
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.033 Computer Systems Engineering: Spring 2011

Quiz 2 Solutions
There are 11 questions and 12 pages in this quiz booklet. Answer each question according to the
instructions given. You have 50 minutes to answer the questions.

Grade distribution histogram:

0 20 40 60 80 100
Mean: 59.90, Median: 60.00, StDev: 15.16

0

5

10

15

20

25

30

35

40

Co
un

t

Quiz Grades

6.033 Spring 2011, Quiz 2 Page 2 of 12

I Reading Questions

1. [10 points]: Based on the paper “Do incentives build robustness in BitTorrent?”, which of the
following statements are correct?

(Circle True or False for each choice.)

A. True / False A reference BitTorrent client will attempt to split its outgoing bandwidth equally be-
tween every peer it can connect to.

Answer: False. A BitTorrent client C only sends data to a peer P if P sends data to C at a rate fast
enough to merit inclusion in the C’s active set, or if C has optimistically unchoked P.

B. True / False BitTorrent permits content providers to shift bandwidth costs from their own ISP to
those paid for by their content consumers.

Answer: True. A content provider publishes a torrent file and might initially seed the data, content
consumers use BitTorrent’s peer-to-peer protocol to further share data.

C. True / False The torrent file that a BitTorrent client downloads before joining a swarm contains the
IP addresses of the seed nodes.

Answer: False. A torrent file contains the name and size of the file to be downloaded as well as SHA-1
fingerprints of the content blocks.

D. True / False The BitTyrant client uses unequal outgoing bandwidth allocations as one strategy to
improve its download performance.

Answer: True. A BitTyrant client sets its upload contribution to a specific peer just high enough so
that the peer reciprocates.

2. [10 points]: Based on the paper “A case for redundant arrays of inexpensive disks (RAID)” which
of the following statements are correct?

(Circle True or False for each choice.)

A. True / False A RAID array can improve reliability when individual disks fail independently from
each other, but is less useful in the face of highly correlated failures.

Answer: True. If multiple disks fail at the same time, a RAID array will not be able to prevent data
loss. However, if multiple disks fail over time, an administrator may be able to replace one failed disk
(and allow RAID time to rebuild it) before the next one fails.

B. True / False The RAID paper predicted that disk seek times would improve at an annual rate similar
to improvements seen in transistor density in microprocessors.

Answer: False. Seek times are limited by physical movement of the disk arm, and have not been
improving much.

C. True / False If average disk capacities grow proportionally faster over time than sequential data
transfer rates between disks and disk controllers, the MTTR (mean time to repair) of a RAID array will
decrease.

Initials:

6.033 Spring 2011, Quiz 2 Page 3 of 12

Answer: False. Repairing a RAID array after a disk failure requires writing a disk’s worth of data to
the new disk. If the ratio of disk capacity to transfer speed grows, this will require more time, not less.

D. True / False If solid-state disks entirely replace spinning magnetic disks, none of the approaches
described in the RAID paper will be needed anymore, since SSDs do not need to seek between different
portions of the disk.

Answer: False. The RAID paper deals with failures of disks, and SSDs can still fail (albeit some of
the reasons for failure are different).

Initials:

6.033 Spring 2011, Quiz 2 Page 4 of 12

II Border Gateway Protocol (BGP)

These questions are based on reading “An Introduction to Wide-Area Internet Routing”.

3. [10 points]: Ben Bitdiddle was asked to debug a BGP problem. Help Ben to brush up his informa-
tion about BGP. Which of the following statements are correct?

(Circle True or False for each choice.)

A. True / False To make money, an AS should announce the AS routes it learned from its customers to
its peers.

Answer: True. These customers run services on their own servers and expect that any user on the
Internet is able to reach their servers. Customers pay an AS to spread the reachability information of
these servers to all routers on the Internet.

B. True / False To make money, an AS should not announce the AS routes it learned from its peers to
its provider.

Answer: True. Two ASes establish a peering link to exchange traffic at no cost to each other. An AS,
on the other hand, needs to pay its provider for any traffic the AS send to the provider or the provider
sends to the AS. If an AS announces the routes it hears from its peers to its provider, the provider might
route packets to the peers via the AS. The AS will in fact have to pay the provider for this incoming
data.

C. True / False In BGP, an AS may learn many AS routes to an IP prefix.

Answer: True. One example is multi-homing. A customer may want to have two links to the Internet
from two different providers. These different providers will announce routes to the same IP prefix up to
their respective providers. At some point these announcements will reach a Tier 1 provider which will
hear two routes to the same IP prefix.

D. True / False In BGP, the customer-provider relationships imply that if an AS has announced a route
for a particular prefix to a neighbor, and later it learned a new route to that prefix, the AS will announce
the new route to the neighbor.

Answer: False. Here is one scenario: the next hop in the old route uses a peer link, the new route’s
next hop uses a transit link. Financially, it is best for the AS to choose the old route over the new route;
the AS will not advertise the new route.

Initials:

6.033 Spring 2011, Quiz 2 Page 5 of 12

Sprint

/ \

MIT AS AS1

\

AS2

\

...

\

AS10

\

AS EVIL

4. [10 points]: Consider the topology shown above. For any link, assume the higher node is a provider
and the lower is a customer. MIT advertises prefix 18.* to Sprint. How can AS EVIL hijack most traffic
destined to MIT from Sprint? (Describe briefly.)

Answer: It is no sufficient for AS EVIL to announce the 18.* prefix because Sprint will choose the
shorter path to MIT and will not use AS EVIL’s path. Instead, AS EVIL can take advantage of Longest
Prefix Match to advertise prefixes that are more specific than 18.*. One scheme would announce 256
prefixes from 18.1.* to 18.256.*. Sprint’s routers will choose the more specific prefix over MIT’s 18.*
prefix and send all traffic to AS EVIL.

Initials:

6.033 Spring 2011, Quiz 2 Page 6 of 12

III Congestion control

Source Router Destination100 pkt/s 10 pkt/s100 pkt

0.1 s 1s

Capacity: Capacity:Buffer:

One-way delay: One-way delay:

Consider the above topology and assume the following:

• Link between Source and Router has a capacity of 100 packets/second and a propagation delay of 0.1
second in the forward direction.

• Link between Router and Destination has a capacity of 10 packets per-second and a propagation delay
of 1 second in the forward direction. The transmission delays are 0.

• Acknowledgments from the destination to the source are delivered on a different path which has infinite
capacity and zero delay, i.e., this means that acknowledgments will be delivered immediately from the
destination to the source and will not suffer any drops.

• The Source and Destination can process packets very fast and the destination does not have any buffer-
ing limitations.

• The Router has a queue that can store a maximum of 100 packets.

5. [10 points]: Assume the Source uses a fixed window whose size is set to W. What is the maximum
throughput in packet/sec that the source can deliver to its destination, if W=5, and then if W=20? (You
can round your answer to the nearest integer.)

W = 5: pkt/s

Answer: The main point of this question is to realize that when the window is too small, it limits the
throughput, but when the window is too large the throughput is limited by the capacity of the bottleneck
link (given the system has enough buffering). Thus, when W = 5 packets, the delay inside the network
is due to the propagation delay which is 0.1+1 = 1.1 second. The transmission rate = W/RTT = 5/1.1
packets/s. Since this is smaller than the bottleneck capacity of 10 packets/s, the throughput is 5/1.1
packets/s. A more accurate answer includes in the RTT computation the time to process a packet on
each of the links, which is 0.01 seconds on the first link and 0.1 second on the second link. Hence, the
RTT is 0.1+0.01+1+0.1 = 1.21 seconds. The throughput will be 5/1.21 packets/second. We accepted
both answers since some routers can start forwarding the packet on the next link even before they
receiver the last bit from the previous link.

W = 20: pkt/s

Answer: When W=20 packets, the throughput is 10 packets/second, which can be found immedi-
ately by noticing that in this scenario you are limited by the bottleneck capacity. The transmission
rate is still given by W/RTT, however the throughput can never exceed the bottleneck capacity of 10
packets/second. In this case, the RTT will increase due to increased queue size at the router and the
accompanying increase in delay, so that W/RTT is 10 packet/s.

Initials:

6.033 Spring 2011, Quiz 2 Page 7 of 12

6. [10 points]: Assume that the source uses TCP. Focus on how TCP adapts its congestion window
using AIMD as described in class. Ignore other details of TCP (e.g., slow start, fast retransmission and
fast recovery). What is the maximum window size that the source’s TCP will experience during AIMD?

Maximum window size: packets

Answer: The correct answer is 111 packets. Specifically, the TCP window will grow until the first
drop, which will occur once the router’s queue is full, and the bottleneck link has 10 packets along the
link. This is total of 110 packets inside the network. Say the network has that number of packets in the
router’s queue and on the bottleneck link. The next RTT, when the TCP tries to increase its window by
1 more packet, i.e., W=111, the new packet will reach the router before the router can empty a spot in
its queue and the drop will occur.

We accepted also 110 because this is the window at which the drop occurs. We also accepted 121 as
a good answer because a TCP may get to 121 packets before it sees a drop if the window is initialized
to 120. Specifically, the first link which has a capacity of 100 packets/s and a delay of 0.1 second, can
keep 10 additional packets inside the network for a total of 120 packets in the network. This is however
conditioned on starting with a large window and sending the packets over the first link in a burst.

We gave partial credit to students who realized that the router’s queue has to be full before there is a
drop and hence the TCP window will grow to 100 packets. These students missed the fact that there are
some packets on the bottleneck link but got the buffer part. We also gave partial credits to students who
have a correct argument but thought that TCP increases its window by 1 packet per ack (rather than 1
packet per RTT).

Initials:

6.033 Spring 2011, Quiz 2 Page 8 of 12

IV File reconciliation and time vectors

Ben designs a new tool for reconciling copies of a file on different computers. The scenario is a single user
who has a number of computers, each of which may have a copy of a file f , and the user updates the copies of
f independently from each other. For example, when the user is on an airplane, he can update only the copy
on his laptop, and when the user gets to his office but forgets his laptop at home, he can update only the copy
on his office machine. Ben’s goal is that the different copies of f should behave as if there is a single copy of
f .

To develop a design, he considers two update and reconciliation patterns. The first pattern for file f is as
follows:

w(1)

w(2)

t1 t2 t3 t4 t5

H1

H2

H3

It shows 3 hosts: H1, H2, and H3. H1 writes (w) the value 1 to the file f , and then reconciles to H2 (i.e.,
changes on H1 are propagated to H2 and reconciled with changes on H2). Later H2 writes 2 to the file f and
H1 reconciles to H3. Then, H3 reconciles to H2. To make it easy to talk about the different events, we have
labeled them with real times t1 through t5, but you should assume that the clocks of the different computers
are not synchronized and the computers have no agreement on this global time.

7. [5 points]: For the ideal outcome (i.e., f should behave as if there is a single copy), what value
should f contain at H1, H2, and H3 after the above update and reconciliation pattern completes (i.e., at
the end of t5)?

(Circle True or False for each choice.)

A. True / False H1: 1, H2: 2, H3: 2

Answer: False.

B. True / False H1: 1, H2: 2, H3: 1

Answer: True.

Reconciliations are unidirectional, as stated in the question and as indicated by the arrows.

At t2, H2 sees that H1 has a more recent value of f and set its own value of f to equal 1 because of
the reconciliation. At t3, H2 changes its own local value of f to 2. At t4, H3 sees that H1 has a more

Initials:

6.033 Spring 2011, Quiz 2 Page 9 of 12

recent value of f and set its own value of f to equal 1 because of the reconciliation. At t5, H2 ignores
the value of f from H3 despite the reconciliation, because it has a more recent value of f . H2 has seen
H1’s write, and later made a change to f , so H2’s value should not by overwritten by H3.

We end up with H1: 1, H2: 2, H3: 1.

Initials:

6.033 Spring 2011, Quiz 2 Page 10 of 12

After reading the Unison paper, Ben realizes that it isn’t always possible to come to agreement between nodes
what the value of f should be. Consider the following second pattern:

w(1) w(2)

t1 t2 t3 t4 t5

H1

H2
w(0)

H1 writes 1 into f and reconciles to H2. Then, H1 and H2 modify f in different ways, and then H2 reconciles
to H1 at t5. At t5, H1 and H2 have a conflict because there is no way to order the updates at H1 and H2 at t3
and t4 that is consistent with what could have happened with a single copy of f . A user needs to get involved
to determine what the right value is.

Ben’s goal is to design a tool that reconciles updates to a file f correctly when it is possible, but raises a
conflict when it is not possible. His design is based on time vectors (introduced in the lecture on time, but you
don’t need to recall the lecture to be able to answer this question). A time vector is a vector of integers, where
entry i counts the updates to f on computer i. For example, the vector (0, 0) on host 2 signals that it hasn’t
seen updates for f from H1, and that H2 itself hasn’t done any updates either.

8. [10 points]: For the pattern above (the second pattern), what is the value of the time vector for f at
each node at the end of t1 through t4? (complete the table)

time H1 H2
t1 (1, 0) (0, 0)
t2 —
t3 —
t4 —

Answer:

time H1 H2
t1 (1, 0) (0, 0)
t2 — (1, 0)
t3 (2, 0) —
t4 — (1, 1)

When H2 and H1 reconcile at t2, H2 will compare its vector (0, 0) with H1’s vector (1, 0). Because
H1’s vector is more recent – (1, 0) ≥ (0, 0) – H2 will fetch the recent value of f from H1, and set its
own vector to be (1, 0).

At t3, H1 makes a change to its copy of f , so it updates its vector to mark a write. H1’s vector becomes
(2, 0).

At t4, H2 makes a change to its copy of f , and it also updates its vector to mark a write. H2’s vector
becomes (1, 1).

Initials:

6.033 Spring 2011, Quiz 2 Page 11 of 12

9. [5 points]: How can Ben’s design detect that pattern 2 is a conflict? Be specific, explain using the
time vectors in the examples above.

Answer: When H1 and H2 reconcile at t5, they will notice a conflict because of concurrent updates
to f . Specifically, pattern 2 is a conflict because vectors v = (2,0) and w = (1,1) cannot be ordered with
respect to one another. We can order v and w if v[i] ≥ w[i] for all i (because then v ≥ w), or if w[i] ≥
v[i] for all i (because then w ≥ v). Here, v[0] > w[0] but v[1] < w[1].

Initials:

6.033 Spring 2011, Quiz 2 Page 12 of 12

V Write-Ahead Logging

Ben hasn’t solved enough problems in the last hour. Inspired by the lectures on atomicity and hands-on #5,
he decides to build a database system for his bank. The database is a simple one: its cell storage is a table
of account numbers and balances stored on disk, and it has only one operation: credit(account, delta)
adjusts the balance of the specified account by the (possibly negative) amount delta.

Ben wants the database to support atomic transactions, so he adds the usual begin and commit operations,
and stores a log on a separate disk. The operations are implemented as follows:

• begin appends a 〈BEGIN, transactionid〉 record to the log.

• credit(account, delta) updates the balance of the appropriate account in memory, but does not
write the new balance to cell storage. It also appends to the log the record:
〈UPDATE, transactionid, account, delta, oldbalance, newbalance〉

• commit first appends to the log 〈OUTCOME COMMITTED, transactionid〉. It then writes out to
cell storage any account balances modified by the transaction. When this is done, it appends to the log
〈END, transactionid〉

Ben knows that this protocol can support all-or-nothing atomicity across system crashes. He sketches a
recovery procedure. After a crash, the system will scan the log and redo the effects of any transaction that
logged an OUTCOME COMMITTED record but not an END record. But rather than implementing the
recovery procedure, he puts the system into production immediately. After all, Worse Is Better, and he can
always write that recovery procedure later...

Inevitably, Ben’s system crashes before he gets around to writing that recovery procedure. The bank’s cus-
tomers are not amused. Panicked, Ben turns to you to help him recover the state of his database.

Initials:

6.033 Spring 2011, Quiz 2 Page 13 of 12

The cell storage of the database at the time of the crash, and the last few entries of the log appear below. All
earlier entries in the log correspond to transactions known to have completed in their entirety.

Cell Storage

AccountID Balance
account1 $890
account2 $648
account3 $32
account4 $1500

Log
〈BEGIN, T1〉
〈UPDATE, T1, account2, 200, 448, 648〉
〈OUTCOME COMMITTED, T1〉
〈END, T1〉
〈BEGIN, T2〉
〈BEGIN, T3〉
〈UPDATE, T3, account1, 500, 390, 890〉
〈UPDATE, T3, account4, −500, 1500, 1000〉
〈UPDATE, T2, account3, 100, 32, 132〉
〈OUTCOME COMMITTED, T3〉

10. [10 points]: Fill in the values that will appear in the cell storage once recovery is completed using
Ben’s intended recovery scheme:

AccountID Balance
account1 $890
account2 $648
account3 $32
account4 $1000

Answer: T1 has logged both a OUTCOME record and an END record, so its changes have already
been installed into cell storage and the recovery procedure can ignore it.

T3 has logged an OUTCOME record but not an END record, so it is a winner and needs to be redone.
At the time of the crash, its update to account1 had already been installed to cell storage, but its update
to account4 had not. So the recovery procedure will change account4’s balance to $1000.

T2 has not logged an OUTCOME record, so it had not reached the commit point at the time of the
crash. It is deemed a loser, and the recovery procedure should not redo its changes. account3’s balance
remains unchanged.

Initials:

6.033 Spring 2011, Quiz 2 Page 14 of 12

11. [10 points]: Ben is worried that the write-ahead log will take up too much space. Given Ben’s
recovery procedure, which of the following options would reduce the size of the log, while still being
able to persistently store data, and recover from crashes with all-or-nothing atomicity?

(Circle True or False for each choice.)

A. True / False eliminating the BEGIN record.

Answer: True. The BEGIN record is redundant. The existence of a transaction can be inferred from
the first UPDATE record for that transaction.

B. True / False removing both the oldbalance and delta fields from the UPDATE record

Answer: True. As long as the newbalance field is present, we can redo changes made by committed
transactions. Ben’s recovery procedure does not require undoing changes.

C. True / False removing both the oldbalance and newbalance fields from the UPDATE record

Answer: False. The delta field alone is not enough to redo the effects of committed transactions,
because adjusting the account balance by delta is not an idempotent operation. A transaction might
have committed but only written part of its changes to cell storage at the time of the crash (like T3 from
the previous question). Without either the old or new balance, the recovery procedure has no way to
know whether it needs to redo the change or not.

D. True / False periodically writing a CHECKPOINT record to the log which contains the ID of each
uncommitted transaction, then discarding all log entries before the CHECKPOINT record.

Answer: False. Consider a transaction that begins before the checkpoint, and commits after the check-
point. If the system crashes between when that transaction logs its OUTCOME and END records, the
recovery procedure will need to redo its updates. But any UPDATE records made before the checkpoint
will have been discarded.

End of Quiz II

Initials:

