

L7: Threads

Nickolai Zeldovich
6.033 Spring 2011

Recall: send with locking

send(bb, m):
while True:

acquire(bb.lock)
if bb.in – bb.out < N:

bb.buffer[bb.in mod N] ← m
bb.in ← bb.in + 1
release(bb.lock)
return

release(bb.lock)

send(bb, m):
while True:

acquire(bb.lock)
if bb.in – bb.out < N: …
release(bb.lock)
yield()

receive(bb):
while True:

acquire(bb.lock)
if bb.out ≠ bb.in: …
release(bb.lock)
yield()

Send and receive with yield

yield():
acquire(t_lock)
id = cpus[CPU()].thread
threads[id].state = RUNNABLE
threads[id].sp = SP

do:
id = (id + 1) mod N

while threads[id].state ≠ RUNNABLE

threads[id].state = RUNNING
SP = threads[id].sp
cpus[CPU()].thread = id
release(t_lock)

Yield, version 1

yield():
acquire(t_lock)
id = cpus[CPU()].thread
threads[id].state = RUNNABLE
threads[id].sp = SP

do:
id = (id + 1) mod N

while threads[id].state ≠ RUNNABLE

threads[id].state = RUNNING
SP = threads[id].sp
cpus[CPU()].thread = id
release(t_lock)

Yield, version 1

suspend
current
thread

yield():
acquire(t_lock)
id = cpus[CPU()].thread
threads[id].state = RUNNABLE
threads[id].sp = SP

do:
id = (id + 1) mod N

while threads[id].state ≠ RUNNABLE

threads[id].state = RUNNING
SP = threads[id].sp
cpus[CPU()].thread = id
release(t_lock)

Yield, version 1

suspend
current
thread

choose
new
thread

yield():
acquire(t_lock)
id = cpus[CPU()].thread
threads[id].state = RUNNABLE
threads[id].sp = SP

do:
id = (id + 1) mod N

while threads[id].state ≠ RUNNABLE

threads[id].state = RUNNING
SP = threads[id].sp
cpus[CPU()].thread = id
release(t_lock)

Yield, version 1

suspend
current
thread

choose
new
thread

resume
new
thread

Send with yield, again
send(bb, m):

while True:
acquire(bb.lock)
if bb.in – bb.out < N:

bb.buffer[bb.in mod N] ← m
bb.in ← bb.in + 1
release(bb.lock)
return

release(bb.lock)
yield()

Send with wait / notify
send(bb, m):

acquire(bb.lock)
while True:

acquire(bb.lock)
if bb.in – bb.out < N:

bb.buffer[bb.in mod N] ← m
bb.in ← bb.in + 1
release(bb.lock)
notify(bb.empty)
return

release(bb.lock)
yield()
wait(bb.full, bb.lock)

wait(cvar, lock):
acquire(t_lock)
release(lock)
threads[id].cvar = cvar
threads[id].state = WAITING
yield2() # will be a little different than yield
release(t_lock)
acquire(lock)

Wait and notify

wait(cvar, lock):
acquire(t_lock)
release(lock)
threads[id].cvar = cvar
threads[id].state = WAITING
yield2() # will be a little different than yield
release(t_lock)
acquire(lock)

notify(cvar):
acquire(t_lock)
for i = 0 to N-1:

if threads[i].cvar == cvar && threads[i].state == WAITING:
threads[i].state = RUNNABLE

release(t_lock)

Wait and notify

yield():
acquire(t_lock)
id = cpus[CPU()].thread
threads[id].state = RUNNABLE
threads[id].sp = SP

do:
id = (id + 1) mod N

while threads[id].state ≠ RUNNABLE

threads[id].state = RUNNING
SP = threads[id].sp
cpus[CPU()].thread = id
release(t_lock)

Recall: original yield, version 1

suspend
current
thread

choose
new
thread

resume
new
thread

yield():
id = cpus[CPU()].thread
threads[id].sp = SP
SP = cpus[CPU()].stack

do:
id = (id + 1) mod N
release(t_lock)
acquire(t_lock)

while threads[id].state ≠ RUNNABLE

threads[id].state = RUNNING
SP = threads[id].sp
cpus[CPU()].thread = id

Yield version 2 (for wait)

switch to
this CPU's
kernel stack

choose new
thread, but
allow other
CPUs to
notify()

resume
new
thread

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

