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1 Overview

This paper outlines a design for a file system which uses string-based tags to
organize and retrieve files. User can run search queries using tags to group files
into scopes. Scopes contain a dynamically updating view of files matching the
search criteria. This allows users to add and remove tags freely.

The proposed system uses B+ trees to organize tags, special directory files to
maintain tagged file sets, and reuses the inode layer of the UNIX file system. The
primary goals of the design are: high performance under different workloads,
and simplicity to facilitate implementation and testing.

2 Design Description

The system uses on-disk B+ trees to index tags. Scopes are represented as
linked lists and are lazily evaluated by the scope evaluator. To enhance perfor-
mance, the scope evaluator caches evaluated scopes and uses set cardinalities to
determine how filter operations on file sets are carried out. A daemon listens
for new devices and exposes a pub/sub interface to user-level programs.

The next sections explain the system design. Section 2.1 outlines the data
structures used. Section 2.2 describes helper modules. Section 2.3 discusses
performance optimizations. Section 2.4 describes the API implementation.

2.1 Data Structures
2.1.1 Representation of Tags

The system allows users to label files with free form tags of up to 140 charac-
ters. Tags are not case sensitive. Each device contains an on-disk B+ tree that
indexes tags. Each node in the B+ tree represents a unique tag and points to
a directory file which lists inode numbers of files labeled by that tag. Figure 1
illustrates this organization of files.
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Figure 1: On-disk B+ tree to index tags



2.1.2 Representation of Scopes

There are two types of scopes: basic scopes and views. Basic scopes repre-
sent physical storage devices; views represent ephemeral scopes which users can
populate using existing scopes. The search(srcId, tags, destId) system
call finds the set of files in the srcId scope labeled with all tags in list tags and
unions it with the set of files already in the destId scope. We represent scopes
as a linked list of FilterNodes.

structure FilterNode

{
long sourceScopeld;
List<String> tags;
FilterNode *next;
}

Figure 2: Pseudocode declaration for the FilterNode structure.

Each node in the linked list represents a filter operation on the sourceScopeId
scope using the tags in tags. The results of all nodes are joined to populate the
scope. A hash-table (called view table) is maintained in memory which maps
views to their linked list representations. Figure 3 describes how search calls
can be used to create such linked list representation of scopes.

The following sequence of system calls shows how Meta-language
scopes can be modeled using lists: e < a,b > represents a list of
1. mkscope() // returns an empty scope S10 tags a and b.
S10:[ ] e (S1,< a,b>) is a node that

represents a search call. It
2. search (S1, a, b, S10) encapsulates a filter operation

S10: [(S1:< a,b >)] on scope S1 using tags a & b.
3. search (83, p, q, S10) e [z, z] represents a linked list

of nodes z and y.
S10: [(S1:< a,b>),(S3:< p,q>)]

Figure 3: A linked list representation of scopes.

Only views can be mutated by a search call, i.e. basic scopes cannot be used
as destination scopes in search calls. Users can group files, even from different
devices, by creating scopes that derive from other scopes recursively.

Scopes are lazily evaluated; we only evaluate a scope to generate the set of
files it contains when the list() is invoked on it. Furthermore, scopes are
dynamically updating: if a scope is modified, all other scopes that derive from
it are modified as well. For instance, if S1 in Figure 3 is modified, the change
will be propagated to S10 as well.



2.1.3 Inode Structure Augmentation

Files are represented using UNIX inodes. The inode structure is augmented
to store a pointer to a linked list which stores all tags associated with the file.
Directory files now store only inode numbers for files they contain.

2.2 Helper Modules
2.2.1 Scope Evaluator

Since scopes are represented as unions of filter operations, any arbitrarily com-
plex scope can be flattened into filters and unions on basic scopes only (see
Figure 4).

We can distribute a filter operation (intersection) across unions.
(AuB)NC=(AnC)u(BNC)
Suppose we have two views, S1 and S2:
e S1: [(SO:< a,b>),(S6:< z>)]
e S2: [(S1:<c¢>),(S5:<x,y>)]
S2 can be flattened to: [(SO :< a,b,c >),(S6:< ¢,z >), (S5 :< z,y >)]

In general, we can recursively flatten a view till its nodes contain basic
scopes only.

Figure 4: Nested views can be flattened into filters and unions on basic scopes.

The scope evaluator generates the set of files in a scope by calling the evaluate ()
function (see below).

evaluate(long scopeld)
{
// Check scope cache for scopeld (see Section 2.3.2)
1. If scope cache has valid entry for scopeld, return it.

// Otherwise, evaluate scopeld
2. Get the linked list representation of scopeld from the view
table.
2. Flatten the representation retrieved in (2).
3. For each node in the flattened representation:
a. Fetch the directory file for all tags in the node.
b. Generate the intersection of file ids between the
directories obtained in (3a).
4. Join results for all filter operations carried out in (3).
5. Store the result in the scope cache and return it.

}

Figure 5: Pseudocode of evaluate().

The scope evaluator tries to optimize the filter operation for high performance
(see Section 2.3.3).



2.2.2 Device Daemon

A daemon service runs in the background and listens for new devices. It ex-
poses a publish/subscribe interface to user-level applications. Applications can
use this interface to subscribe to tags they are interested in. When a new device
hosting our native file system is plugged in, the daemon scans its B+ tree and
notifies all applications whose subscribed tags appear in the B+ tree.

When a device containing a foreign file system (e.g. CD), the daemon con-
structs a new in-memory B+ tree for the foreign file system and indexes all
files by generating tags using its naming layer. For instance a file located
at “foo/bar/abc.xyz” can be tagged with “foo”, “bar”, “file.name:abc” and
“file_extension:xyx”. This ensures that duplicate file names can be distinguished
by their path’s tags. Paths can also contain some semantic meaning, e.g. files
in a directory “photos” are likely to be photos. This tagging scheme preserves
such semantics. The scope for such devices points to this in-memory B+ tree.

2.3 Performance Optimizations
2.3.1 Directory File Format

Directory files should store inode numbers in sorted order so that intersection
can be done in linear instead of quadratic time. However this also increases
insertion overhead from constant time to O(logn). An alternative is to store
inode numbers in a hash-map to achieve O(n) intersection and O(1) insertion
time (expected), but the complexity introduced by such a data structure might
be unfavorable.

2.3.2 Caching Scopes
We will introduce three new data structures to implement caching for scopes:

1. scope cache: maps scope ids to the set of files they contain.

2. scope dependency graph: a directed graph which models dependencies be-
tween scopes: an edge from A to B represents the relationship that scope
B derives from scope A.

3. tag reference table: a hash-table which maps (deviceId, tag) keys to a
list of scopes which reference tag on deviceId.

The cache coherence protocol works as follows:

e Whenever evaluate(scopeld) is called, it caches its result in the scope
cache if the entry for scopeld is absent or invalid.

e Whenever search(sourceld, tags, destinationId) is called:

1. Cache entry for destinationId and all scopes reachable from it in
the scope dependency graph are invalidated.



2. If sourceld is a view then an edge is added from sourceld to
destinationId in the scope dependency graph. Otherwise, for every
tag in tags, destinationId is added to the entry for (sourceld,
tag) in the tag reference table.

e Whenever tag_add(deviceld, fileld, tag) or tag.remove(deviceld,
fileld, tag) iscalled, it invalidates all scopes in the entry for (deviceld,
tag) in the tag reference table. To invalidate scopes which derive from
these scopes, all scopes reachable from them in the scope dependency
graph are invalidated as well.

2.3.3 Optimized Filter Operation

Rather than evaluating intersections between directories in a linear left-deep
manner, our system uses bushy evaluation trees like many RDBMS do (see Fig-
ure 6). This helps reduce the size of sets to intersect and provides opportunity
for parallelization, e.g. parallel reads from different devices. Directories with
fewer files are pushed down (intersected earlier) to reduce the size of the working
set rapidly.
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Figure 6: Using bushy evaluation trees for intersections.
If the cardinality of the two file sets being intersected is close, we evaluate the
intersection by doing a linear scan. On the other hand, manually checking the
tags of files in the smaller set will be faster if one of the sets is much smaller
than the other.

When the size of the working set becomes small enough, the system just man-
ually checks the tags of all the files in it to filter for remaining tags.
2.3.4 Handling Large Number of Tags

If the number of tags in a B+ tree becomes too high, the system creates hash
buckets for tags where each bucked stores its tags in a separate B+ tree. This



ensures that the size of a single B+ tree does not become too large.

2.4 API Implementation

2.4.1 search(sourceld, tags, destinationId)

It creates a new FilterNode from sourceld and tags and prepends it to the
linked list entry for destinationId in the view table. To adhere to the scope
cache coherence protocol, search () also modifies some cache-related data struc-
tures as described in Section 2.3.2.

2.4.2 list(scopeld)

It calls evaluate(scopeId) on the scope evaluator and returns the result as a
list of (deviceId, fileId).

2.4.3 create(deviceld)

A new file inode is created in the inode table of deviceId and its inode number
is returned.

2.4.4 delete(deviceld, fileld)

It first looks up the tags associated with fileId, and calls tag_remove() for
each one of them. This ensures all scopes which might contain fileId are
invalidated. The inode and data segments of fileId are then freed.

2.4.5 read(deviceld, fileld, buffer, count, offset)

read() is implemented using existing UNIX system calls (see Figure 7).

read(deviceld, fileId, buffer, count, offset)

{
1. Open file with inumber = fileld on device with id = deviceld.
2. Use lseek() system call to move cursor to required offset.
3. Use UNIX read() system call to read into buffer.

Figure 7: Pseudocode for read().

2.4.6 write(deviceld, fileId, buffer, count, offset)

The implementation of write() is analogous to read().

2.4.7 mkscope()

It generates a new unique scope id, creates a new entry for it in the view table
and maps it to an empty linked list.



2.4.8 tag_add(deviceld, fileld, tag)
It finds the node for tag in the B+ tree in deviceld, and adds fileId to the

directory file it points to. If tag has not been previously used, a new node is
created for it and inserted into the B+ tree. The tag is also added to fileId’s
inode. It invalidates modified cached scopes as explained in Section 2.3.2.

2.4.9 tag remove(deviceld, fileld, tag)

It does the converse of tag_add().

2.4.10 tag_get(deviceld, fileld)

It looks up the inode of fileIld in deviceId and returns the list of tags it points
to (see Section 2.1.3).

2.4.11 device_list()

It queries the device daemon for the set of storage devices currently plugged-in.

2.4.12 Interface for Device Daemon

User-level processes communicate with the device daemon via IPC. The follow-
ing pseudocode describes its high-level interface.

class DeviceDaemon

{

// Maps tags to the process which have subscribed to them

Map<Tag, List<ProcessId>> subscriptionsMap;

// Returns whether the process successfully subscribed to the
provided tags

boolean subscribe(List<Tag> tags, int processId);

// Notifies the process that the device plugged-in contains
relevant tags

void notify(int processId, long deviceld);

// Returns the scope ids of all plugged-in devices (including)
foreign file systems)

List<long> get_device list();

Figure 8: Interface of device daemon.

3 Putting It All Together

There are some tagging conventions in our file system which all applications
must adhere to. File attributes are tagged to files with “file_attribute:value”.



All files must have a name and an extension attribute tag. All system files
are tagged with “system:attribute”. Applications tag their files with “appli-
cation:attribute”. If applications allow multiple versions to exist on the same
system, then to prevent conflicting tags they should append their version ids to
application.

When a user logs on, a default scope is created to represent the user’s own files.
It is populated by running a search for files tagged with “file_owner:username”.
Whenever the user creates a new file, it is automatically tagged with his user
id.

Applications search the user scope to obtains user files such as photos and doc-
uments. For instance, a photo viewer application would search the user scope at
launch time for files tagged with “file_type:photo” or “file_extention:jpg”. If the
user adds a new photo, the cache coherence protocol ensures that the change is
reflected in the photo viewer the next time it calls 1ist ().

Applications can also subscribe to the device daemon for appropriate tags. The
photo viewer could subscribe for tags like “file_type:photo” and “file_extention:
jpg”. When a new device with our native file system (e.g. a USB drive) is
plugged in, the daemon scans its B+ tree and if it finds nodes for “file_type:photo”
or “file_extention:jpg”, it notifies the photo viewer. The photo viewer can then
run a search on the USB drive with appropriate tags and add photos from the
USB drive to its working set of files. In case the device plugged in has a foreign
file system (e.g. a CD), the daemon first constructs a temporary in-memory B+
tree and then uses it to notify applications. The photo viewer application will
be notified in this case because files are tagged with their extension (see Section
2.2.2) in the temporary B+ tree.

To copy files from a foreign file system to a native file system device, the user
first uses the file layer to copy every file. This can be done by running a batch
script which looks like:

copy-file()

{
1. TUse create() to make a new file in the destination device.
2. read() the contents of the file from the source device.
2. write() the contents read in (2) to the file created in (1).

Figure 9: Pseudocode for a sample script to copy files.

The naming layer can then be used to generate tags for every file like the device
daemon does (see Section 2.2.2). For copying files from a native file system,
the procedure is similar, except that tags are simply copied from the source file
system.



Executable binaries are tagged with “file_type:executable”. Commands that can
be run from the shell are tagged with “system:environment”. When a user types
“python” at the shell, the system runs a search for files with “file_type:executable”,
“file_name:python” and “system:environment” tags. The file in the resulting set
is executed. If there are multiple files in the resulting set, users can tag one of
them with “system:default” to set it to the default executable to run.

During installation, application runtime should be configured with the tag ad-
dress space they use. For instance “Python 2.7” could choose to use “python_27:
attribute” as its tag space. Later when we run the Python 2.7 interpreter, it
already knows the tag space it needs to search in order to find its modules. To
create pre-compiled versions of its modules, the Python runtime can create a
new pre-compiled file (pyc file) on the same device and copy over all tags (except
file extension) from the corresponding source code (py file) file. Since the tags
of the source code file will already have the version embedded in them, there
will be no conflict in pre-compiled files of different Python versions.

4 Analysis

The following table summarizes the metrics used for the performance analysis
of our system:

Table 1: Performance Metrics Description.

Metric Value Comments
Tag Size 140 bytes 140 characters allowed
Inode Size 128 bytes Size of inode structure
Directory Size | 4n bytes n files in directory
Tag Density 20 Number of tags per file
Disk Latency 0.1 ms Time to read/write a disk block
Disk Block 512 bytes Size of a disk block

4.1 Single Tag Search Workload

B+ trees have a high branching factor, hence the tag leaf nodes will not be more
than a few levels deep. Furthermore, we except most of the high levels of the
B+ tree to be in cache most of the time. Therefore, we will assume finding the
node for any tag takes a small constant number of disk reads.

A single tag search workload will be required by many application to locate
their modules. Such a search requires the look up of a single node from the B+
tree and then reading the directory it points to, hence it should be sufficiently
fast. We do not expect such scopes to be frequently modified, and therefore
they are expected to be resident in the scope cache.



4.2 Multiple Tag Filter Workload

We will concentrate of a work load which requires filtering by two tags only,
because the result of its analysis can be extrapolated to an arbitrary number of
tags.

Our scenario will be a user wanting to search for files tagged with “location:
Colorado” and “year:2007”. Let X be the directory file for the “location: Col-
orado” tag, and Y for the “year:2007” tag.

4.2.1 Cardinality of X and Y is close

In this case we linearly scan both directories to generate their intersection, so
time taken to evaluation the intersection is O(|X| + |Y]).

In all the system has to read 4X + 4Y bytes to generate the intersection. The
amount of time this will take is given by equation 1.

A(1XT+ 1Y)

513 x 0.1 ms (1)

4.2.2 Cardinality of X is much larger than cardinality of Y

As described in Section 2.3.3, in this case we manually check the tags of files in
the smaller directory. Back-of-the-envelope calculation done below shows that
if X is approximately 556 (or more) times larger than Y, this approach will be
faster.

AX +4Y > 128Y + (15 x 140)Y
4AX > 2224Y
X > 556Y

The greater the difference in the size of X and Y, the faster our optimized
approach will be. Its impact should be significant when one of the tags in the
search query is very popular. Figure 10 compares the difference in performance
of the linear scan approach with this optimized approach.

4.3 Join Workload

When joining results of filter operations on multiple scopes, we don’t need to
create a new list of (deviceId, fileId). Instead, the results can be pipelined
to the requesting process; no additional disk I/0O is required.
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Figure 10: Comparative performance of the optimized and naive filter operations.

4.4 Read/Write Workload

Since we use the same file layer as the standard UNIX file system, we expect read and
write operations on files to perform at the same level.

4.5 Impact of Scope Cache

The system will define multiple scopes to speed up common user operations. For
example, the system can define a scope with tags “system:environment” and “file_type:
executable”. This scope represents the set of binary executables which can be run from
the shell. When a user types a command, the shell can just search this scope rather
than creating a new scope from three different tags as described in Section 3. The
scope described earlier is likely to be resident in the scope cache most of the time
because it will be frequently used and rarely invalidated. Therefore, we expect such
common operations to run effeciently by making effective use of the scope cache.

5 Conclusion

The described system effectively uses a B+ tree to organize files using tags. It re-
quires some tagging conventions to simplify implementation and encourage consistency
amongst applications. A number of optimizations have been described to enhance av-
erage and worst case performance. These include: caching scopes to avoid the overhead
of re-evaluating scopes on every call to 1ist (), bucketing tags to contain the size of
on-disk B+ trees, storing files in sorted order in directories to speed up evaluating
intersections, and optimizing the filter operation in cases when one of the tags is very
popular.
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