
 

 

 

 

 

 

 

 

 

Provenance Tracking System (PTS)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ashwini Gokhale 
<agokhale@mit.edu> 

6.033, Prof. Rudolph, TR 10 AM 
March 22, 2012 

 
 
 
 



1 
 

1. Overview 
Provenance is critical, especially when storing important data. Tracking provenance is 

especially applicable in sensitive systems like hospital databases in the event of a 

quality control audit. This report outlines an approach to track provenance for the 

second extended (ext2) filesystem created by Linux. Ext2 is advantageous to work with 

because it has extra space in many of its on-disk data structures which allows for 

extensibility. I assume a versioning file system in which every file has a unique inode 

number and all subsequent modified versions of that file also have unique inode 

numbers to handle file modification.  

 

The Provenance Tracking System (PTS) is implemented by modifying the data structure 

“inode” and creating a new data structure called “pnode”. One of the major design 

tradeoffs is the decision to place 2 Gigabytes of memory on-disk to accommodate new 

and modified PTS data structures. This on-disk overhead is necessary to successfully 

track provenance for sensitive systems like hospital databases. A design strength is the 

implementation of garbage collection; although retaining information is important, 

removing stale information to make room for newer, more relevant information is crucial. 

In this paper I describe the PTS design, demonstrate its implementation with specific 

use cases, and analyze performance. 

 

 

2. Design Description 
The goal of PTS is to build upon the existing ext2 filesystem in a minimalistic manner. 

Existing provenance-unaware programs continue operating correctly because PTS 

maintains transparent file-to-file provenance with null pnodes. For provenance-aware 

programs PTS provides calls to implement part-to-part provenance tracking. 

Provenance information is stored persistently in PTS because everything (except a 

temporary table) is stored on-disk. 

 

2.1 Physical Layout of PTS 

The physical (on-disk) layout of PTS is shown in Figure 1. The “pnode” (which stands 

for “part node”), is stored in the same way as inodes. The pnode table represents a 

segment of contiguous blocks allocated to store pnodes indexed by (unique) pnode 

numbers. PTS also stores a table mapping inode numbers to filenames; this table would 

be used in provenance calls to return filenames to the application.  



2 
 

 
 

 

 

     0      1            …            n-1  

Boot 

block 

Super 

block 

Bitmap for free 

blocks 

Inode 

Table 
… 

File 

block 
… File block 

 

 

 

 

 

    

 

 
Figure 1: PTS disk layout. The first few blocks (corresponding to the boot block, super block, 
bitmap, and inode table) and the file blocks in PTS are the same as those in ext2. Blocks after 
the inode table and before the file blocks have been modified to include the pnode table and 
inode number to filename table.  
 

 

2.2 Data Structure Creation and Modification 

When a new file (or version) is created, its inode and other components (such as file 

size and type) are initialized. The unique inode number is a name for the inode that 

holds the metadata about a particular file.  

 

To implement provenance tracking, PTS relies upon the extended attributes (xattrs) of 

the filesystem and “pnode”. All inodes of type file will have a list (called listOfParts) 

containing the pnode numbers of their parts. Every inode is initialized with a “null” pnode 

to keep track of file-to-file provenance in provenance-unaware applications; further 

details are provided in Figure 2.  

Pnode Table 
Inode#  Filename 

table 

Same structure as in ext2 

Modified block layer 

blocks in PTS that are 

different from ext2 

Same structure as in ext2 



3 
 

 
Figure 2: Data structures used in PTS. The data structure “inode” is modified using its 
extended attributes, and a new data structure “pnode” is introduced.  

 

2.3 Setting and Returning Provenance 

PTS allows provenance-aware applications to make read- and write-calls in order to 

determine and store provenance information of specific parts of files. For provenance-

unaware applications, PTS will update the provenance of the entire file using pointers 

within the null pnodes and thereby propagate provenance by reference. 

 

PTS stores the provenance information of file parts within a directed acyclic graph; 

pnodes store (pnode number, timestamp) values in their listOfParentParts and 

listOfChildrenParts. Timestamps stored along with the pnode numbers prevent cycles 

from occurring, and specify the reference-time for a given part’s provenance. For 

example, assume that a user copies a PowerPoint slide from files B to C, and then 

replaces that slide in B with a different slide from file A. When an application queries the 

provenance of C, PTS returns only B as being a parent of C because PTS will only 

return provenance data that has a timestamp which is less than the specified 

timestamp.  

 

When provenance-aware applications query a part’s provenance information, it is 

appropriate to return a filename rather than an inode number. In Unix, given a filename, 

an inode number can easily be found but not vice-versa. Thus, PTS contains a table on-

disk with (key, value) pairs mapping to (inode number, absolute pathname(s)). This 



4 
 

table is called “INFT” for Inode Number to Filename Table. (The time required to update 

INFT is explained in Section 3.4.) If there are two or more hard-links to a file, then a 

given inode number can have more than one absolute pathname.   

 

2.3.1 System Calls for Provenance 

The system call read_prov(fd, part) returns the ancestors (files containing the parent 

parts) for the specified part of the file. The search_prov(fd, part) call returns files which 

have parts that are children of the specified file part. Both procedures implement similar 

steps, except that read_prov and search_prov recursively follow the list of parent parts 

and children parts, respectively. Pseudocode for the implementation of provenance calls 

is given in Figure3 and 4.  

  

 
Figure 3: Read_prov will return filenames of files that contain parent parts of the specified 
“partname”. This function recursively goes through the parent pnodes and returns all 
associated filenames.  
 

Procedure read_prov(fd, “partname”):   

//similar to search_prov, see step 2b for details 

1.  Go through the parts in listOfParts corresponding to the 

file descriptor (fd) 

2.  If a part named “partname” is found 

a. Call read_recursive_part with the following arguments: 

pnode number of specified part, timestamp of specified 

part, and type of provenance (either read_prov or 

search_prov) 

b. Read_recursive_part will return a list of all parent 

(for read_prov) or children (for search_prov) files' 

inode numbers corresponding to the specified part. PTS 

ensures that the parts the procedure recursively 

follows have a timestamp less than the specified 

timestamp.  

3.  Take the inode numbers and convert them into absolute  

pathnames using the inode number to absolute pathname table 

4. Return the absolute pathnames 

 



5 
 

 
Figure 4: Write_prov will store provenance information for the specified part. There is no 
recursion required; the function simply updates the child part and parent part to have 
parent/child pointers to one another.  
 

 

2.4 Handling Unmodified Filesystem Programs 

PTS allows unmodified programs (such as move, remove, and copy) to run correctly, 

while modifying the inner workings of certain system calls in order to track provenance.  

 

The “move” program contains a link() and unlink() call while “remove” contains an 

unlink() call. The link() and unlink() system calls have been modified as 

follows: 

1. Link(from_name,to_name): This system call is modified because the 

filesystem must update INFT by creating a new entry mapping the inode number 

for from_name to filename to_name 

2. Unlink(from_name): This system call is modified to both update INFT in 

addition to executing the garbage collection system. Unlink() will delete the 

INFT entry mapping the relevant inode number to from_name. If the reference 

count of the inode is zero, then the following steps will be executed: 

 The corresponding data blocks will be freed 

 All parts comprising the file from_name will have the relevant inode 

number removed from their listOfFiles 

 The garbage system will be called on each part of the file to recursively 

free-up pnodes that have no children or files that depend on it. The system 

deletes entries for the specified pnode number from the listOfChildren of 

all corresponding parent parts.  

 

Procedure write_prov(fd_child, “partname_child”, fd_parent, 

“partname_parent”):  

1. Go through the parts in listOfParts corresponding to the 

file descriptor of the child 

2. If a part named “partname_child” is found 

a. Store the (parent pnode number, timestamp) in the 

listOfParentParts of the child pnode 

b. Store the (child pnode number, timestamp) in the 

listOfChildrenParts of the parent pnode. 

3. If a part named “partname_child” is not found, allocate a 

new pnode and execute Steps 2a and 2b.  

 



6 
 

The garbage collection system allows PTS to handle inode reuse and renaming. When 

an inode is freed, the garbage system frees all provenance corresponding to the inode 

to avoid future provenance read/write errors.  

 

PTS tracks file-to-file provenance for programs that are provenance-unaware by 

maintaining a temporary table (called “TEMP”) which stores a list of files that have been 

read by a particular process (say, Microsoft Word). This table is stored in memory and 

has (key, value) pairs mapping to (process_id, list of files being read). TEMP is useful to 

maintain provenance when a program such as “copy” (which includes open(), 

read(), write(), and close()) is called. The system calls read() and write() 

have been modified to track file-to-file provenance as follows: 

3. Read(file_descriptor): Make entry in TEMP corresponding to the 

process_id for the inode number specified by the file_descriptor 

4. Write(file_descriptor): Add parent/child pointers between the null 

pnode corresponding to file_descriptor and the null pnodes of all files being read 

by the process.   

 

 

3. Design Analysis with Use Cases 
There are several common use cases which require subtle implementations in PTS. 

PowerPoint copying, compiling, and zipping are explored in more detail below.  

 

3.1 PowerPoint Slide Copying 

PowerPoint developers will have to modify their program in order to read and write 

provenance of individual parts (or slides) of a file (or presentation) using PTS. 

PowerPoint should keep track of a slide's corresponding pnode number and associated 

pnode name.  

 

Let us assume the user opens two presentations and copies a slide from each 

presentation into a new presentation. The following series of steps will occur:  

1. User opens PresentationA.ppt and PresentationB.ppt  

2. User creates a new presentation called PresentationC.ppt 

3. User copies Slide1 from PresentationA.ppt to PresentationC.ppt 

a. PowerPoint tells PTS to create a new part. PTS will initialize a new pnode 

and give it a unique pnode number 

b. PowerPoint names the part that was copied into PresentationC.ppt  

c. PowerPoint calls read_prov in order to learn the provenance of the original 

copied slide 

d. PowerPoint calls write_prov in order to store the provenance of the new 

slide created in PresentationC.ppt 



7 
 

4. User copies Slide2 from PresentationB.ppt to PresentationC.ppt 

a. PowerPoint executes steps 3a through 3d 

 

With the read_ and write_prov calls, PowerPoint is able to successfully track 

provenance of individual file parts.  

 

3.2 Compiling Software and Copying Files 

PTS takes advantage of the similarities between compiling and copying files and 

addresses these use cases with a common solution. Compiling (“make”) and copying 

(“cp”) require common steps: open, read, write, and close, described in Section 2.4. It is 

assumed that “make” and “cp” are provenance-unaware programs.   

 

3.2.1 Example of Compiling Software and Copying Files 

As shown in Figure 5, when reading and writing files with provenance-unaware 

applications, PTS will use TEMP (explained in Section 2.4) to propagate provenance 

information of entire files (not parts) by reference, in order to retain efficiency in memory 

usage. Every time a process is closed, PTS will empty the list corresponding to that 

process. Whenever write(fileX) is called and fileX has the same process_id as one or 

more files that were read, PTS updates the null pnodes of fileX and the corresponding 

“read” files with the same process_id.  

 

Creating parent and child pointers between null pnodes is acceptable though every part 

of a file is not necessarily related to another file. However, there is no way for a 

provenance-unaware application to make the required read- and write-provenance calls, 

so the user must accept that PTS may lose provenance correctness with provenance-

unaware programs.  



8 
 

 

 
 

 
Figure 5: How PTS handles copying files in provenance-unaware applications.  

 

3.3 Handling tar/zip Files 

Zip could be modified in order to take advantage of PTS. When the “zip” call is made, a 

temporary file should be created that stores the xattrs (listOfParts) of all files to be 

zipped (and this temporary file should also be zipped). The xattrs will be stored as a 

lookup table in the temporary file; the inode number will map to the listOfParts of the file 

in question. Zip should also be modified to update the listOfParts associated with the 

.zip file itself; the listOfParts of the .zip file should contain the union of the listOfParts of 

its component files. When “unzip” is called, the program must first read the temporary 

file, and update the metadata of all the other files. It should not put the temporary file 

into the filesystem, but rather delete it. PTS propagates provenance by reference in 

order to maintain efficiency. This process is depicted in Figure 6.  

 



9 
 

 
 

Figure 6: An example of how PTS handles zipping and unzipping files. 

 

3.4 Comprehensive Performance Evaluation 

The benefits of tracking provenance with PTS outweigh the time and space overheads. 

Assuming an average of two parts per file, and two parents and children per file, the 

total on-disk space PTS requirements increases by 2 Gigabytes as shown in Table 1.   

 

PTS supports provenance storage, search, and continuous file copying at reasonable 

rates. The approximations in Table 2 are used throughout. Assuming each part has two 

ancestors or descendants, PTS requires 0.06 seconds on average to conduct a 

provenance search of a specified part (using Equation 1), and 0.02 seconds to write 

provenance (using Equation 2). The time required to access the TEMP table is 

negligible. Assuming an average user has 50 processes running with two open files 

being read per process, the size of TEMP is 493.75 bytes (using Equation 3). Thus, the 

total additional time required by PTS to copy (or search and write) a file is 0.08 seconds. 

The garbage collection runs during every unlink operation and requires 0.019 seconds 

(using Equation 4). Thus, copying can be sustained at a rate of 10 file copies per 

second.  

 



10 
 

Returning filenames to applications calling provenance system calls requires storing 

INFT (explained in Section 2.3) on-disk. Assuming an average of one hard-link per 

inode and Table 2 approximations, the size of INFT is 259 Megabytes (using Equation 

5). The link(), unlink(), and open() system calls are modified to initiate an INFT update. 

Whenever a file is created or deleted, a hard-link is created or deleted, and if a directory 

is moved or renamed, PTS recursively updates filenames and preserves accuracy. 

Using Equation 6, a recursive update on INFT would take one second; I have assumed 

an average directory depth of 5 and an average directory size of 7 files [1].   

 

 

Table 1: Space analysis of PTS. 

Implementation Space Usage in bytes 

xattrs of inodes 20*10^6 

pnodes 1.8*10^9 

Size of inode number --> 
filename table 

259*10^6 

Total 2*10^9 

 
 
Table 2: The approximations listed in this chart are used for performance analysis in the 
report 

Space and Performance Approximations 

Parameter Symbol Approximation 

Number of files [3] F 10^6 

Length of inode number field in bytes [4] I 4 

Maximum String Lengths in bytes [4] Str 255 

Seek time in seconds [5] S 0.01 

Table lookup in seconds [2] TL 0.5 

Read and write rate in Megabytes/sec [5] R or W 100 

Number of processes P 50 

Maximum Process_id length in bytes [6] P_id 4 

 

 

 

 



11 
 

Time to search_prov (or read_prov) = (S+R+(S+R)*2)*2   (1) 

 

Time to write_prov = S+R+S+R     (2) 

 

Size of TEMP = P*(P_id+(2*I))     (3) 

 

Time to Garbage Collect = S*2*2     (4) 

 

Space of INFT = F*(I + Str)      (5) 

 

Time to Update INFT = S+TL+Str/W*7*5      (6) 

 

 

3.5 Scalability Issues 

The PTS design does have some scalability limits. The time required to recursively find 

the provenance for a part increases linearly with the number of ancestors (or 

descendants). The time required by garbage collection also increases linearly with the 

number of ancestors of a part. Thus, PTS may take longer when faced with unwieldy 

databases; however, in the hospital database scenario, the time overhead is acceptable 

since audits do not require fast access time (unlike emergency-room records). 

 

 

4. Conclusion 
The proposed PTS allows users to track provenance of files and parts of files, without 

placing unreasonable constraints on space and time performance. Implementation of 

PTS is relatively simple and supports both provenance-aware and provenance-unaware 

applications. PTS is appropriate for use in a variety of settings including hospital 

databases.  

 

 
5. Acknowledgments 
I sincerely thank the Writing Advisors and all the TAs who asked me leading questions 
and made me think deeply about my design.  
 
 
 
 



12 
 

 

6. References 
[1]  J. R. Bolosky and Douceur, A Large-Scale Study of File-System Contents, 

Proceedings of the international conference on Measurement and modeling of 

computer systems (SIGMETRICS), Association for Computing Machinery, Inc., 

1999. 

 

[2] (2012, Mar.). C# Dictionary Versus List Lookup Time [Online]. Available: 

http://www.dotnetperls.com/dictionary-time 

 

[3] (2012, Mar.). DP1 Handout [Online]. Available: 

http://mit.edu/6.033/www/assignments/dp1.html 

 

[4] (2012, Mar.). The Second Extended File System [Online]. Available: 

http://www.nongnu.org/ext2-doc/ext2.html#DEF-INODES 

 

[5] (2012, Mar.). TA Office Hours and by appointment.   

 

[6] (2012, Mar.). UNIX Processes [Online]. Available: 

http://www.cs.miami.edu/~geoff/Courses/CSC521-

04F/Content/UNIXProgramming/UNIXProcesses.shtml 

 

 

 

Word Count: 2707  

 


