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Introduction 

 

Conventional file systems do not support tracking file provenance, or where the contents of a file 

come from. In addition, they cannot track how data evolves and how files influence one another. 

This is problematic, for example, when a user wishes to determine the source of PowerPoint 

slides or files in a ZIP archive. 

 

In this report, we outline the design of PEST, a sensible and extensible system for tracking 

provenance. Provenance can be visualized as a graph, linking each file with its ancestors, the 

files that have directly affected its contents, and its descendants. PEST uses on-disk data 

structures associated with each file to store links in the provenance graph, and a central in-

memory data structure to track file access. The primary design goals are high performance under 

common use cases, and simplicity to facilitate implementation. Additionally, to ensure greater 

portability of provenance data, PEST stores provenance in a decentralized manner. This 

portability might come at the expense of provenance propagation overhead.  

 

Design 

 

PEST represents the provenance graph implicitly by storing pointers to a file’s ancestors and 

descendants. PEST’s data structures are updated through UNIX-like [1, 2] system calls. 

 

The file system also enables tracking provenance across parts, which are abstractions that might, 

for example, represent slides in a PowerPoint presentation or files in a ZIP archive. While the 

storage of parts within a file is application-defined, parts are referenced by 64-bit part numbers, 

with part 0 referring to the file itself.  

 

Data Structures 

 

Two main types of data structures work together to enable provenance tracking within PEST: on-

disk data structures associated with each file to store immediate provenance and an in-memory 

data structure that tracks file access. 

 

This schema is efficient because it balances the time and space complexity of provenance 

tracking. Storing both immediate ancestor and immediate descendant pointers makes querying 

for the full set of descendants of a given file just as efficient as querying for the full set of 

ancestors. Because PEST does not store the entire provenance tree of a given file, we must 

determine it through a depth-first search. On the other hand, not storing the entire provenance 

tree with each file makes the overhead from storing provenance relatively small. 

 

On-Disk Data Structures 
To store immediate ancestor and descendant provenance information, PEST associates every file 

with a B-tree mapping part numbers to a pair of arrays: the ancestor array and the descendant 

array. These arrays are comprised of (inumber, part, timestamp) tuples that represent pointers 

to file versions in a versioning file system. 

 



The B-tree is stored in a provenance file associated with the given regular file. Provenance files 

are stored in the /prov directory and are sequentially numbered for simplicity. The relationship 

between regular files, provenance files, and B-trees is shown in Figure 1. To forge a reference 

between regular files and provenance files, each regular file has an entry of the form 

(“provenance_file_pointer”, inumber) in its file system extended attributes, where the 

inumber field refers to the inode of the associated provenance file. Conversely, each provenance 

file as an entry of the form (“regular_file_pointer”, inumber), where the inumber field refers 

to the inode of the associated regular file. This asymmetry allows for regular files and 

provenance files to be distinguished, and for provenance tracking to be disabled for provenance 

files. 

 

 

One consideration in designing PEST was whether to use file paths or references to inodes when 

referring to ancestors and descendants. Storing file paths simplifies the read_prov operation, 

which returns a tree of all files that have directly or indirectly influenced the content of a given 

file. The advantage of referencing inodes via inumbers, however, is that inodes do not change 

when files are moved or renamed. 

 

Another consideration was whether to use the file system extended attributes to store provenance 

data or to create a provenance file layer. The former approach requires that the file system 

extended attributes are dynamically-sized, which places a constraint on the file system. The latter 

approach has the added advantage of centralizing provenance information. 

 

In-Memory Data Structure 

PEST.pptx 

00002.prov 

Part 0 Part 3 

ancestors = {(inode(PEST.docx), 0, 

March 22, 2012), 

(inode(PEST.txt), 0, March 15, 2012)} 

 

 

descendants = 

{(inode(PEST_copy.pptx), 0, March 

22, 2012)} 

  

  

Figure 1. Regular files, provenance files, and the B-tree. 



To track file access and update provenance as necessary, PEST maintains an additional in-

memory data structure called the process-provenance tree (PPT): a B-tree mapping process IDs 

to  provenance objects, each consisting of a bit flag track_provenance and an array 

read_inodes of (inode, timestamp) pairs. The structure of the PPT is illustrated in Figure 2. 

 
The track_provenance bit flag indicates whether or not provenance tracking is enabled for the 

process. A program such as PowerPoint might want to manage its own provenance and would set 

the flag to false. 

 

The read_inodes array keeps track of files that have been input by a process. If a process writes 

to a file, the file's provenance will include the files that have been read by the process. The 

timestamp field tracks file version. 

 

Notably, provenance updates are not explicitly cached in any way. Caching could be 

implemented at a lower level of abstraction and is left to the write_prov implementation. 

 

When fork is called, the child process is assigned a clone of the parent's provenance object in the 

PPT, because the child process might make use of data that was read in by the parent process, 

and because the child process inherits open file handles. 

 

PEST does not keep track of process-to-process communication via pipes because doing so 

sacrifices simplicity. Because PEST is extensible, however, implementing “pipe tracking” is 

relatively straightforward. 

 

API and Algorithms 

 

To dynamically update these data structures with provenance information, PEST uses a modified 

version of the UNIX system API [1] as well as additional provenance query/update commands.  

The latter commands manipulate the on-disk data structures. Because they involve disk I/O, they 

are relatively expensive. 

Process-Provenance Tree 

Process 1001, cp 
Process 1340, 

PowerPoint 

track_provenance = false 

 read_inodes = {} 

track_provenance = true 

 read_inodes = {0h00F243} 

Figure 2. Process-provenance tree. 



 

write_prov(fd, part, provinfo) 
It updates the provenance information for fd. 

The input provinfo is a tuple (inumber_ancestor, part_ancestor, timestamp_ancestor). First, 

look up the provenance file associated with fd. Loop through the ancestor array stored in the B-

tree entry for part, searching for inumber_ancestor and part_ancestor. If no entry exists, add 

(inumber_ancestor, part_ancestor, timestamp_ancestor) to the ancestor array. If there is an 

entry with an older timestamp, update timestamp. Otherwise, do nothing. 

Similarly, update the descendant array of inumber_ancestor using (fd, part, 

current_version_timestamp(fd)). 

If two versions of a file contribute to the provenance of a given file, only the latest version is 

stored in the ancestor or descendant array, reducing provenance overhead in the presence of 

circular references. 

 

read_ancestors(fd, part) 
It returns the ancestor array for (fd, part) by looking up part in the provenance file associated 

with fd. The ancestor array has entries of the form (inumber, part, timestamp), 

 

read_descendants(fd, part) 
It returns the descendant array for (fd, part) by looking up part in the provenance file associated 

with fd. 

 

read_prov(fd, part) 
It generates the full ancestor tree for (fd, part) by performing a depth-first transversal starting 

from (fd, part) and returns an array with entries of the form (inumber, part, timestamp). 

The code in Figure 3 illustrates the depth-first transversal: repeatedly call read_ancestor until 

every file and part is visited, ignore older versions of files that have already been seen, and avoid 

circular references. 

 
read_prov(fd, part) { 

 set prov = read_ancestors(fd, part); 

 set todo = prov; 

 set done = {}; 

 while (next = prov.pop() && next is not (fd, part)) { 

  add next to done; 

  add read_ancestors(next) to prov, avoiding duplicates 

   unless a file has a later timestamp; 

  add elements of read_ancestors(next) to todo, avoiding 

files already in done; 

 } 

 return prov; 

} 
 

Figure 3. Pseudocode for read_prov. 

 

search_prov(fd, part) 



It generates the full descendant tree for (fd, part) using the same algorithm as in read_prov, but 

calling read_descendant instead of read_ancestor. 

 

inode_to_path(inumber) 
This is a convenience function for converting inodes generated by commands such as read_prov 

to file paths. It recursively searches through every directory in the file system until an inode with 

the given inumber is found and returns its path, which might not be unique for the inode. 

 

create_prov_file(fd) 
It creates an empty provenance file for fd. The B-tree should only have the key “0”, 

corresponding to the entire file, and the ancestor and descendant arrays should be empty. 

This API call should only be called by open. 

 

delete_prov_file(fd, part) 

It deletes the provenance file associated with fd, while ensuring that the provenance graph is not 

broken. As the code in Figure 4 illustrates, delete_prov_file links all of fd’s immediate ancestors 

with its immediate descendants and does the same for immediate descendants. Finally, it deletes 

the provenance associated with fd. 

This API call should only be called by unlink, when a file is being deleted. 

 
delete_prov_file(fd, part) { 

 for every file/part/version fd_an in read_ancestors(fd, part) { 

  delete fd from the descendant array of fd_an; 

  add read_descendants(fd, part) to the descendants array of 

   fd_an; 

 } 

 for every file/part/version fd_de in read_descendants(fd, part) { 

  delete fd from the ancestor array of fd_de; 

  add read_ancestors(fd, part) to the ancestor array of 

   fd_de; 

 } 

set fd_pr to be the provenance file of fd; 

 if fd is an entire file (part 0) { 

  delete fd_pr; 

 } else, fd is a part { 

  delete this part from the B-tree stored in fd_pr; 

 } 

}  

Figure 4. Pseudocode for delete_prov_file. 

 

The UNIX-like system calls update both the in-memory and on-disk data structures. The 

overhead from tracking provenance in this case is relatively cheap. The calls are aware of the 

regular_file_pointer key in the file system extended attributes, which indicates that a file is a 

provenance file, and do not track provenance for such files. 

 



open(name, flag) 
It proceeds as in the normal open system call. If a new file is created, it calls 

create_prov_file(filep), where filep is the file pointer. 

 

read(filep, buffer, count) 
It reads in data from a file and adds the file to the PPT. 

Look up the process ID of the process calling read in the PPT. Add the (inumber, timestamp) 

pair referenced by filep to read_inodes if it is not already present. Afterwards, proceed as in the 

normal read system call. 

 

write(filep, buffer, count) 
It writes to a file from a buffer, updating provenance data as well.  

Look up the process ID of the process calling write in the PPT. Loop through the (inumber, 

timestamp) pairs contained in read_inodes and call write_prov(filep, 0, (i, t)) for each one. 

This represents adding a file that was read earlier to the provenance of the file being currently 

written. Afterwards, proceed as in the normal write system call. 

 

fork() 
It creates a new process. 

First, proceed as in the normal fork system call. Then, look up the process ID of the process 

calling fork in the PPT. Create a deep copy of the parent's provenance object and store it in the 

PPT under the child process ID. 

 

exit() 

It terminates the process, deleting the provenance object corresponding to the process ID of the 

process calling exit from the PPT. Afterwards, it proceeds as in the normal exit system call. 

 

unlink(name) 

It removes a hard link to a name and removes provenance information if necessary. 

Proceed as in the normal unlink system call. If there are no links remaining to the file referenced 

by name, call delete_prov_file(filep, 0) to remove the provenance file associated with filep, 

where filep = name_to_inode(name). 

 

set_provenance_flag(value) 

It sets track_provenance for the current process ID to value. If value is false, provenance 

tracking will be disabled, and vice versa. 

 

Analysis 

 

Use Cases 
 

There are four main use cases that illustrate the extensibility of PEST: PowerPoint slide copying, 

compiling software, copying files, and handling tar/zip files. 

 

PowerPoint Slide Copying 



When a user copies PowerPoint slides from one presentation to another, PowerPoint makes a 

write_prov call for each slide (part) of a presentation that is sourced from another presentation. 

Furthermore, PowerPoint refers to the specific slide (part) of the ancestor presentation that is 

sourced. This way, PowerPoint tracks slide provenance across presentations.  

 

Compiling Software 

When a user compiles files, the compiled file’s provenance will include the source files. Because 

the compiler must read all source files before writing the compiled file, they will be added to the 

process-provenance tree. When the compiled software is written, its provenance will be 

augmented with the list of source files. Any temporary files that are created and deleted by the 

compiler will automatically transfer their provenance to the compiled software via 

delete_prov_file. 

 

Copying files 
When a user uses cp to make a copy of a file A, naming it B, B’s provenance, initially blank, will 

consist of A. This is because cp calls read and write, which track provenance. 

 

A consideration in designing the behavior of cp was whether or not A’s provenance is inherited. 

PEST does not create a copy of B’s provenance, which speeds up cp slightly and results in 

smaller provenance files.  

 

Handling tar/zip files 
When a user adds files to a ZIP archive, the ZIP program will track its own provenance and 

represent files in the archive as parts. Depending on third-party design decisions, it may choose 

to keep the original files’ links or to make links between files in the ZIP archive internal when 

possible. While the former approach may not require any modification to the ZIP program, the 

latter approach requires keeping track of the inodes of files being added to the archive and 

changing provenance pointers to be internal when necessary. The flexibility afforded to the third-

party highlights PEST’s extensibility. 

 

Performance and Scalability 
 

Due to design decisions such as only storing immediate links in the provenance graph, PEST is 

reasonably performant and scales well in terms of disk usage. 

 

Disk Usage 

Assume that the average file has 5 parts and 20 ancestor/descendant pointers per part. Assuming 

that timestamps use 4 bits, each direct ancestor and descendant takes up 4+8+4=16 bytes, 

accounting for the inumber, part, and timestamp. This means that the average file has      

bytes of provenance data. The B-tree overhead is at most 1600 additional bytes, meaning that 

provenance files have 3200 bytes of data. This amount of data fits into 7 512-byte blocks [1] on 

disk. The overhead from the provenance file’s inode and the file system extended attributes is 

equivalent to about one additional block. 

 

Thus, the provenance data of the average file takes up about 4KB. If we assume that the file 

system has 1,000,000 files, this is about 4GB of overhead.  



 

Copying Workflow 

Copying a file once introduces a provenance overhead, as a single provenance file must be 

created and a single write to the provenance file must be done. There are additional operations 

performed in memory, but these are on the order of microseconds. Assuming that we can 

read/write amounts of data less than 4KB in 12ms, the provenance overhead is 24ms. Assuming 

that it takes about 50ms to copy the file data itself and update the file system extended attributes, 

we can copy about 13 files per second while propagating provenance data. This is an 

underestimate. 

 

Provenance Tracking 

Calling read_prov on a file with 10 total ancestors would involve 20 reads of 4KB on average, 

each of which takes about 12ms. PEST must read both file system extended attributes and 

provenance files. Thus, read_prov would take 240ms, meaning that it can be called 4 times per 

second, which is acceptable. 

 

Conclusion 
 

PEST offers sensible and extensible provenance tracking by storing data in provenance files 

associated with every regular file, in addition to using an in-memory data structure that tracks 

file access. It is applicable to common use cases including PowerPoint slide copying, compiling 

software, copying files, and handling tar/zip files. 

 

PEST’s strengths include portability and simplicity. Challenges that remain before it can be 

implemented include preventing hardware crashes, ensuring security, and tracking provenance 

resulting from pipe-based communication between processes. Future directions for work include 

augmenting the types of provenance that can be represented, expanding interoperability with 

non-PEST file systems, and tracking provenance across computers. 
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