

L5: Operating system structure

Nickolai Zeldovich
6.033 Spring 2012

Overall plan:
enforce client/server modularity

● This lecture: enforcing modularity with an OS

● Next few lectures:
● Allow client/server interaction between programs
● Run multiple programs on a single CPU
● Run multiple operating systems
● Achieve good performance

x86 page table entry

● P: is this virtual page present?
● R/W: is this virtual page writable?
● U/S: is this virtual page accessible to user?

● No → MMU triggers a “page fault”

Unix abstractions

main() {
chdir(“/usr/rtm”);

int fd = open(“quiz.txt”, 0);

char buf[512];
int n = read(fd, buf, 512);
write(1, buf, n);
close(fd);

}

Kernel complexity

● 1975: Unix v6

 10,500 total lines of kernel code

● 2012: Linux 3.2

 300,000 lines: header files (data structures, APIs)
 490,000 lines: networking
 530,000 lines: sound
 700,000 lines: support for 60+ file systems
1,880,000 lines: support for 25+ CPU architectures
5,620,000 lines: drivers

9,930,000 total lines of code

Summary

● Two key OS techniques:
● Virtualization allows programs to share hardware
● Abstractions provide portability, cooperation

● OS kernel enforces modularity:
● Program vs program
● Program vs kernel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

