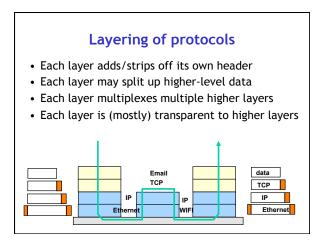
L11: Protocols and Network layer

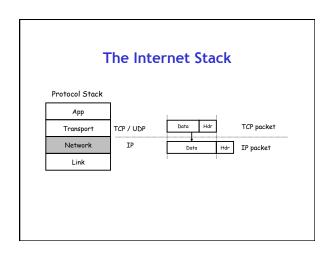
Frans Kaashoek 6.033 Spring 2012

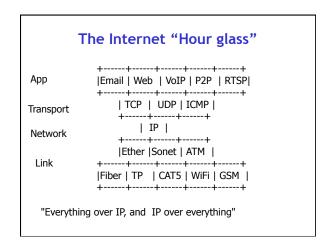
Some slides are from lectures by Nick Mckeown, Ion Stoica, Dina Katabi, Hari Balakrishnan, Sam Madden, and Robert Morris

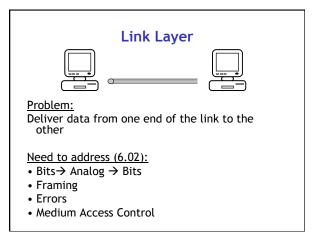
Internet: Best Effort

No Guarantees:

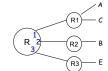

- Variable Delay (jitter)
- Variable rate
- Packet loss
- Duplicates
- Reordering
- Maximum length


End hosts implement everything else Email addresses, To, Cc, etc. email SMTP SMTP email Reliable, flow-controlled connection TCP IP: best-effort


Protocol


- Defines the structure of a conversation
- Typical a sequence of messages, each with its own header
 Examples: DHCP, DNS, UDP, SMTP, TCP, IP, ...
 Internet protocols defined in text documents (RFCs)

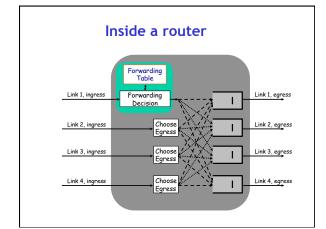
	vers	HLen	TOS	Total Length		
Hop count	ID		D	Flags	FRAG Offset	
		ΓL	Protocol	checksum		
	SRC IP Address					
	DST IP Address					
- [(OPTIONS) (PAD)					
Г						

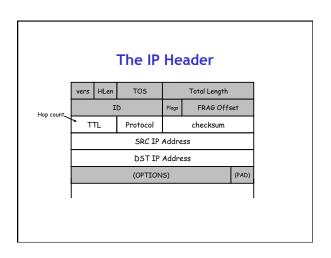

Network Layer:

finds a path to the destination and forwards packets along that path

- Difference between routing and forwarding
 - Routing is finding the path
 - Forwarding is the action of sending the packet to the next-hop toward its destination

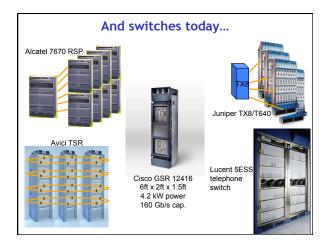
Forwarding

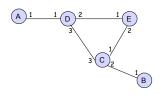

- Each router has a forwarding table
- Forwarding tables are created by a routing protocol



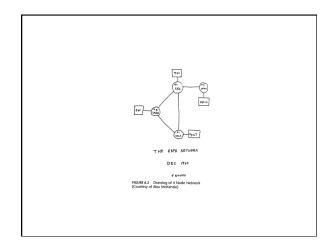
Forwarding table at R

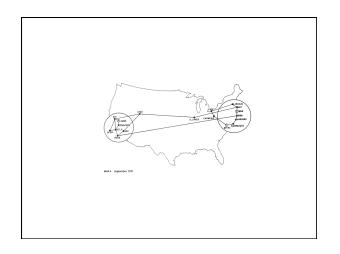
Dst. Addr

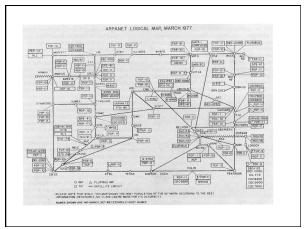

Dst. Addr	Link
Α	1
В	2
С	1
Е	3

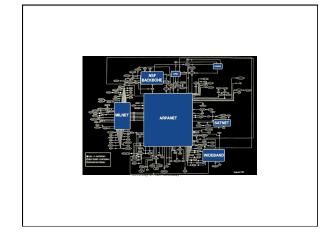

Forwarding an IP Packet

- Lookup packet's DST in forwarding table
 If known, find the corresponding outgoing link
 If unknown, drop packet
- Decrement TTL and drop packet if TTL is zero; update header Checksum
- Forward packet to outgoing port
- Transmit packet onto link

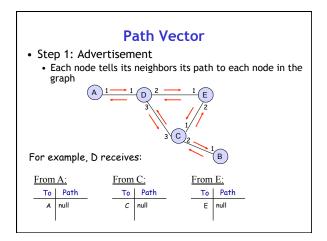


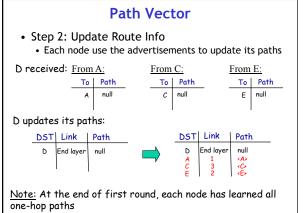

The Routing Problem:

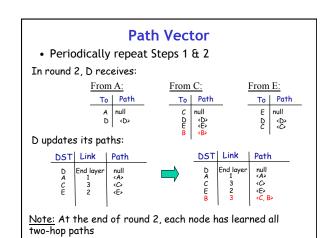

• Generate forwarding tables



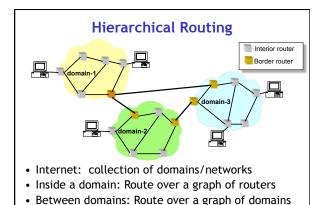
Goals: No loops, short paths, etc.







Path Vector Routing Protocol Initialization Each node knows the path to itself A 1 1 D 2 1 E 2 For example, D initializes its paths DST Link Path Bend layer null



How do we avoid permanent loops? What happens when a node hears multiple paths to the same destination? What happens if the graph changes?

Questions About Path Vector

Questions About Path Vector

- How do we ensure no loops?
 - When a node updates its paths, it never accepts a path that has itself
- What happens when a node hears multiple paths to the same destination?
 - It picks the better path (e.g., the shorter number of hops)
- What happens if the graph changes?
 - Algorithm deals well with new links
 - To deal with links that go down, each router should discard any path that a neighbor stops advertising

• Address consists of "Domain Id", "Node Id"

Hierarchical Routing

Advantage

- Scalable
 - Smaller tables
 - Smaller messages
- Delegation
 - Each domain can run its own routing protocol

Disadvantage

- · Mobility is difficult
 - Address depends on geographic location
- Sup-optimal paths
 - E.g., in the figure, the shortest path between the two machines should traverse the yellow domain.

Routing: many open issues

- Misconfigurations between domains?
- Flat addresses and scalable?
- Routing in multihop WiFi networks?
- Routing in peer-to-peer networks?

Summary

- Protocols
- Layering of protocols
- Network layer: forwarding & Routing
 - Path-vector routing protocol