L7: Threads

Nickolal Zeldovich
6.033 Spring 2011



Recall: send with locking

send(bb, m):
while True:
acquire(bb.lock)
If bb.in — bb.out < N:
bb.buffer[bb.in mod N] «— m
bb.in < bb.in + 1
release(bb.lock)
return
release(bb.lock)



Send and receive with yield

send(bb, m):
while True:
acquire(bb.lock)
If bb.in — bb.out < N: ...
release(bb.lock)

yield()

receive(bb):
while True:
acquire(bb.lock)
If bb.out # bb.in: ...
release(bb.lock)

yield()



Yield, version 1

yield():
acquire(t_lock)
Id = cpus[CPU()].thread
threads]id].state = RUNNABLE
threadsJid].sp = SP

do:
id=(id+ 1) mod N
while threads]id].state # RUNNABLE

threadsJid].state = RUNNING
SP = threads]id].sp
cpus[CPU()].thread = id
release(t_lock)



Yield, version 1

yield():
acquire(t_lock)
id = cpus[CPU()].thread }

suspend
current
thread

threads]id].state = RUNNABLE
threadsJid].sp = SP

do:
id=(id+ 1) mod N
while threads]id].state # RUNNABLE

threadsJid].state = RUNNING
SP = threads]id].sp
cpus[CPU()].thread = id
release(t_lock)



Yield, version 1

yield():
acquire(t_lock)
Id = cpus[CPU()].thread
threads]id].state = RUNNABLE
threadsJid].sp = SP

do:
id=(id+ 1) mod N
while threads]id].state # RUNNABLE

threadsJid].state = RUNNING
SP = threads]id].sp
cpus[CPU()].thread = id
release(t_lock)

suspend
current
thread

choose
new
thread



Yield, version 1

yield():
acquire(t_lock)
id = cpus[CPU()].thread }

suspend
current
thread

threads]id].state = RUNNABLE
threadsJid].sp = SP

choose

do:
id = (id + 1) mod N new
while threads|id].state # RUNNABLE thread

resume
new
thread

SP = threads]id].sp
cpus[CPU()].thread = id

threadsJid].state = RUNNING }
release(t_lock)



Send with yield, again

send(bb, m):
while True:
acquire(bb.lock)
if bb.in — bb.out < N:
bb.buffer[bb.in mod N] «— m
bb.in < bb.in + 1
release(bb.lock)
return
release(bb.lock)

yield()



Send with wait / notify

send(bb, m):
acquire(bb.lock)
while True:
aceutretbbiocio
If bb.in — bb.out < N:
bb.buffer[bb.in mod N] < m
bb.in < bb.in + 1
release(bb.lock)
notify(bb.empty)
return
releasetbb-leelo
yteter)
wait(bb.full, bb.lock)



Wait and notify

wait(cvar, lock):
acquire(t_lock)
release(lock)
threadsJid].cvar = cvar
threads[id].state = WAITING
yield2() # will be a little different than yield
release(t_lock)
acquire(lock)



Wait and notify

wait(cvar, lock):
acquire(t_lock)
release(lock)
threadsJid].cvar = cvar
threads[id].state = WAITING
yield2() # will be a little different than yield
release(t_lock)
acquire(lock)

notify(cvar):
acquire(t_lock)
fori=0to N-1:
iIf threadsJi].cvar == cvar && threads]i].state == WAITING:
threadsJi].state = RUNNABLE
release(t_lock)




Recall: original yield, version 1

yield():
acquire(t_lock)
id = cpus[CPU()].thread }

suspend
current
thread

threads]id].state = RUNNABLE
threadsJid].sp = SP

choose

do:
id = (id + 1) mod N new
while threads|id].state # RUNNABLE thread

resume
new
thread

SP = threads]id].sp
cpus[CPU()].thread = id

threadsJid].state = RUNNING }
release(t_lock)



Yield version 2 (for wait)

yield():
Id = cpus[CPU()].thread
threads[id].sp = SP } fﬁ?ét%“ptﬁ-s
SP = cpus[CPU()].stack kernel stack
do:
id = (id + 1) mod N throad. bt
release(t_lock) aclggsﬂtg‘er
acquire(t_lock) notify()
while threads]id].state # RUNNABLE
threadsJid].state = RUNNING esume
SP = threads]id].sp } new
cpus[CPU()].thread = id thread



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

