
Fault-tolerance

6.033 Lecture 14
Frans Kaashoek

With slides from Sam Madden

Where are we in 6.033?

•  Strong form of modularity: client/server

• Limits propagation of effects
•  In a single computer using OS
•  In a network using Internet

•  Two limitations:
•  Isolates only benign mistakes (e.g.,

programming errors)
• No recovery plan

Extending C/S to handling failures

•  Can we do better than returning an error?
•  Keep computing despite failures?
•  Defend against malicious failures (attacks)?

•  Rest of semester: handle these “failures”
•  Fault-tolerant computing
•  Computer security

Plan for fault-tolerant computing

• General introduction: today
• Redundancy/Recovery/Replication

•  Transactions: next 4 lectures
• updating permanent data in the presence

of concurrent actions and failures

•  Replication state machines: 2 more
• Keep computing despite failures

Availability in practice

•  Carrier airlines (2002 FAA fact book)
•  41 accidents, 6.7M departures
  99.9993% availability

•  911 Phone service (1993 NRIC report)
•  29 minutes per line per year
  99.994%

•  Standard phone service (various sources)
•  53+ minutes per line per year
  99.99+%

•  End-to-end Internet Availability
  95% - 99.6%

Disk failure conditional probability distribution

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn
out

Bathtub curve

0.003

0.012

Human Mortality
Rates

(US, 1999)

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart,” IEEE Spectrum, Sep. 2004.
Data from http://www.mortality.org

Bairavasundaram et al., SIGMETRICS 2007

0

0.05

0.1

0.15

0.2

0.25

0 6 12 18 24

Pr
(R

ep
or

te
d

Re
ad

 F
ai

lu
re

)

Disk Age (Months)

Disk Age vs. Pr(≥ 1 Reported Read Failure)

Schroeder and Gibson, FAST 2008

Relative frequency of hardware replacement

10,000
machines

Pr(failure in
1 year) ~.3

Fail-fast disk

failfast_get (data, sn) {

 get (s, sn);

 if (checksum(s.data) = s.cksum) {

 data ← s.data;

 return OK;

 } else {

 return BAD;

 }

}

Careful disk

careful_get (data, sn) {

 r ← 0;

 while (r < 10) {

 r ← failfast_get (data, sn);

 if (r = OK) return OK;

 r++;

 }

 return BAD;

}

Replicated Disks	

write (sector, data):
 write(disk1, sector, data)
 write(disk2, sector, data)

read (sector, data):

 data = careful_get(disk1, sector)
 if error
 data = careful_get(disk2, sector)
 if error
 return error
 return data	

How about an error in software?

•  Big problem!
•  Software for fault tolerant systems must

be written with great care
• Stringent development practices
• Well-defined stable specification
• Modeling, simulation, verification, etc.
• N-version programming is tricky

• Will also be a problem for secure
software

• Good design: small fraction is critical

