Implementation of a Tag-Based File System

Catherine Olsson
catherio@mit.edu

TA: Butler Lampson
11:00 am section

March 17, 2011

Introduction

This document describes TFS, a tag-based file system in which files are identified
by free-form tags rather than path names or directories. In TFS, files can
be retrieved from any device by their tags; additionally, files can be bundled
into ephemeral, dynamic, tag-based collections called “scopes”. This document
describes the behavior and implementation of TFS, and provides an analysis of
how TFS would perform under a variety of sample situations.

TFS has three main components: A Unix-like file representation, a hash-
table-based tag lookup sector, and in-memory scopes represented description-
ally.

Major design decisions include the following:

e The basics of file storage are borrowed from the UNIX file system for
simplicity.

e Efficient bidirectional lookup between tags and files is implemented by
storing tag information in two places: once on the file itself, and again in
the “tag sector”. This approach requires additional space in exchange for
faster lookups.

e A scope is dynamically-updating view, rather than a snapshot, to provide
applications with the most recent data. To this end, scopes are represented
descriptionally in memory, and are instantiated afresh on each request to
list the contents. This approach requires additional computation time and
relies on good disk caching for acceptable performance.

e By making the scopelD of a scope identical to the location in memory
of the corresponding scope object, the need for a scope lookup table was
averted.

Design

The main components of TFS are the files and the tag sector on disk, and the
scopes in memory.

The file representation is fundamentally UNIX-like. A fixed-length fnode per
file holds pointers to the file’s data and tags. A tag is a free-form string. The
tag sector is a disk sector which provides quick lookup of files by tag.

Scopes are views over files. Scopes can either be device scopes which hold all
files on a device, or derivative scopes which are defined in terms of other scopes.
Derivative scopes are represented descriptionally and instantiated on demand.

Disk layout

As shown in Figure 1, the on-disk layout of TFS is very similar to the layout of
the Unix file system. The fnode table is a fixed-length zone holding fixed-size
fnodes. The tag sector is a fixed-size hash table.

0 1 n-1

Boot |Super| Free File File
block |block | bitmap | T"nodetable | Tagsector |yl - | pock

Figure 1: The on-disk layout. As compared to the UNIX file system, the tag
sector has been added, and inodes have been slightly modified to become fnodes.

File representation

Files are identified on a device with a 64-bit fileID, which (like a UNIX inode
number) can be used to directly retrieve the file’s metadata. Files are identified
across devices using the combination of fileID and devicelD; this locally-unique
identifier is called a fileUID.

As previously mentioned, fnodes are nearly identical to UNIX inodes. How-
ever, they differ in that almost all metadata is stored as tags, to enable searching.
The convention for a metadata tag is “!” - for example, “luser:Bob” identifies
Bob’s files. Size and number of tags are kept in fnode metadata fields, as these

values are necessary to enable retrieval of data blocks and should therefore be
kept close at hand.

The type of a file can be either "regular” or "filelist”. Filelists will be
explained below, in the Tag Representation section.

Fnodes retain the block pointer structure from UNIX inodes, including indi-
rect blocks. Additionally, fnodes contain pointers to the blocks containing the
file’s taglist. The file’s tags are kept in alphabetical order to enable efficient
search. Figure 2 shows the overall layout of an fnode and its components.

size

number of tags

type

tag blocks

indirect tag block

data blocks

indirect data block

indirect x2 data block

indirect x3 data block

Figure 2: The contents of an fnode. Note the addition of taglist blocks, and the
absence of much of the metadata, which is instead kept in tags for searchability.

The size of an fnode constrains the maximum number of tags a file can have,
because the taglist has a limited number of blocks. The default fnode size allows
for 3 direct blocks and 1 indirect block of file tags. If tags are stored in a 64-char
field and blocks are 1KB, this allows for about 36 tags close-at-hand and 2048
tags an additional disk seek away.

The taglist is kept outside the fnodes in order to keep fnodes small and fixed-
size. If every fnode were large enough to hold the maximum expected number
of tags, fetching a single fnode would require fetching many blocks instead of a
fraction of a block.

Tag representation

Tags are free-form strings. Files can have thousands of tags - they are restricted
in length and number only by the constraints of the taglist.

File lookup by tag is supported by the tag sector, a hash table mapping tags
to a filelist-type file containing an ordered list of fileIDs with those tags (the
filelist). A filelist-type file is the same as a regular file, except it is not tagged
and the user cannot view it or access it in any way.

The use of a hash table makes it possible to efficiently access the tags for a
file. This retrieval will be efficient so long as the hash table has least twice as
many slots as the number of distinct tags on the device. Figure 3 shows how
the tag sector is used to map a tag to a list of files with that tag.

The filelist is itself kept in a file, rather than just a linked list of blocks, for
two reasons. One, files have support for seeking in a file, which enables binary
search, aiding addition and removal of tags that have very long filelists. Two,
using a file means the maximum number of files per tag can be large.

File 10 lists all fnodes
tagged "Boston”

-7
- - Fnode| Tag Files
Ve / table jsecto
/ r
 Tag sector: _ \—/‘
Fnode 320
Look u points to the
—— P blocks a file
oston” ! fnode #320 fnode 320
hashes to
this bucket
fnode #106

Figure 3: Accessing the tag sector for tag lookup. The tag sector is a hash table
mapping each tag to a file containing the list of fileIDs with that tag.

File operations

The eight file-related system calls are implemented as follows:

e read(fileUID, offset): As on UNIX, the fnode for the given fileUID is
retrieved, the offset is converted into a block number and block-relative
offset, and that block is found by traversing the direct and indirect blocks
indicated by the fnode.

e write(fileUID, offset): As above, but bits are written instead of read.

e create(deviceID) -> fileID: As on UNIX, an fnode is created and re-
turned. Additionally, basic system metadata tags (such as !user:Bob)

are added. See tag-add.

e delete(fileUID): All tags are removed from the file and its blocks are
marked as free. See tag_remove.

e tag add(fileUID, tag): The tag is added to the file’s taglist, and the
tag is looked up in the tag sector and added to that tag’s filelist.

e tag remove(fileUID, tag): The tag is removed from the file’s taglist,
and the tag is looked up in the tag sector and removed from that tag’s
filelist.

o tag get (£fileUID): The file’s taglist is retrieved and returned.

e device_list(): An in-memory array holds the device IDs for all mounted
devices; its contents are returned with this system call. Devices are noticed
by a device daemon and added to the list as they are plugged in.

It’s worth noting that many operations, such as tag-add, are not atomic.
Therefore, an interrupted read or write could leave the file system inconsistent,
requiring a fsck.

Scope representation

Scopes are an emphemeral, dynamic way to define groups of files based on their
tags. Each scope is represented in memory by a scope object. The scopelD of
a scope is identical to the address in memory of its scope object. Scopes are
represented in memory only by their description, and are not instantiated until
the 1ist system call is invoked.

Derivative scopes are built from other scopes using repeated search calls.
Each search call adds a new criterion to the destination scope: for example
search(0x3333, [¢‘Boston’’, ‘Cambridge’’], 0x1234) updates scope 0x1234
to include all files in scope 0x3333 matching “Boston” and “Cambridge” in ad-
dition to whatever scope 0x1234 included previously.

Note that each criterion is an AND of tags that must match (eg, “Boston”
AND “Cambridge”) and the overall scope represents an OR of criteria that can
match (eg, “Boston” AND “Cambridge” from scope 0x3333, OR “2007” from
scope 0x2000, OR “2008” from 0x2000). Therefore, scopes can be represented in
memory using an expandable list of criteria, each of which has a set list of tags.

Device scopes are a special case. Rather than having a list of criteria that
defines their membership, their membership is defined by the device contents.
Therefore, the kernel must check the “isDevice” flag on each scope to determine
whether to treat it like a derivative scope or a device scope. For a TFS drive,
the tag sector holds the underlying tag-to-file mappings. For a non-TFS drive,
each fully qualified file name is considered a tag, enabling similarly efficient
tag-to-file matching.

Figure 4 shows the pseudocode for a scope object in memory based on this
schema, and Figure 5 provides a pictoral view.

struct scope {
boolean isDevice;
List<scope_criterion> criteria;

3

struct scope_criterion {
scope_ID source;
string tagsl[];

Figure 4: Scopes are relatively simple objects in memory. The isDevice flag
distinguishes device scopes from derivative scopes. Derivative scopes have a list
of criteria, any of which can match. Each criterion has a source scope ID and
a list of tags, all of which must match.

Scope 0x1234:

isDevice: false

criteria[0]

criteria[1]

criteria[2]

\

source: 0x3333 source: 0x2000 source: 0x2000

tags[0] = “Boston” tags[0] = “2007" tags[0] = “2008"

tags[1] = “Cambridge”

Figure 5: The structure of a scope

Scope operations
The four scope-related system calls are implemented as follows:

e mkscope() -> scope: Creates a new scope, by allocating a new scope
object in memory and returns its memory address.

e search(source, tags[], dest): Adds files to a scope, by adding a new
criterion with the given source scopelD and tags to the specified destina-
tion scope object.

e scope_tags_get(source, tagl[]): Returns a list of the fileUIDs from the
specified source that are associated with all the given tags.

If source is a TFS device scope, each tag is looked up in the tag sector,
the resulting fileID lists are merged by finding their intersection, and then
the devicelD is added to each fileID of the merged list to produce a list of
fileUIDs.

If source is a non-TFS device scope, each fully qualified filename is a tag,
so only one-tag searches will yield any results.

If source is a derived scope, a recursive scope_tag_get is performed for
the given tags along with all the criteria tags on each of its sources; sec-
ond, the returned lists are merged together to find the intersection. A
scope_tag_get with no tag arguments is equivalent to a list call.

list(scope): Returns the fileUIDs for all files in a scope. For a device
scope, this call just walks the entire device and returns all the files. For
a derivative scope, this call performs a scope_tags_get (source, tagll)
call for each criterion, and merges the results to remove duplicates.

Analysis

Scenario-specific analysis

The following examples illustrate the behavior of this system in particular use
cases.

Photo viewer example

For a user to view photos from a USB drive in his photo viewer, the viewer must
invoke search (USB_device_scope, [¢‘photo’’], viewer_scope). If the user
instead wants to view all his photos tagged “Colorado” and “2007” across all
devices, the viewer must invoke device_list (), and then perform a search on
each to bring the photos into view: search(device_scope_i, [‘‘photo’’,
‘‘Colorado’’, €2007’’], viewer_scope). When list(viewer_scope) is
called, the selected photos will be retrieved and can be displayed.

Read-only media

To view all the contents of a read-only CD in a photo viewer, the viewer can per-
form a zero-tag search command: search(CD_device_scope, [], viewer_scope).
When list(viewer_scope) is called, all the files on the CD will be listed along
with whatever else was being viewed.

Shell commands

To run a command, the shell will look in the “path”: a list of (deviceID, tag[])
tuples indicating scopes that should be searched for a file tagged with the com-
mand name. A convention will be used in which the binary tag will indicate
an executable. If there are multiple files found, the most recently created one
will be run. To run a command from a different location, the shell will offer an
interface for temporarily modifying the path.

Python example

The python interpreter will likewise have a path along which it will search for
its modules. If python attempts to load a module and finds multiple options, it

can compare their tags that start with “!ctime” to find the most recent one.

Python can also adopt other conventions for its path. For example, it could
choose to use its version string as an additional tag in its path to avoid confusing
its modules with modules created by other versions of python.

Broad performance analysis

Space

Space-wise, the disk overhead of TFS is comparable to that of the UNIX file
system. fnodes are comparable in size to inodes. Additionally, the taglist for
each file will be a compact representation of the tags on the file, storing the tags
one after another in 64-byte slots, taking up no more than a few additional 1K
blocks for an average file with fewer than 32 tags.

The tag sector is also compact. Assuming a 100 GB hard disk, there should
be no more than 1 million files, and no more than 4 times as many tags as files.
Under these assumpions, a hash table of twice as many slots as tags - about 8
million - with linear probing should be acceptable. Each slot would store an
8-byte pointer to a file containing the tag and its filelist. This would make the
entire table take up about 8 bytes * 8 million = 61 MB in the worst case.

Time

First of all, it bears noting that the entire tag sector can fit in memory; addition-
ally, frequently sought filelists are also likely to be cached. Therefore, looking
up common filelists is fast, whereas less common filelists should take about one
disk seek time - 10ms.

Performance analysis for most of the file operations - such as read (fi1eUID,
offset) and tag_add(fileUID, tag) - is relatively straightforward. However,
it bears noting that deleting a file will take approximately as many disk seeks as
the file has tags. Therefore, a performance bottleneck will occur around deleting
files with vast numbers of rare tags.

The largest area of performance concern is in the lazy construction of a
list of files from a scope representation. When list is invoked, the scope will
recursively call scope_tags_get on its source scopes, accumulating tags that
must be retrieved, until bottoming out at the device level. At the device level,
the number of accumulated tags that must be retrieved is exactly the number of
tags that feature in the scope’s definition. Once the filelists have been retrieved
from disk, all the merge operations are performed in memory. Because filelists
are stored in fileID order, these merge operations are each O(n) in the length
of the lists being merged, which will certainly not take a comparable amount
of time to the disk operations. Therefore, a 1ist operation will take about as
many disk operations as the number of tags that factor into the scope defintion.
If scope definitions are much more complicated than 100-1000 tags, then the
list will not scale, and a new representation will be needed.

Conclusion

In summary, TFS offers compact and efficient support for tag-based opera-
tions, and can support anticipated workflows such as viewing photos or running
python. Future directions for this work include expanding the interoperability
with non-TFS systems and improving the performance of scope instantiation
with a specialized cache.

Additional considerations that must be handled include freeing scopes once
they are allocated, security, and hardware failures. Otherwise, this system is
ready to be implemented.

10

Acknowledgements

Thanks to Zev for proofreading my paper, and to Syed for suggesting a CNF-like
representation for scopes and noticing that merging ordered lists is relatively
efficient.

Word count: 2676, sorry!

11

