
TagFS: A simple tag-based filesystem

Scott Bezek
sbezek@mit.edu
Raza (R07)
6.033 Design Project 1
March 17, 2011

1 Introduction
TagFS is a simple yet effective tag-based filesystem. Instead of organizing files and documents in
a strict hierarchy (like traditional filesystems), TagFS allows users to assign descriptive attributes
(called tags) to files and subsequently locate those files by searching for tags of interest.

This design has several motivations. First, the ubiquity of internet search engines demonstrates
that users prefer to search, rather than browse, for information. TagFS avoids cumbersome
directory traversal by allowing direct searches for files. Second, a tag-based system avoids the
problem of categorization: how should a user determine how to organize a set of files? For
example, photos might be organized by year, by event, by location, or perhaps even by the people
that appear in them. TagFS allows the user to conveniently find files using any criterion (or
combination thereof).

2 Design
The TagFS design has two major components: tags and scopes. A tag is simply a free-form string
that describes some file A scope is a way of finding and grouping files by searching for specific
tags. The following sections describe the behavior and implementation of these components.

2.1 Tags and Files
In order for a tag-based filesystem to be useful, tags that have been assigned to a file must persist
across system reboots and crashes. For this reason, TagFS stores tag associations alongside file
data in non-volatile memory. TagFS adopts the 64-bit file and device numbering scheme
proposed in [1].

2.1.1 Tag and File Storage
Each storage device contains four sections: the Tag List contains tags and their associated list of
File IDs (FIDs); the Tag Tree allows for quick tag lookup by name and links to elements of the
Tag List; the File Node section maps FIDs to data blocks; and the Data Block section contains the
contents of files.

The Tag List is a block of memory split into numbered tag nodes. Each tag node represents a
tag on the device, and holds tag metadata. The tag nodes also provide a compact numbering
scheme (Tag IDs) for referencing a particular tag. A tag node contains the tag name (fixed length
string), a count of files containing that tag, a fixed-length array of FIDs, and a pointer to a data
block that may contain a longer array of FIDs if necessary. The data block may also link to
another data block (forming a linked-list) if even more space is needed to hold the entire file list.
Since each tag node has a fixed size, a tag node's location on disk can be determined by the Tag
ID. The Tag List section contains a bitmap of Tag ID availability so that new tags can reuse
deprecated Tag IDs. Figure 1 shows a diagram of the Tag List.

1

The Tag Tree is a B+ Tree that allows for a quick tag search across all files on the device. The
keys of the tree are the string tags of all files on the device, and the leaf-nodes point to the tag
node in the Tag List. Thus, given a search tag, all FIDs that contain that tag can be found

Tree and then reading the tag node.

For file storage, TagFS uses the inode design as described in [2] with a few modifications. TagFS
does not need the link-count or file code fields of the inode (which relate to directory structure),
so these are replaced by a pointer to a data block containing the file's associated tag IDs. That
block may link to another data block with more tag IDs if necessary (forms a linked list). Files on
different devices may have the same FID/inode-number, so a file is uniquely identified by the
tuple (DeviceID, FileID).

2.1.2 Tag and File API
TagFS implements the following functions to manage files and tags:

! create(deviceID) – allocates a free inode on the device and returns the FID

! copy(deviceID, fileID, destinationDeviceID) – creates a new file and

copies the contents of the existing file
! delete(deviceID, fileID) – deletes a file (removes appropriate entry from Tag

Tree)
! read(deviceID, fileID, offset, length) – reads length bytes from file at

the specified byte offset
! write(deviceID, fileID, offset, data) – writes data to the file at the

2

Figure 1: The layout of the Tag List on disk.

specified offset, overwriting existing data and extending the file as necessary
! tag_add(deviceID, fileID, tagName) – adds a tag to a file. Finds the tag ID

of tagName by searching the Tag Tree, or else uses a free Tag Node and adds the tag to
the Tag Tree. Adds fileID to the Tag Node's file array. Adds the tag ID to the inode's tag
list. Also updates scope caches as necessary (see 2.2.3).

! tag_remove(deviceID, fileID, tagName) – removes a tag from a file. Finds

the tag ID of tagName by searching the Tag Tree, and removes the element from the tree.
Removes fileID from the Tag Node's file array, and releases the Tag Node if its file array
becomes empty. Removes the tag ID from the inode's tag list. Also updates scope caches
as necessary (see 2.2.3).

! tag_list(deviceID, fileID) – returns the list of string tags assigned to fileID

by looking up the tag ID list in the appropriate inode and cross-referencing string names
from the appropriate Tag Nodes.

! device_list() - returns the list of device IDs of all connected devices. Device IDs

are stored in a device map (mapping device IDs to hardware IDs) which is maintained by
the OS.

2.2 Scopes
A scope is a dynamic group of files found by searching for a given set of tags. Scopes can be
thought of as operators on lists of files: a scope accepts one or more lists of files as input, merges
those lists, filters the merged list using the specified tags, and outputs the resulting list. This
structure can be seen in Figure 2. For example, photos on HDD0 can be found by using a scope
with input=HDD0 and filters=“type:photo”.

3

Figure 2: A simple graphical depiction of a scope.

Scopes can be chained together to select complex groups of files – the output of one scope may
feed into another. For example, suppose iTunes wants to find all of Scott's photos and videos.
First find all photos owned by Scott using one scope, find all videos using another scope, then merge
the two lists using another scope. This chained scope construction is shown in Figure 3.

2.2.1 Scope Structures
TagFS stores scopes in system memory which allows scopes to easily refer to multiple devices and
provides fast creation/search speed. Scopes need not persist across system restarts since they can
easily be recreated. Furthermore, scopes are “lazy” - a scope does not compute its output file list
until explicitly requested. Thus, scopes will always return the most up-to-date file list.

The most basic scope structure contains a list of source (scope/device) IDs and a list of tag filters.
Both of these lists may be stored as HashSets to avoid duplicates. Consider the example from
Figure 3: if an application requests the files in scope 123, the filesystem would look up the list of
sources (scopes 820 and 457), recursively request the files, and merge and filter those results.

4

In order to find a particular scope by ID, the filesystem maintains a mapping from 64-bit scope
IDs to scope objects in memory. TagFS uses a hash table called ScopeLookup to provide this

 shows an example of this basic scope

representation, using the same scope setup as Figure 3.

2.2.2 Scope Behavior
The process by which TagFS merges and filters file lists requires particular care in order to
implement TagFS efficiently. Depending on the type of source, the merging and filtering
algorithms behave differently.

If the source is a device, the device's Tag Tree should be used to find sets of files corresponding to
each tag. The intersection of these sets (which can be computed quickly in memory) represents
the files that match all specified filter tags. By using the set-intersection technique, it is not
necessary to seek to each inode on the disk to verify the file's tags.

If the source is another scope, TagFS will recursively request its file list. If multiple sources are
scopes, TagFS will compute the set union of their returned file lists (using a HashSet) to eliminate

number of files (since their parent scopes reduce the search space) so this is not an issue.
However, if scope chains are poorly constructed, as in Figure 5, performance can suffer.

5

Figure 4: An example of a basic scope data structure.

2.2.3 Scope Caching
Although the basic scope construction (sections 2.2.1/2.2.2) functions correctly, it would perform
poorly in practice, as each time a scope is requested, the filesystem must rebuild the file list by
searching the disk. To avoid this, TagFS maintains scope caches of (DeviceID, FileID) tuples
along with a cacheValid flag.

However, there are several important changes that must be made for a cache to function properly.
First, if a scope's cache is invalidated (by changing filters or sources), the cache invalidation must
propagate to all sub-scopes. In order to do this, each scope links to sub-scopes, enabling scope
traversal. Second, tagging a file may affect scopes watching that tag. However, since only one file
changed, TagFS can just update the cache instead of invalidating it. To find all scopes affected
by a tag change, TagFS keeps a global hash table, TagScopeRefTable, mapping tag names to directly
affected scopes, and the sub-scope pointers can be traversed to update the sub-scope caches as
well (Figure 6).

6

2.2.4 Scope API
TagFS implements the following functions for applications to manage scopes:

! mkscope() - creates a new scope in memory, adds it to ScopeLookup and returns the

scope ID
! scope_add_source(scopeID, sourceID) /

scope_rm_source(scopeID, sourceID) – add/remove source to/from scope's
source list. Invalidates caches (see 2.2.3). Checks to prevent scope cycles.

! scope_add_filter(scopeID, tagNameList) /

scope_rm_filter(scopeID, tagNameList) – add/remove one or more tag
filter. Invalidates caches (see 2.2.3)

! list(scopeID) – get the file list of the scope (refresh cache if necessary) – see 2.2.2.

2.3 Conventions
There are many standard tags to improve application interoperability, including:

! “type:” - filetype

! “user:” - file owner

! “application:” - shared by all application files

! “version:” - identifies the version of file/application

! “year:” - date

! “location:” - place

By using standard tags, multiple programs can easily interact with the same set of files, and files
can be organized more easily. In addition, applications and their dependencies are packaged

7

Figure 6: Example scope data structures with caching.

together by applying an “application:” tag. For example, Photoshop and all of its dependencies
would share the tags “application:photoshop” and “version:4.9” to make them easy to locate.

3 Analysis
The following sections describe possible scenarios that demonstrate how TagFS can be used.

3.1 Photo Viewer
Suppose a photo viewer is running and displaying the user's own photos, and the user plugs in a
USB drive with pre-tagged photos and wants to display those along with the current set.

The photos being displayed have already been tagged “type:photo” and “user:scott” and are
found using a scope setup like Figure 3. The photo viewer periodically checks
device_list() and notices the new USB device. After asking the user if he wants to display
photos from the device, the application creates a new scope, setting the old scope as one source
and the USB device as another source, with a filter for “type:photo.” The application calls
list() to request which files to display.

3.2 Photo Viewer, Part II
Suppose the user now wants to show all photos (on any device) taken in Colorado in 2007.

The application creates a new scope for the search, adding “type:photo” as a default filter. The
user selects which devices to search (all of them) and the application adds those device IDs as
sources. As the user selects search criteria, the application adds the appropriate filters to the
scope - “location:colorado” and “year:2007”. These changes are instantaneous because scopes
are lazy. When the user clicks “Search,” the applications calls list() on the scope, which
follows the procedure of 2.2.2 to find the photos.

3.3 Photo Viewer, Part III
Suppose the user inserts a read-only CD, containing photos without assigned tags.

The photo viewer notices the CD (by polling device_list()), and asks the user about
displaying photos from it. If the user clicks “yes,” the viewer creates a scope with the CD as the
source and the filter “type:photo.” However, list() returns no photos, so the viewer asks
“Search for untagged photos?” If the user clicks “yes,” the viewer removes the “type:photo”
filter, and analyzes each file to determine if it is a photo. If so, the application keeps track of its
FID and displays it.

3.4 Copying Files
Suppose the user wants to copy the photos from the CD to a new USB drive.

The user opens a file browser window, which displays the available devices using
device_list(). The user selects the USB drive. The browser calls list() and displays
the files. The user switches back to the photo viewer and drags the photos onto the file browser
window, invoking a drag-and-drop handler in the browser. The browser is passed a list of

8

(DeviceID, FileID) tuples, and the browser uses copy() for each one to be copied to the USB
device.

3.5 Shell
Suppose the user types a command like “python” at a shell prompt.

The shell relies on the SYSTEM_DEVICES environment variable to determine which device
IDs to search for executables. When the user types “python” the shell creates a scope with
sources from SYSTEM_DEVICES and the filters “type:executable” “version:current” and
“application:python.” Since the shell uses SYSTEM_DEVICES, it will not be confused if
Python exists on a USB drive. If list() returns multiple results, the shell can ask the user
which version to run.

3.6 Libraries
Suppose the user runs a Python interpreter, which must load associated Python modules.

Application dependencies are packaged by sharing the “application:” tag. The shell creates and
passes the “application scope” to Python which filters SYSTEM_DEVICES for
“application:python2.6”. Python creates a sub-scope of the application scope and filters for
“type:python_module”, “version:current”, and the module name: “numpy”.

3.7 Multiple Application Versions
Suppose the user has two versions of Python installed with distinct modules.

As discussed in 3.6, the applications will be tagged “application:python2.6” and
“application:python3.0” along with all associated dependencies. The shell passes the application
scope to Python, which can create a sub-scope of the application scope using the filter “type:pyc”
to find the appropriate compiled Python modules.

4 Conclusion
TagFS is a groundbreaking tag-based filesystem that was designed with usability and efficiency in
mind. The system centers around a tagging system that can be searched quickly and flexibly. By
introducing the concept of scopes, TagFS allows applications to quickly find files by narrowing
the search space with a series of filters. Furthermore, the simplicity of scopes allows them to be
chained together into specific search queries without sacrificing speed. Finally, by implementing
a basic caching system, TagFS can scale well by avoiding unnecessary disk accesses. These
features combine to make TagFS a unique but practical modern filesystem.

9

References

[1] B. Bitdiddle, “6.033 2011 Design Project 1,” [Online document], 2011 Feb 23, [cited 2011

Mar 16], Available HTTP: http://web.mit.edu/6.033/www/assignments/dp1.html

[2] D. M. Ritchie, K. Thompson, “The UNIX Time-Sharing System,” Communications of the

ACM, vol. 17, no. 7, 1974.

Word Count: 2681

10

