
Creating a Providence-Tracking
File System

Max Nelson
6.033 Design Project 1
Proposal
March 1, 2012



Overview
The goal of this design project is to create a provenance tracking file system. The
provenance of a file is defined to be the set of files that have influenced some part
of the file’s data. The provenance can be changed in two ways: when a process
writes to a file, all files read by this process will be added to the provenance of the
initial file, and when an application manuals updates the provenance using a
system call. This system can be realized through the creation of “.prov” files,
outlined below.

Design Description
Definitions
First, let’s define two terms, parent and child:

If file C is influenced by file P then P is the parent of C and C is the child of P.

Data Structures
The overarching plan to maintain the correct parent-child relationships for all files
is to keep two data structures:

• An on-disk “.prov” file for each file we are tracking the provenance of (i.e.
example.ppt would have a hidden example “.prov” file in the same
directory) that holds the “child-of” provenance information for that file in a
tree structure. For example, if a line from file A is copied into file B, then
file A would be in B.prov.
• An in-memory tree structure that stores the “parent of” information for all

open files. This structure is used for bookkeeping as well as allowing the
user to search for a file’s ancestors. This structure must be stored to a
specific “.prov” file on disk during system shutdown to persist the
“parent-of” information for all files.

The on-disk “.prov” files and in-memory trees can be a standard B-tree (an
example tree structure as well as an example grammar for a “.prov” file is shown
in Figure 1) or a more optimized tree, such as an van Emde Boas tree. These
options will be explored during implementation of the system.

Importantly, the trees will store their information by reference as opposed to by
value. Storing by reference only keeps the pointer to a specific “.prov” file instead
of keeping the entire copy of the file. For example, imagine a scenario where file
A is a parent of file B, and file B is a parent of file C. C.prov would only contain a
reference to B.prov, which would in turn keep a reference to A.prov. While
storing by reference is efficient on space (which is critical when we are storing so

1



many “.prov” files), it requires some extra bookkeeping when modifying or
deleting files, which will be further detailed below.

To maintain these data structures, we will need to concern ourselves with the
following operations:

• Creation - When a file is created we need to also create its associated
“.prov” file
• Moving/Renaming - When the absolute path of a file is changed, we must

update all children and parent provenance files with the new path
• Modifying Data in the File - Operations such as “copy paste” must add the

file to the provenance information of the recipient of the operation
• Deletion - Similar to moving/renaming, the parents and children of a

deleted file must update their tree structure with the deleted file. This in
turn, means that our system must forge new “connections” between files
during deletion. For example, if A1 and A2 are parents of B, and C1 and C2
are children of B, if B is deleted, it should be the case that A1 and A2 are
now immediate parents of both C1 and C2 (as shown in Figure 2).
• Garbage Collection - As mentioned in Figure 1, a versioning file system

will be most likely used. A versioning file system allows us bypass many

2



tricky cases with deletion/modifying. However, this means we must
concern ourselves with garbage collection. After some number of versions
of a “.prov” file (i.e. 10) have been created, we should delete the oldest disk
“.prov” file as well as references in the children and parents.

Applications Interacting With Provenance Information
The OS will provide the following API to applications:

read_prov(fd,part)

Specification: returns the provenance info for a file

write_prov(fd,part,provinfo)

Specification: sets the provenance info for a file

search_prov(fd,part)

Specification: returns the children info for a file

Supported Applications/Operations
Powerpoint-the copying, rearranging, modifying of slides will preserve the
provenance info for each part (i.e. if slide 1 and 2 are swapped the on-disk and
in-memory trees will mirror this change.
Compiling Software-the sources use to compile a binary will be in the
provenance file of the binary.
Coping Files- the copying operation should add/update the provenance info for
the correct file, propagating by reference.

3



tar/zip Operation- a tar/zip operation should preserve the provenance
information of the compressed files, and the compressed file’s own provenance
information should contain all files within the compressed file.

Conclusion
The above design meets the requirements as outlined in the problem statement by
utilizing the idea of “.prov” files pointing to parents and children of files. Future
questions that still remain are the choice of tree to use (or possibly a hash table if
space is available), as well as the specifics of the implementation, which will
involve the modification of, among others, the read/write system calls.

4


	Overview
	Design Description
	Definitions
	Data Structures
	Applications Interacting With Provenance Information
	Supported Applications/Operations
	Conclusion


