

Context: A P2P Concurrent Text Editor

http://mit.edu/das/www/context/

Ian Chan, Somak Das, Vineet Gopal

{ianchan0, das, vineetg}@mit.edu

Katabi (R04)

6.033 Design Project 2

May 10, 2012

http://mit.edu/das/www/context/

1

1 Introduction

This report explores the design of Context, a concurrent text editor for a peer-to-peer network of

users. Context is fault-tolerant and operational even with failed nodes and unstable networks,

making this design ideal for collaborative work within groups. Our system allows users to

simultaneously edit local copies of documents before broadcasting the updates to other online

users through pairwise synchronization. Context’s reconciliation process automatically merges

non-conflicting changes and prompts users to resolve conflicting ones. Finally, the design

utilizes a two-phase commit protocol to support initializing and finalizing commits.

2 Design

2.1 Document Representation

In Context, each group member has his own “working copy” of the shared document. This local

document is stored on disk as a Context File (with extension .ctx). Its main data structure is

the doc-list, a doubly linked list of sentence records, which stores the bulk of the information

needed for user editing and system management.

2.1.1 Version Tracking

A user ID uniquely identifies the user; in our design, it is his machine’s IP address. The machine

stores his local copy of the document as a Context File. The file maintains a local version number,

initialized to 0 and incremented when the user makes an update to the document. Any change

to document text (e.g., a keystroke) counts as an update.

Let us now take a global view. To track updates to the document by multiple users at different

times, Context employs version vectors, a list of key–value pairs of the form (user ID, version

Table I. Operations on version vectors (IP addresses omitted for simplicity).

Definition Example

A B, greater than: each version number in A is greater than or equal to the

corresponding version number in the B, and at least one is strictly greater than
⟨1, 1, 1⟩ ⟨1, 0, 0⟩

A B, concurrent to: at least one version number in A greater than its counterpart

in B, and at least one version number in A is less than its counterpart in B
⟨1, 0, 1⟩ ⟨1, 1, 0⟩

A B, greater than or concurrent to: A B or A B ⟨1, 0, 1⟩ ⟨1, 1, 0⟩

A B, equal to: each version number in A is equal to the its counterpart in B ⟨1, 2, 1⟩ ⟨1, 2, 1⟩

max(A, B), maximum of: take the maximum of each version number in A and its

counterpart in B

max(⟨1, 0, 2⟩, ⟨1, 1, 1⟩)

 ⟨1, 1, 2⟩

2

number) for all users in the group. This mechanism allows the system to determine the relative

timing of updates. To facilitate the merge and commit protocols, the local document keeps track

of its current version vector (in addition to version number). These protocols use several

operations on the version vectors of two document copies, defined in Table I.

2.1.2 Doc-list

In the anatomy of a Context File, the doc-list represents the actual document. It is a doubly

linked list of sentence records (see Figure 1). The concept of a “sentence” is left to the users to

decide; during document creation, they are allowed to set the sentence separator: for example,

"\n" (newline) for a code file or "[.!\?]\s" (punctuation mark + space) for English text. To

simplify the placing of leading and trailing sentences within the doc-list, the head and tail serve

as dummy nodes for the beginning and end of the list, respectively. The last-modified field of the

head stores the document version vector, for reasons made clear in §3.6.2.

2.1.3 Sentence Records

Context tracks changes to the document by reference, not by value. Each sentence record in the

doc-list has fields corresponding to its content (for user editing) and version tracking (for

system management), bypassing the need for duplicate of storage within a log (shown in Figure

2). This design decision allows us to more easily construct an idempotent reconciliation

procedure (see §2.2) and reduces disk usage.

Figure 1. Context represents each document as a doubly linked list of

sentence records. A head node precedes the first sentence, and a tail node

follows the last sentence. There is no direct pointer to the tail for reasons

discussed in §3.6.2.

3

ID number At time of creation, each sentence is associated with an ID: a concatenation of

(i) the IP address of the peer where the sentence originated and (ii) the value

of a local auto-incrementing counter. This ensures that IDs from different

peers do not conflict; they are globally unique.

Content The content of each sentence is a string buffer—variable-length strings

optimized for insertion and deletion operations.

Last modified,

last moved

These fields store version vectors. They effectively track the changes in

sentence content (modified) and positioning within the document (added or

moved), along with when those changes happened, via the document’s

version vector at the time. This enables us to separate sentence modifications

from sentence movements, thus reducing the number of potential conflicts.

2.1.4 Deleted-set

The doc-list cannot store sentences removed by the user, but the system must still track those

updates for merging purposes. They are put in a hash-set of sentence records, aptly named

deleted-set. However, if not managed properly, the set could grow infinitely after a long period

of editing. To address this issue, §2.2.6 explains techniques for pruning the set while still

maintaining the ability to notify other users about the deletes.

2.1.5 Id-map

In many places, the merge procedure takes as input a reference to a sentence record by ID.

Thus, an O(1) lookup is preferable over an O(N) scan through a doc-list of size N. To achieve

this performance, the local document maintains a lookup table, id-map; each entry maps a

sentence ID to a pointer to the corresponding sentence record in the doc-list.

2.1.6 Cursor Position

The system tracks the user’s current cursor position as a ⟨sentence ID, index⟩ tuple in memory.

Similarly, a cursor selection has a start and an end position. For example, ⟨34, 5⟩ represents an

insertion point before the fifth character in the sentence with ID 34. This scheme is well-suited

to our design, which manages text at the sentence level.

struct sentence-record:

integer id;

string-buffer content;

version-vector last-modified;

version-vector last-moved;

Figure 2. Sentence record structure.

4

A user’s document may be constantly synchronized with the documents of other users, but our

scheme avoids cursor misalignment. Suppose multiple users are writing text to the same

location in the document. If they are inserting new sentences, then Context directs their text

input to different sentences with unique IDs (and so the cursors are kept separate too). On the

other hand, if they are modifying the same sentence, then their cursor positions are a nonissue.

Once they merge, the changes should conflict and require manual resolution anyway.

If a user’s cursor is idle (no activity) in a sentence being modified by another user, then the

cursor might be arbitrarily moved after the merge. However, this is a problem with many

current text editors [1], so we leave it as a future improvement.

2.1.7 Putting It All Together

The doc-list, deleted-set, and sentence records provide the necessary framework to support a

vast number of editing operations. Table II provides a small sample of operations and lists the

in-memory and on-disk data structures that would be changed in each operation (see also

Figure 3). For instance, adding a word to a sentence results in (i) updating the sentence’s content

and (ii) setting its last-modified to the document’s current version vector. These internal updates

ensure that the system tracks all document changes for merges with other users.

Table II. Example updates that a user can make to the local document.

Operation Description Internal Updates

Insert word Add new text at the cursor location existing sentence’s last-modified and content

Delete word
Remove existing text at the cursor

location
existing sentence’s last-modified and content

Insert sentence
Add a sentence of new text (i.e., contains

a sentence separator) at cursor location

new sentence’s last-modified, last-moved, and

content (add to doc-list)

Delete sentence
Remove a sentence of existing text in

cursor selection

existing sentence’s last-moved (move from

doc-list to deleted-set)

Move sentence
Move a sentence of existing text in cursor

location to a new location

existing sentence’s last-moved and position

in doc-list, i.e., the node’s prev/next links

5

Figure 3. Each node of the linked list is augmented with last-modified and last-moved version vectors.

Between version ⟨1, 0, 0⟩ and ⟨2, 0, 0⟩, Alice has modified Alice0, added Alice4, deleted Alice2, and

moved Alice3. Note that the deleted-set is actually sentence ID → record map, but we have only

displayed the last-moved version vector for clarity.

6

2.2 Merge Protocol

Context implements an auto-save feature, similar to Google Docs. Every user merges his

changes with every other connected user shortly after making an update—in our design, once

every second. We selected one second because it is fast enough for users to see updates in “real-

time,” yet slow enough so that the network does not become congested. This merge period can

be varied, though, by the Context implementation or user. Also, when any direct or online

connection is first established, both peers attempt to merge their documents.

The system can send and receive messages over any network stack that provides reliable,

ordered delivery, either through the Internet or via direct connection. (Examples of technologies

that directly connect computers together include Ethernet crossover cables and Bluetooth.)

We now describe the algorithm used to merge two document revisions. We define a conflict as

any change made by users that Content cannot resolve without additional information. Our

design minimizes the number of conflicts upon merging. It also minimizes the amount of data

sent across the network. Both of these aspects are discussed in our analysis (§3).

2.2.1 Overview

Before going into detail, let us give a brief summary of the merge algorithm. Suppose peers A, B,

C, D, and E are all online and are editing the same document. Now, suppose one second has

passed since A updated his document. Peer A attempts to merge his document with each of the

other four users. The following steps describe how this merge happens between A and B:

1. Request: A sends a merge request to B, along with his document version vector VVA

2. Send: B finds changes that A does not have and sends them to A, along with VVB

3. Update: A updates his document with the changes from B and updates VVA accordingly

4. Send: A finds changes that B does not have and sends them to B, along with VVA

5. Update: B updates his document with the changes from A and updates VVB accordingly

If no other changes were made during this process, then users A and B will have the same

document and document version vector. But, if either user makes changes during this process,

then the documents may not be identical. However, the version vectors will reflect the

differences. Version vectors are also updated differently if conflicts must be resolved.

All merges are performed sequentially and asynchronously. After peer A sends changes to B, he

may process other sends and updates before B responds. However, he will not process a request

from B (to merge with A) unless his IP address is higher than B’s—this peer ordering guarantees

7

that only one user drives the pairwise merge. The integrity of the local document is ensured by

the updated version vectors. Moreover, this process works asynchronously with correct

behavior because all merges are idempotent (at each step, we check if new changes have been

made by the user or another merge).

The implementations of the procedures in Steps 1–3 are now described (Steps 4 & 5 are mirrors

of 2 & 3). We provide pseudocode where necessary.

2.2.2 Request

Peer A sends a message to B containing a request to merge and VVA.

2.2.3 Send

Suppose peer B wants to send peer A any applicable changes. Peer B knows VVA from request. If

VVA VVB, then there are no newer changes and B immediately sends VVB. Otherwise, Peer B

would like to send modified, deleted, and moved sets to A. These sets are created as follows.

modified { (s.id, s.content) for s doc-list if s.last-modified VVA }

deleted { (s.id) for s deleted-set if s.last-moved VVA }

The creation of the moved set is harder. Concurrent moves are troublesome when only

examining prev and next links within the linked list. To ensure that two merged documents are

exactly identical, we design a scheme using blocks. We say that a sentence s has been shifted if

s.last-moved VVA. Consecutive shifted sentences continue a single block. A block contains the

moved

block empty block

for s doc-list do

 if s.last-moved VVA then

 if block is empty then

 block.prev = s.prev.id Start new block

 end if

 block.sentences.add(s.id) Fill current block

 else if block is not empty then

 block.next s.id End current block

 moved.add(block)

 block empty block

 end if

end for

Figure 4. Linear-time algorithm to create the moved set of blocks.

8

IDs of each sentence within it, as well as the IDs of the preceding sentence (prev) and following

sentence (next). The moved set stores a list of blocks, and is dynamically populated with just a

single iteration through the doc-list (see Figure 4). We send modified, deleted, and moved to peer

A, along with VVB.

2.2.4 Update

Suppose peer A has received changes from peer B. A now integrates these changes into his

document using the update mechanism. A has three sets of changes to integrate: deletedB, movedB,

and modifiedB (in that order).

We now describe the criteria for performing these updates. After A merges with B, we set the

last-moved or last-modified field of each changed sentence record in A to VVB. After each conflict

that the user A resolves, we set the last-moved or last-modified field of the corresponding sentence

record (and the document version vector) to max(VVA, VVB), but with A’s version number

incremented. This increment ensures that any two documents with the same version vector

have the same content and positioning.

To merge deletedB into document A, we simply delete any sentences that were modified more

recently by B and raise conflicts otherwise. Specifically, we perform the following checks for

each id in deletedB:

 If id-map contains id, and id-map[id].last-moved VVB or id-map[id].last-modified VVB,

then ask the user to resolve the conflict

 Else if id-map contains id, and id-map[id].last-moved VVB or id-map[id].last-modified

VVB, then delete the sentence from document A

 Else (id-map does not contain id), do nothing

To merge movedB into our document, we move sentences by relative position. That is, we use

block.prev and/or block.next as anchors and, from there, insert the moved sentences into the

correct location. If both prev and next have been moved, then we raise a conflict. Also, if the

same sentence has been moved to different places by different users, then we raise a conflict.

Otherwise, we move sentences as expected. Specifically, we perform the following checks for

each block in movedB:

 If both block.prev and block.next have been moved, then ask the user to resolve the conflict

 Else if for any id block, id-map contains id and id-map[id].last-moved VVB and the

relative locations are different (as determined by comparing the block order to doc-list),

then ask the user to resolve the conflict

9

 Else if for any id block, deleted-set contains id and deleted-set[id].last-moved VVB, then

ask the user to resolve the conflict

 Else for each id block:

– If id-map contains id and id-map[id].last-moved VVB, then move id-map[id] to the

appropriate location in the doc-list (after block.prev and/or before block.next)

– Else (id-map does not contain id) create a new sentence s with s.id id and insert

it appropriately

To merge modifiedB into our document, we simply raise a conflict if the sentence has concurrent

modifications and the modifications are different, or replace the contents otherwise.

Specifically, we perform the following checks for each (id, content) pair in modifiedB:

 If id-map contains id, id-map[id].last-modified VVB, and the sentence contents are not

equal, then ask the user to resolve the conflict

 Else if id-map contains id, id-map[id].last-modified VVB, and the sentence contents are not

equal, then set id-map[id].content content

 Else if deleted-set contains id and deleted-set[id].last-moved VVB, then ask the user to

resolve the conflict

 Else—given our representation, this case will never occur

2.2.5 Resilience to Failures

Context ensures that all-or-nothing atomicity with merges, even in the face of failures. Instead of

merging changes directly into the doc-list, we create a new temporary linked list (temp-list),

copy all the information over, and merge changes with the temp-list. We store the new

document version vector in the dummy head node of temp-list and, atomically, point doc-list to

temp-list after the merge completes. This is functionally equivalent to creating shadow files.

However, it increases performance by reducing the number of disk seeks necessary. We do not

allow users to edit the document while this takes place. We justify this decision by noting that

the average running time is about 10 ms per update, since this part of the merge process is not

dependent on the network (see §3.2).

2.2.6 Deleted-set Recreation

The deleted-set is necessary to track deletes for merges, but it can grow arbitrarily long. Instead

of imposing rules or storing additional state to know when to prune, we allow the Context

implementation or user to reduce the size of the deleted-set, by removing its oldest entries,

whenever he wants. This design decision means that Step 3’s deletedB might not be correct if (i)

B’s deleted-set no longer has the entries for sentences deleted far back and (ii) A has not merged

10

in a while. So, during send, if B sees that VVA the minimum version vector in B’s deleted-set,

then he sends a set B of all sentence IDs in his doc-list to A. Then, A reconstructs the missing

deleted-set—every ID in his own doc-list but not in B—and treats it as deletedB during the update

step. Thus, the original merge procedure still works with this extra check.

2.3 Commit

We introduce the idea of commit points, which allows users to verify the consistency of a target

document amongst all users. A user can initiate a commit point by designating a commit-name

for a target document. The commit will only succeed if the committed document reflects the

changes from all users. Context uses a two-phase commit protocol to support this feature.

2.3.1 Storage and Processing

Temporary and committed documents. All files on disk are stored as Context Files. We store

committed documents with a .ctx extension and temporary documents with a .ctx.tmp

extension. Each Context File has an associated committed folder, which contains any temporary

and committed documents.

Sequential processing. Context uses a single thread to handle all changes and commits of a

document. This means that all data received from the network and changes from the user are

sequentially processed. If we later add multithreading to increase efficiency, then we will have

to introduce read and write locks on the document.

2.3.2 Commit Protocol

As mentioned above, Context uses a two-phase commit protocol to support commit points. The

voting phase verifies that all users agree on the current contents of a document. The completion

phase propagates the commit results to all users in the network. Figures 5 and 6 demonstrate

two possible outcomes of this commit protocol.

Voting phase – coordinator. When a user initiates a commit, we refer to him as the coordinator

and all other users as voters. The coordinator starts the process by selecting a unique commit-

name, e.g., “Final” (we use this name as reference for the remainder of this section). Context

verifies that the commit-name is unique in the committed folder (neither Final.ctx.tmp nor

Final.ctx exist). If the name is unique, then Context copies the contents of the document into

Final.ctx.tmp. The coordinator’s IP address is also stored within this temporary file to

To make sure that our merge procedure really works, we implemented it as a shell text editor in Java.

Visit http://mit.edu/das/www/context/ to download and run this Context prototype.

http://mit.edu/das/www/context/

11

indicate that he was the initial committer. This temporary file is used so that the coordinator can

make changes to his document while the commit is pending. Finally, the coordinator sends a

prepare message to all voters. This message contains the coordinator’s IP address, the commit-

name, and the document version vector.

Voting phase – voters. Each voter will now need to perform two checks. The first check

compares the coordinator version vector (VVc) to the voter’s version vector (VVv), and there are

three possible cases:

1. VVc VVv voter rejects the commit since the coordinator’s document is not up-to-date

2. VVc VVv the voter requests a merge with the coordinator’s temporary file,

Final.ctx.tmp, then proceeds to the second check

3. VVc VVv the voter proceeds to the second check

The second check requires the voter to validate the uniqueness of commit-name within its own

committed folder. Again, there are three possible cases:

1. Committed folder contains Final.ctx—the voter rejects the commit. The voter also

sends the contents of Final.ctx to the coordinator.

2. Committed folder for Final.ctx.tmp—the voter replies reject if the IP address

associated with the existing temporary file comes numerically before the coordinator’s

IP address. Otherwise, it overwrites the temporary with the target document and accepts.

3. Commit-name is unique—voter copies the contents of the target document into

Final.ctx.tmp. The voter accepts.

The numerical ordering of IP addresses in the temporary file case provides a natural tiebreaking

procedure in order to avoid concurrent commits under identical commit-names.

Context will allow for a window of 30 seconds (adjustable) between the initial transmission of

an instruction and the response before the commit is said to timeout. The coordinator handles

timeouts by aborting the initiated commit, and voters handle timeouts by deleting their local

temporary file.

Completion phase – coordinator. The coordinator waits for all replies from the voters and

decides whether or not to finalize the commit.

 If any voter rejects the commit, then the commit is aborted. If any voter does not

respond for more than 30 seconds, then the commit is aborted. The coordinator

12

broadcasts an abort message to all voters, instructing them to discard the attempted

commit. The temporary file, Final.ctx.tmp, is then removed from the coordinator’s

committed folder.

 If all voters accept the commit, then the coordinator finalizes the commit by renaming

Final.ctx.tmp to Final.ctx (assumed to be an atomic operation). This is the

commit point. The coordinator finally sends a commit message to all voters, instructing

them to finalize their temporary commits as well.

Completion phase – voters. Each voter responds to the instructions received from the

coordinator. If the voter is instructed to commit, then it renames Final.ctx.tmp to

Final.ctx. If the voter is instructed to abort, or does not receive a message for 30 seconds, then

it deletes the temporary file from the committed folder.

2.3.3 Routing

Context allows commits to succeed even if the coordinator is not directly connected to each

voter. A simple routing procedure is used to forward prepare and commit messages to all users.

We will refer to the connection between any two “online” peers as a direct connection as well.

Before the coordinator sends a message, he creates a set of IP addresses, contacted-users, and

adds all users he is directly connected to. He appends contacted-users to the message before

sending. Each voter is responsible for forwarding the message to any directly connected users

not listed in contacted-users, by adding these users to contacted-users prior to sending. This

ensures that messages get propagated through the network. Voters respond and react to all

messages the same way, even if they are duplicates.

Context ensures that voter responses are correctly routed back to the coordinator by sending

each response backwards along the same path. If the network topology changes during this

commit process, then it is possible that the commit will fail.

2.3.4 Resilience to Failures

Context’s commit system guarantees that each user will either be able to commit a file under a

certain name, or have access to the file that was committed under that name. We ensure this

capability even with possible machine failures.

Each user attempts to maximize consistency upon crash recovery by pinging other users for

information. Specifically, the crashed user looks through each temporary file in his committed

folder, and asks other users if that file was committed. Users respond yes if that committed file

exists in their committed folder. If any user responds yes, then the crashed user renames the

temporary file to the committed file. Otherwise, the temporary file is deleted.

13

Figure 5. Flowchart depicting Context’s two-phase commit protocol during a successful commit.

It should be noted that the voters do not acknowledge the coordinator’s request to

commit because, in light of failures, they can simply re-ask the coordinator for the state of

the initiated document. Additionally, correctness is not compromised since any attempts

by a voter to recommit under the same commit-name will be rejected by the coordinator.

Figure 6. Flowchart depicting Context’s two-phase commit protocol during a failed commit.

Again, voters do not acknowledge the coordinator’s request to commit because, in light

of failures, they can simply re-ask the coordinator for the state of the initiated document.

Additionally, correctness is not compromised since the voters will delete the temporary

file upon recovery (no user has the finalized commit), and a voter can then reinitiate a

commit under that commit-name.

14

3 Analysis

3.1 Conflicts

Context minimizes the number of conflicts reported to the user by separating modifications

from moves, and using relative sentence locations rather than absolute locations. In particular,

Context only reports a conflict in the following cases:

 Multiple users modify the same sentence with different changes

 Multiple users move the same sentence to different relative locations

 A user moves a sentence s in between sentences r and t, but another user moves both

sentences r and t to different locations (no longer next to each other)

 One user deletes a sentence, while another user modifies or moves the same sentence

Context does not allow changes to be dropped silently. Thus, raising a conflict is the correct

system response in the four cases described above.

We will discuss several use cases and show in detail why Context produces the correct result.

Suppose there are three users, Alice, Bob, and Charlie, and each starts with the same copy of the

document and version vector ⟨ (Alice, 1), (Bob, 1), (Charlie, 1) ⟩ (denoted as ⟨1, 1, 1⟩ in the

following cases). For simplicity, assume that the user whose name comes first alphabetically

first has control over merging conflicts.

We will refer to s(i, User) as the ith sentence in User’s document. For each case, we show the

appropriate version vectors and how they change throughout the process. Only changed

version vectors are shown.

Case 1. Bob and Alice both modify sentence 2, but each sets the contents to “This is a

sentence.” Even though s(2, Alice).last-modified VVBob, no conflicts are reported upon merging

since they have the same contents.

 Original Bob

modifies

Alice

modifies

Alice updates with

Bob’s changes

Bob updates with

Alice’s changes

VVAlice ⟨1, 1, 1⟩ ⟨2, 1, 1⟩ ⟨2, 2, 1⟩

VVBob ⟨1, 1, 1⟩ ⟨1, 2, 1⟩ ⟨2, 2, 1⟩

s(2, Alice).last-modified ⟨1, 1, 1⟩ ⟨2, 1, 1⟩

s(2, Bob).last-modified ⟨1, 1, 1⟩ ⟨1, 2, 1⟩

Note that while the document version vectors are updated, last-modified version vectors are not changed.

15

Case 2. Bob modifies sentence 3, Alice modifies sentence 1, and they both simultaneously

change sentence 2 to have different contents. Prior to merging, sentence 2 is the only sentence

with s(2, Bob).last-modified VVAlice and s(2, Alice).last-modified VVBob. All other sentences

have either s(i, Bob).last-modified VVAlice or s(i, Alice).last-modified VVBob. So, upon merging,

only Alice is asked to resolve the content conflict in sentence 2.

 Original Bob

modifies

Alice

modifies

Alice updates with

Bob’s changes

Bob updates with

Alice’s changes

VVAlice ⟨1, 1, 1⟩ ⟨2, 1, 1⟩ ⟨3, 2, 1⟩

VVBob ⟨1, 1, 1⟩ ⟨1, 2, 1⟩ ⟨3, 2, 1⟩

s(1, Alice).last-modified ⟨1, 1, 1⟩ ⟨2, 1, 1⟩

s(1, Bob).last-modified ⟨1, 1, 1⟩ ⟨3, 2, 1⟩

s(2, Alice).last-modified ⟨1, 1, 1⟩ ⟨2, 1, 1⟩ ⟨3, 2, 1⟩

s(2, Bob).last-modified ⟨1, 1, 1⟩ ⟨1, 2, 1⟩ ⟨3, 2, 1⟩

s(3, Alice).last-modified ⟨1, 1, 1⟩ ⟨1, 2, 1⟩

s(3, Bob).last-modified ⟨1, 1, 1⟩ ⟨1, 2, 1⟩

Alice increments her version number by 1 when she updates because she resolves the conflict in sentence

2. Bob accepts all changes from Alice since Alice has a higher version vector.

Case 3. Alice and Bob are connected, but Charlie is offline. Bob modifies sentence 3, and Alice

and Bob then merge, and Alice disconnects. Offline, Charlie changes sentence 3 in a different

way, and then merges with Alice. Alice resolves the conflicting sentence, and Charlie accepts

her decision. When Bob merges with Charlie, there is no conflict to resolve. This process is

depicted in Figure 7.

Case 4. Bob modifies the contents of sentence 2, while Alice moves sentences 2 to the end of

the document. When Alice receives Bob’s changes, s(2, Alice).last-modified VVBob, so she

modifies her sentence. When Bob receives Alice’s changes, s(2, Bob).last-moved VVAlice, so he

moves his sentence. There are no conflicts.

 Original Bob

modifies

Alice

moves

Alice updates with

Bob’s changes

Bob updates with

Alice’s changes

VVAlice ⟨1, 1, 1⟩ ⟨2, 1, 1⟩ ⟨2, 2, 1⟩

VVBob ⟨1, 1, 1⟩ ⟨1, 2, 1⟩ ⟨2, 2, 1⟩

s(2, Alice).last-modified ⟨1, 1, 1⟩ ⟨1, 2, 1⟩

s(2, Alice).last-moved ⟨1, 1, 1⟩ ⟨2, 1, 1⟩

s(2, Bob).last-modified ⟨1, 1, 1⟩ ⟨1, 2, 1⟩

s(2, Bob).last-moved ⟨1, 1, 1⟩ ⟨2, 2, 1⟩

16

3.2 Availability

Context minimizes the time in which users cannot edit the document. Users may not edit the

document while the local copying and merging takes place. Let us assume that disk seeks take

about 10 ms, and we can write sequentially to disk at 50 MB/s. If the average file size is about 50

KB and the average number of users editing a file is 10, then the total time that a user cannot

edit the document every second is 10 ∙ [10 ms + 50KB / (50MB/s)] 110 ms. This means that

Context is available 90% of the time. Though this is reasonable (and unobservable for most

users), this is an area that we are looking to improve. If availability is important to the user, then

a merge period of 11 seconds gives 99% availability.

3.3 Network Performance

Context minimizes the amount of bandwidth used by sending only the necessary information

across the network. Since sentence delimiters are user-specified, they will generally result in

short sentences (approximately 100 characters, or 100 bytes). We assume that a typical user will

modify or move one sentence per second, on average. To analyze the typical amount of

bandwidth used by any particular user, we also assume that a typical document has 10 users

Figure 7. Timeline depicting document synchronization and the updated

version vectors for Alice, Bob, and Charlie in Case 3. In the blue, purple, and

green regions: Alice and Bob, Alice and Charlie, and Bob and Charlie are

online, respectively. The directed dashed lines indicate which individual is

receiving document updates.

17

concurrently editing it. Each version vector will then be approximately 10 users ∙ (4 bytes / IP + 4

bytes / integer) 80 bytes. Each sentence ID is 8 bytes. Adding up the cost of each step in the

merge protocol and multiplying it by the number of users, we estimate the average upload and

download bandwidth used to be on the order of 10 ∙ (80 bytes + 100 bytes + 8 bytes) 2 kB/s.

3.4 Storage

Context attempts to minimize total storage on disk, while still maintaining enough information

to track changes. Context does not maintain a log, so the total space used by the document is

linear in the amount of text in the document. Though the deleted-set can grow arbitrarily large,

we prune it a manageable size when necessary. Even though the recreation process requires

extra network usage, users are (i) not likely to continuously delete sentences, (ii) not likely to

disconnect from other users for long periods of time before reconnecting, and (iii) not likely to

do both i and ii simultaneously. Therefore, assuming that an average file has about 500

sentences (100 bytes each), and the deleted-set has about 100 sentences, then the average

Context File is about (500 sentences ∙ (100 bytes / content + 8 bytes / ID + 2 ∙ 80 bytes/version-

vector) + 100 sentences ∙ (8 bytes / ID + 80 bytes / version vector) 142 kB. This is reasonable

compared to the 50 kB necessary just to store the plain text.

3.5 Scalability

Context is a peer-to-peer system, so the total network usage is divided amongst the different

users. However, since each user is responsible for communicating with all other users, there are

practical limits on the total number of people editing the same document. If 100 people edit the

document, then the average upload and download bandwidth would be more than 200 kB/s.

However, to decrease network usage, we give the user the ability to adjust the merge period.

Storage becomes infeasible as the number of users increase. If 100 people edit the document,

then the average size of the document becomes almost 1 MB, even though the total amount of

text is just 50 KB. To alleviate these storage problems, we may look into reducing the size of

version vectors; such techniques are discussed in [2] and [3].

3.6 Failures

3.6.1 Editing

Machine failures while the user is editing the document will result in a minimal loss of recent

changes. All data is written directly to disk, so the amount of data lost is dependent on how the

system handles disk writes.

18

3.6.2 Merging

Context guarantees all-or-nothing behavior while merging documents. All changes are first

merged into a temporary list (functionally similar to a shadow file). If the machine crashes

before the atomic overwrite of the doc-list pointer, then the merge will not be visible to the user

(and the version vector will not be updated). If the machine crashes after overwriting the doc-

list pointer, then the merge will be visible to the user upon recovery (and the version vector will

be updated). The document version vector is stored in the head dummy node, and the tail

pointer of doc-list is removed, to allow for these atomic overwrites.

3.6.3 Committing

We will now discuss several failure scenarios during the commit process and how Context

handles them correctly. In all cases, once a file has been committed, it may never be committed

again. Each user may access a committed file either by looking in the committed folder, or

asking another user. If a file has been committed, at least one user is guaranteed to have a copy

(even if all machines crash afterwards).

Coordinator failure. Suppose a coordinator A wants to commit a file with the name “Final.”

The coordinator can fail in the following three places:

Crash… Recovery

Before sending

prepare

Commit failed. No users know about the attempted commit, and the coordinator’s

temporary file is deleted.

Before renaming Commit failed. All users abort the commit because of timeout. Upon recovery,

coordinator A asks other users about committed state of “Final,” and eventually

deletes Final.ctx.tmp.

After renaming Commit succeeded. Some users may not have received commit messages. If another

user becomes coordinator B and attempts to recommit “Final” (after the timeout),

coordinator A rejects the commit, and sends Final.ctx to B.

Voter failure. Suppose coordinator A attempts to commit a file with name “Final,” and voter B

is one of the voters. The voter can fail in the following three places:

Crash… Recovery

Before receiving prepare Commit times out and fails.

After creating temporary file

but before sending accept

Commit times out and fails. Upon recovery, voter B asks other users

about committed state of “Final,” and eventually deletes

Final.ctx.tmp.

19

Crash… Recovery

Before renaming

Final.ctx.tmp →
Final.ctx

Upon recovery, voter B asks other users about committed state of “Final.”

If any user responds yes, then voter B renames Final.ctx.tmp to

Final.ctx. Otherwise, voter B deletes Final.ctx.tmp.

Suppose the commit succeeded. Voter B can attempt to recommit “Final,” but

coordinator A will reject the commit and send Final.ctx to B. If A and B

are not connected, then the commit will fail regardless.

Suppose the commit failed. Voter B is able to recommit under “Final,” since

Final.ctx does not exist for any user.

Even with multiple simultaneous failures, Context guarantees either access to the committed

file, or the ability to initiate a recommit. It is possible that, given a particular network partition

and sequence of machine failures, access to a committed file may not be immediately available.

However, any attempts to recommit this file will fail, and eventually, all users will gain access

to this file.

4 Conclusion

In summary, Context offers fully functional support for a peer-to-peer concurrent text editor.

The document-sharing application minimizes conflicts, supports intermittent connectivity, and

provides reliable merge and commit services. Future directions for this work include handling

dynamic group membership and improving Context’s scalability (network bandwidth, disk

space, and speed are major factors to consider in this area). Additional considerations that must

be handled in the future are security concerns like user authentication and document

confidentiality.

5 References

[1] R. Strandh, M. Villeneuve, T. Moore, “Flexichain: An Editable Sequence and Its Gap-Buffer

Implementation,” 1st European Lisp and Scheme Workshop, 2004.

[2] D. Malkhi and D. Terry, “Concise Version Vectors in WinFS,” International Symposium on

Distributed Computing, 2005.

[3] Y.-W. Huang, P. S. Yu, “Lightweight Version Vectors for Pervasive Computing Devices,”

Proceedings of the International Workshop on Parallel Processing, 2000.

	Title Page
	Report

