
L3: Operating Systems

Frans Kaashoek
kaashoek@mit.edu
6.033 Spring 2013

OS: New topic [4 lectures]
•  Case study of widely-used interesting system

– Virtual memory system, file system, processes,
•  Illustrates ideas from first lectures:

– OSs supports client/server computing within a
single computer

– OSs have a naming system
•  Introduce new ideas and techniques: kernel,

files, locks, etc.
•  Example: UNIX (Linux, BSDs, etc.)

A Computer

 how to make it to do something useful?

Inside the computer

OS goal

•  Turn hardware into something usable
– Multiplexing: run many programs
–  Isolation: enforce modularity between

programs
– Cooperation: allow programs to interact
– Portability: allow same program to run on

different hardware
– Performance: help programs to run fast

Main challenges

•  Isolation:
– Buggy or malicious program shouldn’t

crash other programs

•  Controlled sharing:
– Programs must be able to cooperate

Two main techniques
•  Virtualization: interpose between

program & hardware, but provide same
interface
– Give the program the illusion of its own

memory
– Give the program the illusion of its own CPU

•  Abstraction: define new hardware-
independent interfaces
– Disk -> Files system
– Display -> Window system

Running a single program

•  Memory holds instructions and data
•  CPU interpreter of instructions

for (;;) {
 next instruction
}

instruction

data

CPU
Main memory

x86 implementation

•  EIP is incremented after each instruction
•  Instructions are different length
•  EIP modified by CALL, RET, JMP, and conditional JMP

instruction

data

0

232-1

Several programs

for (;;) {
 next instruction
}

Instruction P1

Instruction P2

Data P2
Data P1

CPUs
Main memory

for (;;) {
 next instruction
}

Problem: no boundaries

•  A program can modify other programs data
•  A program jumps into other program’s code
•  A program may get into an infinite loop

0

232-1

Program1

Program 2

Data for P2

Data for P1

Main memory

Goal: enforcing modularity

• Give each program its private memory
for code, stack, and data

•  Prevent one program from getting out
of its memory

•  Allowing sharing between programs
when needed

•  Force programs to share processor
[next week]

Approach: memory virtualization

•  P1: LD r0, 0x0000 translated with Table 1
•  P2: LD r0, 0x0000 translated with Table 2

0x1000

232-1

Program1

Program 2

Table for P1

Data for P2

Data for P1

Table for P2

Virtual
address

Physical
address

0

232-1

232-1

0 MMU

Physical address

Virtual address

0x8000
0x1000

0

Table records mapping

•  Each program has its own translation map
–  Physical memory doesn’t have to be contiguous

•  P1: 0x0000 -> 0x1000
•  P2: 0x0000 -> 0x2000

MMU

Page-map
register

0x1000 0
P1’s PT

0
P2’s PT

0x2000

Space-efficient map

•  0x02020 -> 4 * 4096 + 0x20 = 0x4020

Page # Offset

20 bits 12 bits

Address

vp pp

0 3
1
2
3

0
4
5

Intel x86-32 two-level page
table

•  Page size is 4,096 bytes
–  1,048,576 pages in 232
–  Two-level structure to translate

x86 page table entry

•  R/W: writable?
–  Page fault when W = 0 and writing

•  U/S: user mode references allowed?
–  Page fault when U = 0 and user references address

•  P: present?
–  Page fault when P = 0

Page fault

•  Switches processor to a predefined
handler in OS software
–  Handler can stop program and raise error
–  Handler can update the page map and

resume at faulted instruction

•  Allows OS to change page tables while
program is running

Naming view
•  Apply naming model:

–  Name = virtual address
–  Value = physical address
–  Context = Page map
–  Lookup algorithm: index into page map

• Naming benefits
–  Sharing
–  Hiding
–  Indirection (demand paging, zero-fill,

copy-on-write, …)

Problem: how to protect tables?

•  Malicious program could change page
table address register

•  Malicious program could change page
fault handler

User and kernel mode

•  Processor maintains U/K bit to distinguish between
user and kernel mode

•  Code in K mode can set page table register and U/K
bit

Code in K mode

Code in U mode

K

U

What is a kernel?

•  The code running in kernel mode
–  Trusted program: e.g., sets page-map, U/K register
–  All interrupt handlers (e.g. page fault) run in kernel mode

Kernel

sh ls

K

U

How transfer from U to K, and
back?

•  Special instruction: e.g., int #
•  Processor actions on int #:

–  Set U/K bit to K
–  Lookup # in table of handlers
–  Run handler

•  Another instruction for return (e.g.,
reti)
–  Kernel sets U/K bit to U
–  Calls reti

How to protect kernel’s
memory from user programs?

•  Straw man plan: switch page table
pointer when changing modes

•  Alternative: use U bit in page table entry
– Pages for kernel code don’t have U bit
– Kernel code and user code in a single

address space
– Kernel can refer to user data, but not the

other way around

Abstractions
•  Pure virtualizing is often not enough

–  E.g., Portability
–  E.g., Cooperation

•  Example OS abstractions:
–  Disk -> FS
–  Display -> Windows
–  DRAM -> heap w. allocate/deallocate

• Design of abstraction important
–  Study UNIX abstractions

main() {
 int fd, n;
 char buf[512];

 chdir("/usr/kaashoek");

 fd = open("quiz.txt", 0);
 n = read(fd, buf, 512);
 write(1, buf, n);
 close(fd);
}

Where do abstractions live?

•  Library in user space?
–  No! Program must use disk only through

abstraction

• Use kernel to enforce abstractions
•  Each OS call changes into the kernel
•  Kernel code implements abstractions

Kernel enforces modularity

•  Kernel code must set page tables
correctly

•  Kernel code is responsible for enforcing
abstractions

•  Any bug in kernel can lead to hole in
our enforced modularity

•  [More about this in 2 weeks]

Summary

•  Two key OS techniques
– Virtualization allows programs to share hardware
– Abstractions provide portability, cooperation

•  See Unix paper

•  OS kernel enforces modularity
– Program vs program
– Program vs kernel

