
L1: Complexity,
Enforced Modularity, and
client/server organization

Frans Kaashoek and Dina Katabi

6.033 Spring 2013
http://web.mit.edu/6.033

http://web.mit.edu/6.033

•  Schedule has all assignments
•  Every meeting has preparation/assignment

•  On-line registration form to sign up for section
and tutorial times
•  We will post sections assignment Thursday evening

What is a system?

•  6.033 is about the design of computer systems
•  System = Interacting set of components with a

specified behavior at the interface with its
environment

•  Examples: Web, Linux
•  Much of 6.033 will operate at design level

•  Relationships of components
•  Internals of components that help structure

Challenge: complexity

• Hard to define; symptoms:
• Large # of components
• Large # of connections
•  Irregular
• No short description
• Many people required to design/maintain

•  Complexity limits what we can build
• Not the underlying technology
• Limit is usually designers’ understanding

Problem Types in Complex Systems

•  Emergent properties
•  surprises

•  Propagation of effects
• Small change -> big effect

•  [Incommensurate] scaling
• Design for small model may not scale

•  Problems show up in non-computer systems

Emergent Property Example: Ethernet

•  All computers share single cable
• Goal is reliable delivery
•  Listen while sending to detect collisions

Will listen-while-send detect collisions?

Ø 1 km at 60% speed of light = 5 microseconds
Ø  A can send 15 bits before bit 1 arrives at B

Ø  A must keep sending for 2 * 5 microseconds
Ø To detect collision if B sends when bit 1 arrives

Ø  Minimum packet size is 5* 2 * 3 = 30 bits

1km at 3 Mbit/s
A B010101010101011

3 Mbit/s -> 10 Mbit/s

•  Experimental Ethernet design: 3Mbit/s
•  Default header is: 5 bytes = 40 bits
•  No problem with detecting collisions

•  First Ethernet standard: 10 Mbit/s
•  Must send for 2*20 µseconds = 400 bits
•  But header is 14 bytes
Ø  Need to pad packets to at least 50 bytes

Ø  Minimum packet size!

A computer system scaling example

Scaling the Internet

•  Size routing tables (for shortest paths): O(n2)
• Hierarchical routing on network numbers
• Address is 16 bit network # and 16 bit host

•  Limited networks (216)
• Network Address Translators and IPv6

Sources of Complexity

• Many goals/requirements
•  Interaction of features
•  Performance

Example: more goals,
more complexity

•  1975 Unix kernel: 10,500 lines of code
•  2008 Linux 2.6.24 line counts:

 85,000 processes
 430,000 sound drivers
 490,000 network protocols
 710,000 file systems
1,000,000 different CPU architectures
4,000,000 drivers
7,800,000 Total

Example: interacting features,
more complexity

•  Call Forwarding
•  Call Number Delivery Blocking
•  Automatic Call Back
•  Itemized Billing

A C

??

A B

CNDB ACB + IB •  A calls B, B is busy
•  Once B is done, B

calls A
•  A’s number on

appears on B’s bill

CF CF

Interacting Features
hidden

•  Each feature has a spec.
•  An interaction is bad if feature X breaks feature Y.
•  ...
•  The point is not that these bad interactions can’t be fixed.
•  The point is that there are so many interactions that have to

be considered: they are a huge source of complexity.
•  Perhaps more than n^2 interactions, e.g. triples.
•  Cost of thinking about / fixing interaction gradually grows to

dominate s/w costs.
•  The point: Complexity is super-linear

Coping with Complexity

•  Simplifying design principles
• E.g., “Avoid excessive generality”

•  Modularity
• Split up system, consider separately

•  Abstraction (e.g., RPC, Transactions)
•  Interfaces/hiding
• Helps avoid propagation of effects

• Hierarchy (e.g., DNS)
•  Layering (e.g., Internet)

A modularity tool: procedure call

• Defines interaction between F and G
•  F and G don’t expose internals
• How well does this enforce modularity?

Big
complicated
system

F G

A B

Implementation using stack

•  Calling contract between F and G
• F sets stack pointer for G
• G doesn’t modify F’s variables
• G returns
• G doesn’t wedge environment

• Use all heap memory, crash, etc.

 x
 2
 return
address

 3

Stack pointer

Is calling contract enforced?

•  C, C++: No
• Callee can overwrite anything

•  Java, C#, Haskell, Go: Somewhat
• Callee may run computer out of resources

•  Python: No
• A type error in callee can fail caller

•  Can we do more?

Client/server organization

• Modules interact through messages

Client Server

Put args in msg
Send msg

Wait for a reply
Return return

Wait for msg
Get args from msg
Compute
Put results in msg
Send reply

request

reply

Internet

C/S enforced modularity

•  Protects memory content
•  Separates resources

• Heap, cpu, disk, etc.

• No fate sharing
• But, client might not get a response

•  Forces a narrow spec, but:
• Bugs can still propagate through messages
• Programmer must implement spec correctly

Usages of client/server

•  Allows computers to share data
• AFS, Web

•  Allows remote access
• Two banks transferring money

•  Allows trusted third party
• E-bay provides controlled sharing of

auction data

Simplifying C/S with
remote procedure call

•  Stubs make C/S look like an ordinary PC

request

reply

def main:
 count = inStock(isbn)
 print count

def inStock(isbn):
 ….
 return count

def inStockStub:
 msg <- isbn
 send request
 wait for reply
 cnt <- reply
 return cnt

def inStockStub:
 wait for requst
 isbn <- request
 cnt = inStock(isbn)
 reply <- cnt
 send reply

Client Server

Stub Stub

RPC != PC

Client server

Browser Book store

InStock(isbn) -> count
Ship(isbn, address)

Intenet

Challenge 1: network looses requests

•  Approach: Retry after time out
• Doesn’t work for Ship()

Client Server

time

isbn

isbn

10

11

Retry

Filter duplicate requests

• What if server plus table fail?

Client Server

time

isbn, UID

isbn, UID

10 Client UID Reply

10

Challenge 2: server fails

•  “Unknown” outcome for ship(isbn):
•  If server fails before sending reply

•  Removing “unknown” outcome requires
heavy-duty techniques
• Check back in April

•  Practical solution: RPC != PC
• Users can check account later
• Amazon can correct by crediting account

public interface ShipInterface extends Remote {
 public String ship(Integer) throws RemoteException;
}

public static void main (String[] argv) {
 try {
 ShipInterface srvr = (ShipInterface)
 Naming.lookup("//amazon.com/Ship");
 shipped = srvr.ship(“123”);
 System.out.println(shipped);
 } catch (Exception e) {
 System.out.println (”ShipClient exception: " + e);
 }
 }

Summary so far

• Designing systems is difficult
•  Systems fail due to complexity
• New abstractions for system design

• Enforced modularity through client/server
• Remote procedure call
• But, RPC != PC

•  Failures will be a central challenge in 6.033
• No algorithm for successful system design

6.033 Approach to system design

•  Lectures/book: big ideas and examples
•  Hands-ons: play with successful systems
•  Recitations: papers describing successful systems
•  Design projects: you practice designing and writing

• Design: choose problem, tradeoffs, structure
• Writing: explain core ideas concisely

•  Exams: focus on reasoning about system design
•  Ex-6.033 students: papers and design projects

Example 6.033 systems

•  Therac-25
 bad design, at many levels. detailed post-mortem

•  UNIX
•  MapReduce

•  System R

Class plan

•  Client/server: Naming
• Operating systems:

• Enforced modularity within a machine

• Networks:
• Enforced modularity between machines

•  Reliability and transactions:
• Handing hardware failures

•  Security: handling malicious failures

