

TagFS: A Fast and Efficient

Tag-Based File System

6.033 Design Project 1

Yanping Chen

yanpingc@mit.edu

Dan Ports (TR11)

3/17/2011

1

1. Overview

A typical problem in directory-based file-systems is searching for groups of related files. Often

times, target files are spread across multiple directories or have no common filename pattern. To

address such issues, this document details the design of Tag File-System (TagFS or TFS), a

non-hierarchical tag-based file-system: files contain descriptive tags and can be filtered based on

such tags into scopes.

In order to make the design perform at a usable level, we focused on simplicity and speed:

1. Scopes are intersections of tags. By removing unions, scopes are made lightweight and

fast, allowing applications multiple scopes with little cost.

2. Tag data is stored in a bidirectional mapping between tags and files. This increases

storage but allows quick listing of a file’s tag-list or a tag’s file-list.

3. Tag data is fully stored in memory to facilitate very fast searches.

The goal of this design is to provide high performance through fast searches, allowing users and

applications to quickly locate files needed.

2. Design Description

2.1 TFS Description

TFS consists of four main components: devices, files, tags, and scopes. Tags are tuples attached

to files for organizational or descriptive purposes, while scopes represent group of files with a

common tag-set.

2.1.1 Devices

A “device” in TFS is any data storage object. This could be physical, such as a CD, or virtual,

such as a partition. A 64-bit device-id uniquely identifies each device.

2.1.2 Files

Files in TFS are arbitrary sequences of bits coupled with metadata and identified by 64-bit

file-ids unique to each device – a file is uniquely referenced by a (device-id,file-id) file-tuple.

File-metadata entries are summarized in Table1: while much of this metadata is unnecessary for

TFS, they are ubiquitous to file-systems and hence included for application support.

Table 1: File-Metadata

Name Datatype Description

file-id Long Unique 64-bit file-id

created-time Long Time of creation

accessed-time Long Time of last access

modified-time Long Time of last modification

permissions Long Bits indicate file permissions

file-name String(256) Name of file

file-extension String(32) Extension of file

file-size Long Size of file, in bytes

tag-count Long Number of normal tags on file

tag-list String list List of tags on file

2

2.1.3 Tags

A tag is a string-tuple of the form (tag-name,tag-content) where tag-name and tag-content are

UTF-8 strings of lengths 32 and 128 respectively. Two tags are “different” if they differ in

tag-name or tag-content. Tags are like mini-file-descriptions: each file can have multiple

different tags and the same tag can be applied to multiple files.

Table 2: System-tags

Tag-name Tag-content Default

file-name Name of file file-metadata:file-name

file-extension Extension of file file-metadata:file-extension

Some restrictions on special tag-names are listed in Table 2. Such system-tags can be implied

from file-metadata, so every file has at least two tags. These system-tags allow TFS to interact

with untagged read-only devices.

2.1.4 Scopes

A scope represents a set of files sharing a common set of tags (tag-set) and is identified by a

unique 64-bit scope-id. Scopes are the main way applications access files, and all scopes are

stored in memory but can be persisted to disk (see Section 2.2.3-4). For different usage cases,

there are two types of scopes: dynamic and static.

2.1.5 Static-Scopes

A static-scope is simply a static array of file-tuples along with a tag-set. Their preferred use-case

is fast random-access to an unchanging or “snapshot” file-list.

2.1.6 Dynamic-Scopes

A dynamic-scope is a tag-set along with a “lazy” iterator. Instead of keeping an updated list of

file-tuples, a dynamic-scope utilizes an iterator: when the next file is requested, the iterator

searches for the next file with a larger file-id satisfying the tag-set. As such, their preferred

use-case is sequential access to large file-sets without the overhead of listing all files-tuples.

In addition to user-created scopes, there are also device-scopes and global-scopes, default

dynamic-scopes to be used as source-scopes of searches: a device-scope contains all files on a

device, and a global-scope contains all files in the file-system.

2.2 On-Disk-Storage Description

On-disk storage consists of the file-table, tag-tables, file-objects, and data-blocks. The file-table

maps file-ids to file-objects, and the tag-tables is a two level map, mapping tags to corresponding

lists of file-ids (file-lists). Their on-disk layout is demonstrated in Figure 1.

3

Figure 1: On-disk storage

2.2.1 File-Table and File-Objects

The file-table is a B+ tree where the keys are file-ids and values are pointers to corresponding

file-objects. A file-object stores all the file-metadata and tag-list as described in (2.1.2) as well as

a data-block-list.

2.2.2 Tag-Tables

There are two levels of tag-tables: the first level is the tag-name-table, a B+ tree with tag-names

as keys tag-content-tables as values. The second level, the tag-content-table, is another B+ tree

with tag-contents as keys and file-lists as values. Essentially, both levels together form a single

map from a tag to a list of file-ids with that tag. Such a splitting speeds key comparisons and

provides structure for future functionality.

2.2.3 Static-Scope

A static-scope is persisted by writing the file-tuple list to a file, as shown in Figure 2.

2.2.4 Dynamic-Scope

A dynamic-scope is persisted as a file containing the tag-set and current iterator position.

Figure 2: Example file formats for static and dynamic scopes

2.3 In-Memory-Storage Description

While most components of TFS are stored to disk, for performance reasons a lot of tag and file

data is read into memory. In this section we detail caches used and scope storage in memory.

4

2.3.1 File-Cache

Since certain files might be accessed constantly, we can save disk reads using a file-cache

hash-table mapping file-tuples to file-objects in memory. This allows direct access to a file’s

data-block-list or tag-list through memory-accesses.

2.3.2 Tag-Cache

The tag-cache is a two level hash-table in memory that consolidates the two level tag-tables of all

devices. First, hash-tables map tag-names and tag-contents to unique 64-bit ids to conserve

memory. Then, the tag-cache maps each (tag-name-id,tag-content-id) pair to a list of file-tuples

in sorted order. In implementation, we store all tag-tables in memory, and whenever the OS

detects a new device is added or removed, we update the in-memory tag-table appropriately:

addition updates the cache eagerly, while deletion updates lazily – when files of disconnected

devices are encountered, they are skipped and removed from the tag-cache.

2.3.3 Scopes

Scopes are stored in memory as previous described: a dynamic-scope is represented as a list of

file-tuples in memory along with a tag-set, while a static-scope is represented as a tag-set and

iterator. A hash-table, the scope-table, maps scope-ids to corresponding scope-objects.

2.4 API Description

2.4.1 Search

Search(source-scope-id,list-of-tags,destination-scope-id,[force-static])

This method searches from source-scope to destination-scope all files satisfying the given tag-list.

Note that this is a replace-operation, not an append-operation, since scopes represent

intersections of tags. This restriction provides performance and simplicity, and is futher

discussed in Section 4.3.1.

Implementation wise, searches only rely on memory-accesses. First, the tag-set is copied from

source to destination and updated with new tags. Then, for static-scopes we concurrently iterate

through the file-lists of the scope and each tag, similar to a multi-list merge, copying all common

file-tuples to the new scope (Figure 3). While for dynamic-scopes, we copy the iterator state,

updating the current-file pointer if it is no longer in the scope by calling get-next on the iterator.

5

Figure 3: Example static scope search with 4 tags using file-lists only

The force-static option allows conversion of dynamic-scopes to static-scopes. This is achieved

by a static-scope search from the global-scope using the entire tag-set.

2.4.2 File I/O

create(device-id)->file-id

delete(device-id,file-id)

open(device-id,file-id,flags)->file-descriptor-id

read/write(file-descriptor-id,buffer,bytes)->bytes-read

seek(file-descriptor-id,offset,reference)->bytes-seeked

Methods for file operations: Create creates a new file and returns its file-id while open, read,

write, and seek act like file I/O methods from Unix, using file-descriptors. This provides a

simpler and more standard interface for file I/O than arbitrary reads and writes.

2.4.3 Scope Operations

mkscope(type)->scope-id

deletescope(scope-id)

save/loadscope(scope-id,device-id,file-id)

list(scope-id)->file-tuple-list

get_file(static-scope-id,index)->file-tuple

get_next/previous/first/last/current(dynamic-scope-id)->file-tuple

Methods for manipulating scopes: savescope and loadscope are implemented by using file I/O to

write or read scopes from files. List returns a list of the file-tuples: for static-scopes, this is a

simple copy of the file-list in the static-scope-object; for dynamic-scopes, a new iterator is

created to list all files currently in the scope. In addition to list, static-scopes also support get_file,

which returns the i
th

 file in the scope, and dynamic-scopes support iterator commands. The

6

iteration method is implemented like the search operation of a static-scope, but stops on the first

match (Figure 4).

Figure 4: Dynamic-scope iteration, arrows indicate origin of iteration for each case

Here, care must be taken for two special-cases. First, get_current must check that the current file

is still in the scope, since tag operations may have occurred. If not, use get_next to update the

iterator. Second, special returns should be implemented to indicate the beginning or end of a

dynamic-scope.

2.4.4 Tag Operations

tag_add/remove(device-id,file-id,tag-name,tag-content)

tag_get(device-id,file-id)

Methods to manipulate tags: adding and removing tags involves modifying the file’s tag-list, the

tag-tables, and the tag-cache; in addition, they must ensure system-tags are maintained. Tag_get

returns a copy of a file’s tag-list.

2.4.5 Other

device_list()

This method uses system functions to return a list of device-ids of connected devices.

7

3. Analysis

3.1 Usage Scenarios

Here we describe how two example applications, a photo-viewer and a shell, interact with TFS,

demonstrating how we expect TFS to be used.

3.1.1 Photo-Viewer

The first application is a photo-viewer that displays pictures from all devices. Using a tag such as

(“type”,“photo”), the photo-viewer creates a dynamic-scope from the global-scope. Then, it

iterates through this scope, using file-descriptors to read each file. Upon reaching the end of the

scope, application can restart with get_first and repeat. Similarly, to see a specific set of photos,

the user can enter filter tags into the photo-viewer, which then creates the appropriate

dynamic-scope to iterate over. This implementation is fully dynamic and has no slowdowns:

during the display of one picture, the application can start searching for the next file – avoiding

the overhead of a full list. Meanwhile, if tags are added or devices connected, they will

automatically be part of the iteration loop.

To view photos on a read-only CD with no tags, system-tags can be used: when a device is

connected, the OS reads the device and inserts tag information into the tag-cache, inferring

system-tags from file-metadata. After this is done, the application can find photos by using a

static-scope searching from the CD’s device-scope using tags based on extension, e.x.

(“extension”,”jpeg”). If multiple extensions are requested, the photo-viewer can utilize multiple

scopes, displaying them in order, since such read-only files only have one extension each.

Finally, to copy photos from the CD to a USB device, the application will first create

static-scopes of various photo-file-extensions on the CD. Then, it will iterate over each list,

reading each file and writing a corresponding file to the USB device. In addition, the user can

specify tags such as (“Type”,”Photo”), to be added to copied files in order to aid future searches.

3.1.2 Shell

The second scenario is a user running python in a shell. The shell takes the user command,

making a static-scope search for (“executable”,“python”) on device-scopes of system devices

(the OS provides a list of system devices). If none are found, the search can be extended to other

devices. If multiple programs are returned, there are three solutions: first, the shell can just run

the first on the list, or use tags such as “version” to differentiate. Second, the shell can keep a

configuration file detailing which version to run for each program. Finally, in the same

configuration file, the shell can store a file-tuple pointing to the program that should be run for

that command. We assume applications installers set appropriate “executable” and “version” tags.

Similarly, the python interpreter can find libraries through a static-scope search, for example:

{(“type”,“library”),(“application”,“python”),(“version”,“2.6”)}. This should return a static-scope

of python2.6 library files, which can then be further refined to find specific modules or pyc files.

Then, suppose the user wants to run a specific version: one solution is for applications to have

redundant “executable” tags: python2.5 can have both the (“executable”,”python) tag and the

8

(“excutable”,”python2.5”) tag. Another method is to provide special shell syntax for specifying

additional tags to filter by. For example, to run the default python program, the user types:

>python

While to run the second installation of python2.5 he types:

>python[“version”:“2.5”, “Install”:“2”]

Then, whichever version of python will make the appropriate static-scope(s) and proceed from

there. This can be very powerful, since it allows multiple installs of the same version of python,

separating their files using tags.

3.3 Storage Analysis

We analyze the amount of disk-space and memory required using the assumptions in Table 3:

Table 3: Storage assumptions

Harddrive capacity 500GB

Block size 32KB

Number of files 1,000,000

Tags per file 10

Unique tag-names 1,000

Unique tag-contents 5,000

Unique tags 100,000

Memory size 8GB

Number of static-scopes 1,000

Files per static-scope 10,000

Number of dynamic-scopes 1,000

Size of typical scope rule-set 10

3.3.1 Disk-Space Usage

Overall, the design uses less than 0.5% of the total disk-space, even with the high estimates for

number of files and tags, as detailed in Table 4. A note of clarification: assuming a block-size of

32KB, 14,000,000 blocks references approximately 450GB of disk-space

Table 4: Disk-Space Usage

Category Item Size Number Cost

Files Metadata 336 bytes/file 1,000,000 336MB

 Tag-list 160 bytes/tag 10,000,000 1,600MB

 Data-block-list 8 bytes/block 14,000,000 112MB

Tags B+ trees overhead 200 bytes/unique-tag 100,000 20MB

 File-list 8 bytes/file 10,000,000 80MB

 Total: 2,148MB

9

3.3.2 Memory Usage

Shown in Table 5, a 1MB file requires 0.75KB of memory. Since average file size is

approximately 500KB and users are not likely to be manipulating a large number of very large

files, we reasonably assume file-objects use 1KB/file in the file-cache. So, a 50MB file-cache

stores a sizable 50,000 file-objects.

Table 5: Cost of 1MB file-object in file-cache

Item Size Number Cost

File-tuple key 16 bytes/file 1 16 bytes

Metadata 336 bytes/file 1 336 bytes

Tag-set 16 bytes/tag 10 160 bytes

Data-block-list 8 bytes/block 32 256 bytes

 Total: 768 bytes

Next, the entire tag/cache requires about 160MB of memory (Table 6).

Table 6: Tag-cache memory usage

Item Size Number Cost

Tag-content-id table 40 bytes/entry 1,000 .04MB

Tag-name-id table 136 bytes/entry 5,000 .68MB

Tag-cache overhead 16 bytes/unique tag 100,000 1.60MB

File-list 16 bytes/file/tag 10,000,000 160.00MB

 Total: 162.28MB

Finally, consider scopes: we ignore the trivial overhead of the scope-table and instead focus on

the memory cost of scopes. As the tables below dictate, even large static-scopes and complicated

dynamic-scopes are quite lightweight, so applications can have over a hundred scopes without

using much memory – 50 static-scopes of 1,000 files each and 50 dynamic-scopes only use about

1MB in total.

Table 7: Cost of Large Static-scope

Item Size Number Cost

Tag-set 16 bytes/tag 10 ~0MB

File-list 16 bytes/file 100,000 1.60MB

 Total: ~1.6MB

Table 8: Cost of Large Dynamic-scope

Item Size Number Cost

Tag-set 16 bytes/tag 20 0.320KB

Iterator overhead 256 bytes 1 0.256KB

 Total: ~0.5KB

Overall, with a 50MB file-cache and full tag-cache, TFS takes a reasonable 200MB of memory

and applications use less than 1MB of memory for scopes.

10

3.2 Time Analysis

For time analysis, consider the following timings [1], [2]:

Table 9: Timing of Various Operations

CPU cycle 0.1ns

Memory access 10.0ns

SSD access 100,000.0ns

HDD seek time 10,000,000.0ns

As shown, the CPU is never a bottleneck when accessing TFS. Instead, it falls down to the

number of memory-accesses and disk-accesses. While the original problem specifies SSDs

(Solid-Sate-Drives), HDDs (hard-drives) are included to demonstrate the versatility of our design.

3.2.1 Searches

As described in Section 2.4.1, searches only require memory-accesses. We will analyze the

following worst-case scenario:

 20 tag intersection

 Global-scope as source

 Each tag contains 50,000 files

 Matching rate of 0.00001 (10 files)

For static-scopes: we iterate through all tags’ file-lists concurrently to take the intersection,

requiring a read of 20*50,000*16 bytes = 160MB of memory. Using DDR3 peak transfer speeds

of 12,800MB/s, this requires 12.5ms.

For dynamic-scopes, scope construction takes negligible constant time. Instead, we focus on

iteration: taking an average over the 10 files in the scope, we see that we will need to read 16MB

of memory per get-next. Using the same time analysis, this requires 1.25ms per get_next.

Overall, this worst-case is handled very well. In more general usage cases of smaller

source-scopes, smaller tag-sets, and higher matching rates, we expect search times to be at the

0.1ms range, and get_next times to be near the 0.001ms range.

3.2.2 Loading Time

Finally we consider the time it takes to load the TFS data-structures into memory. This requires

reading the tag-table and file-objects (to infer system-tags) of each device, evaluating to a

disk-read of about 500MB, a reasonable one-time overhead for connecting a 500GB device.

Since the tag-tables and file-objects will be stored in some contiguous chunk of disk-space, we

see that hard-drives do not suffer too much in comparison to SSDs in terms of overall loading

times.

11

3.4 Tradeoffs

3.4.1 Performance and Simplicity vs Additional Functionality

A major tradeoff of design is the removal of unions from scopes. However, this is very much

justifiable based on the End-to-End principle: eliminating unions makes scopes very lightweight

and fast, removes complexities of rule-sets, and simplifies implementation. As such, applications

can have numerous scopes and run many searches at low cost. Not only that, but implementation

is simplified greatly without the need for complicated rule-sets that require reduction for efficient

evaluation.

Furthermore, it makes sense for the application to implement union since it knows more about

scope content and can more efficiently create unions, if at all: some may not care about

duplicates, while others work with mutually exclusive scopes, and hence requires no union.

Finally, applications can process unions just as fast as TFS by accessing file-lists in memory.

3.4.2 Performance vs Storage

The bi-direction mapping between tags and files provides a huge increase in performance with a

minor increase in storage. A bi-direction mapping is really quite required: one needs both fast

access each tag’s file-list and each file’s tag-list, and there is no want to accomplish this with

only file-lists or only tag-lists.

Similarly, the cost of storing the entire tag-cache in memory is easily offset by the tremendous

speedups from being able to search with only memory-accesses: the 160MB of memory used is

well worth the several orders of magnitude speed up in searches.

4. Conclusions and Future Work

Overall, this design efficiently implements a tag-based, non-hierarchical file-system using a

bidirectional mapping between files and tags. It achieves great performance in searches by

storing a tag-cache in memory, requiring only a minor loading overhead on system-boots or

device-attachments. Additionally, the lightweight nature of scopes means applications are not

limited in number of scopes used. Finally, the system scales well to larger disk-space, assuming

similar increases in memory-capacity, since a minute proportion of storage is used (0.5%~2%).

4.1 Possible Problems

The slowest component of this design is iteration over dynamic-scopes with extremely large

tag-sets. While such operations are still relatively fast at 0.1ms~1.0ms, this may be slow for

applications requiring fast iterations over multiple complicated dynamic-scopes. However, this is

a border usage case with no good solution: while an update model, where dynamic-scopes are

evaluated eagerly and updated, somewhat fixes this issue, it incurs large overheads in file and tag

operations, each of which must update all dynamic-scopes.

4.2 Future Work

12

One major area of future study is the incorporation of separate union methods inside TFS

through system libraries. In reality, unions of static-scopes are not very costly, but were not

included in order to provide a consistent interface and eliminate complications of rule-sets.

Efficient unions of dynamic-scopes is a harder problem, but iteration should be achievable in

time proportional to rule-set size through rule-set reduction and smart concurrent iteration.

Another possible improvement is to increase scalability with additional hash-tables in memory to

map ids to smaller than 64-bits. Any reduction in id-size results in a proportional decrease in

memory required, allowing addressing of more disk-space.

5. Acknowledgements

I would like to thank Joe Colosimo for the simplifying idea of limiting scopes to intersections.

6. References

[1] (2011, Mar.). Solid-state drive [Online]. Available:

http://en.wikipedia.org/wiki/Solid-state_drive#Comparison_of_SSD_with_hard_disk_drives

[2] (2011, Mar.). DDR3 SDRAM [Online]. Available:

http://en.wikipedia.org/wiki/DDR3_SDRAM#JEDEC_standard_modules

Word Count Total: 3315 (includes 494 from tables, captions, and headings)

