel's
memory from user programs?

« Straw man plan: switch page table
pointer when changing modes

 Alternative: use U bit in page table entry

— Pages for kernel code don’t have U bit

— Kernel code and user code in a single
address space

— Kernel can refer to user data, but not the
other way around

Abstractions

e Pure virtualizing is often not enough
- E.g., Portability
- E.g., Cooperation
e Example OS abstractions:
- Disk -> FS
- Display -> Windows
- DRAM -> heap w. allocate/deallocate
e Design of abstraction important
- Study UNIX abstractions

main() {
int fd, n;
char buf[512];

chdir("/usr/kaashoek");

fd = open("quiz.txt", 0);
n = read(fd, buf, 512);
write(1, buf, n);
close(fd);

Where do abstractions live?

e Library in user space?

- No! Program must use disk only through
abstraction

o Use kernel to enforce abstractions
e Each OS call changes into the kernel
e Kernel code implements abstractions

Kernel enforces modularity

Kernel code must set page tables
correctly

Kernel code is responsible for enforcing
abstractions

Any bug in kernel can lead to hole Iin
our enforced modularity

[More about this in 2 weeks]

Summary

* Two key OS techniques
— Virtualization allows programs to share hardware
— Abstractions provide portability, cooperation
« See Unix paper
* OS kernel enforces modularity
— Program vs program
— Program vs kernel

