Simple, Effective and Reliable Tag Storage System
Design

by Chuan Zhang

Instructor: Dina Katabi
TA: Szymon Chachulski
6.033 Spring 2007

l. Introduction
I.A. Overview

Applications such as Flickr or library catalogs often desire to store
relationships between objects. Tags, <object, relationship, subject>, are versatile
abstractions which succinctly capture this relationship. The following paper
proposes a simple, effective, and reliable tag storage system design which
applications can utilize to store and retrieve tags through an application
programming interface (API).

I.B. Strategy

Our overall strategy emphasized the three points of simplicity, effectiveness,
and reliability. A simple system consists of an overall structure and API
implementation that is easy to understand, debug, and iteratively change. An
effective system is one that meets stated performance criteria. In our case,
performance is measured by completion time of API requests compared to a naive
implementation. A reliable system performs correctly over a range of applications
and tag distributions.

We accomplished our goal through the use of double tagging, hash tables,
and linked buckets.

I.C. Strategy Implementation
I.C.1. Double Tagging

Double tagging’s use ensures a simple API. Applications send FIND
requests for tags matching either a certain object and relationship or a certain
subject and relationship. If tags were indexed only by relationship and object or
only by relationship and subject, a FIND request sent on the un-indexed variable
would suffer poor performance. Additionally, the API implementation would differ
depending on which variable was sent in a request. Double tagging stores each
tag twice, indexed by both relationship/object and relationship/subject. This
technique simplifies the FIND API by making requests on either variable have
identical implementations.

1.C.2. Hash Table

Hash tables provide effective performance. Hard disk is divided into
1,200,000 primary buckets. Given a certain input, a hash function can quickly
return a corresponding bucket where matching tags should be located. Hash
tables are extremely efficient methods of siphoning tags and allow us to find most

tags within one disk seek. Most other alternatives would either fail to offer
acceptable performance or induce significantly increased complexity.

1.C.3. Linked Buckets

Linked buckets provide reliability when the system is used with different
applications and tag distributions. Hash tables may fail if the number of tags
assigned to a certain bucket exceeds the space available in the bucket. In our
implementation, 150,000 secondary buckets may be “linked” to primary buckets.
Tags which cannot fit into the primary bucket are put into a linked secondary
bucket. Arbitrary numbers of secondary buckets, limited only by disk space, may
be linked together to accommodate varying loads. This plan increases reliability
when dealing with tag distributions with many “peaks”.

Il. Design Description
Il.A. Storage Structure
Il.A.1 Hard Disk Organization

Figure 1 shows an overview of hard disk organization. A 1000 GB hard disk
was provided for the tag storage system. The hard disk was divided into three
partitions. A root partition of size 100 GB was allocated for metadata. A primary
partition of 600 GB was allocated for tag storage. A secondary partition of 300 GB
was also allocated for tag storage.

The primary partition was equally divided into two 300 GB sections. One is
used for storage indexed by object, the other for storage indexed by subject. Each
section is further divided into 600,000 buckets each .5 MB in size. The secondary
partition is divided into 150,000 buckets each 2 MB in size.

I.A.2. Bucket and Block Organization

Each bucket in the primary partition is identified by a number between 0 and
1,199,999. Each bucket in the primary partition is divided into 125 4 KB blocks.

Each bucket in the secondary partition is identified by a number between
1,200,000 and 1,349,999. Each bucket in the secondary partition is divided into
500 4 KB blocks.

Blocks store tags which can have a size between 0 and 160 bytes. Up to 25
tags can be stored in each block. Reading of individual tags can easily be done by
reading the nth to the n+159 byte in a block where n is a multiple of 160. Blocks
are identified by a number between 25,000,000 and 249,999,999.

1I.A.3. Overhead

Figure 2 shows an overview of overhead organization. Two bucket tables
reside in memory and track the state of buckets in the primary and secondary
partitions. On shutdown, the two tables would be pushed into the root partition.
On startup, the two tables would be read back into memory.

The primary bucket table tracks the state of buckets in the primary partition.
Each of its 1,200,000 entries contains bucket #, start block #, full? bit and extend
pointer (expointer).

The bucket # is simply the ID of the bucket. The start block # gives the
index of the first block in a bucket. The full? bit is 1 when the all 160 byte slots in
the bucket contain information and 0 otherwise. The expointer can either be false
or contain the ID of a linked secondary bucket.

The secondary bucket table tracks the state of buckets in the secondary
partition. Each of its 150,000 entires contains bucket #, start block #, an linked?

bit, a full? bit, and an extend pointer (expointer).

The bucket # is simply the ID of the bucket. The start block # gives the
index of the first block in a bucket. The linked? bit is 1 if the bucket# of the
examined bucket is in the expointer field of any other bucket. The full? bit is 1
when the all 160 byte slots in the bucket contain information and 0 otherwise. The
expointer can either be false or contain the ID of a linked secondary bucket.

Each entry of the primary bucket table can be grossly overestimated to be
of size 50 bytes. Each entry of the secondary bucket table can be estimated to be
of size 25 bytes. The total size is approximately 64 MB, a negligible amount in
memory and hard disk.

II.A.4. Hash Functions

Two hash functions exist. One hash function takes as inputs a subject and
a relationship and returns a bucket index between 0 and 599,999. A second hash
function takes as input a object and a relationship and returns a bucket index
between 600,000 and 1,199,999. It is assumed that two non-ideal hash functions
can be created which attempt to minimize the probability that two different inputs
produce the same output bucket. Collisions are allowed in our implementation.
Linked secondary buckets accommodate overflows.

II.B API Implementation

I1.B.1 INSERT Implementation:

INSERT Pseudocode Comments
insertprimary (input) { H H H H
bucket# = hash(input.subject, input.relationship) Inser!:prlmary tr_les tO Insert
bucket = primarytable (bucket#) tags into the primary bucket
if (bucket.full?) { .
if (bucket.expointer) { first

insertsecondary (input, bucket.expointer)

}

else { , if full, it calls insertsecondary
bucket.expointer = LINKBUCKET ()
linkedbucket = secondarytable (bucket.expointer)

linkedbucket.linked? = 1;
insertsecondary (input, bucket.expointer)
}
}

else { if not full, inserts and
READ_BLOCKS (t , bucket.st tbl k,125) . pr
INSERTIAG (inpay | CrEr srartRioc modifies bucket table

if (bucket is full) {
bucket.full? =1
}
WRITE_BLOCKS (temp, bucket.startblock, 125)
}
}

insertsecondary (input, bucket#) {

bucket = secondarytable (bucket#) |nsertsecondary trieS tO
if (bucket.full?) { . . .
if (bucket.expointer) { insert tags into a linked

insertsecondary (input, bucket.expointer)

}

else {
bucket.expointer = ALLOCATE ()
linkedbucket = secondarytable (bucket.expointer)

linkedbucket.linked? = 1;
insertsecondary (input, bucket.expointer)
}
}
else {
READ_BLOCKS (temp, bucket.startblock, 500)
INSERTTAG (input)
if (bucket is full) {
bucket.full? =1
}
WRITE_BLOCKS (temp, bucket.startblock, 500)

secondary bucket

If full and another bucket
linked, calls insertsecondary
on new bucket

If full and no other buckets,
links another bucket

If not full, inserts and
modifies bucket table

Figure 3: INSERT Pseudocode

INSERT checks bucket tables for a primary bucket or secondary bucket that
has room. It prefers primary buckets over secondary buckets and secondary
buckets linked earlier to secondary buckets linked later. INSERT then
READ_BLOCK's the entire bucket into memory, insert the tag into the first empty
slot, and WRITE_BLOCK’s the bucket back into disk. INSERT can also link a new
secondary bucket if there is no room. INSERT updates the bucket table as
needed. Specifically, non full buckets can become full (full? bit). Unlinked
secondary buckets can become linked (linked? bit and expointer).

Figure 3 shown above is pseudocode for 2 of the INSERT API
Implementation. The code above is run twice, once to insert tags by
subject/relationship and once to insert tags by object/relationship.

I1.B.2. DELETE Implementation

DELETE Pseudocode

Comments

deleteprimary (input) {
bucket# = hash(input.subject, input.relationship)
bucket = primarytable (bucket#)
READ_BLOCKS (temp, bucket.startblock, 125)
DELETETAG (input)
if (bucket was full) {
bucket.full? = 0
}
WRITE_BLOCKS (temp, bucket.startblock, 125)
if (bucket.expointer) {
deletesecondary (input, bucket.expointer)

}

deletesecondary (input, bucket#) {
bucket = secondarytable (bucket#)
READ_BLOCKS (temp, bucket.startblock, 500)
DELETETAG (input)
if (bucket was full) {

bucket.full? = 0

}
WRITE_BLOCKS (temp, bucket.startblock, 500)

deleteprimary finds matches
within primary block and
removes them

if block was full, changes
bucket table

if another bucket linked, calls
deletesecondary on that
bucket

deletesecondary reads a
linked secondary block and
removes matches.

if (bucket was full) {

bucket.full? = 0 .

) can modify bucket table
if (bucket.expointer)

deletesecondary (input, bucket.expointer)

} I if other linked blocks, calls

deletesecondary

Figure 4: DELETE Pseudocode

DELETE must access the primary bucket and all linked buckets, and
remove any matches. DELETE simply performs READ_BLOCK, replaces any
matches with an empty 160 byte array, performs WRITE_BLOCK and moves on to
the next linked bucket. DELETE does not replace the holes that it creates. These
holes can be filled by INSERT’s or corrected during maintenance. DELETE also
modifies the bucket table as needed. Specifically, it can change bucket’s status
from full to not full. It cannot unlink buckets.

Figure 4 shown above is pseudocode for "2 of the DELETE API
Implementation. The code above is run twice, once to remove tags by
subject/relationship and once to remove tags by object/relationship.

I1.B.3. FIND Implementation

FIND Pseudocode Comments

findprimary (input) { 1 1 i
bucket# = hash(input.subject, input.relationship) flndprlmary reads In tags

bucket = primarytable (bucket#) from primary bucket
READ_BLOCKS (temp, bucket.startblock, 125)
FINDTAGS (input.subject, input.relationship)
if (bucket.expointer) {
findsecondary (input, bucket.expointer)
}
}

findsecondary (input, bucket#) { ﬁndsecondary reads in tags
bucket = secondarytable (bucket#) i
READ_BLOCKS (temp, bucket.startblock, 500) from Ilnked Secondary
FINDTAGS (input.subject, input.relationship) bLK:ketS

if (bucket.expointer) {
findsecondary (input, bucket.expointer)

}

}

Figure 5: FIND Pseudocode

FIND must access the primary bucket and all linked secondary buckets,
check for any matches, and retain them. It does this by using READ_BLOCK to
read entire buckets into memory, retaining matches in memory, then repeating for
all linked buckets. Unlike DELETE and INSERT, it must perform its operations only
once. If there is not enough memory to store all results, FIND returns “ERROR”.

Figure 5 shown above shows pseudocode for FIND calls on subject and
relationship. A FIND call on object and relationship can be created easily by

modifying the inputs to the hash function. Tags found will be aggregated together
in an array and written to some address space shared with the application.

I1.B.4. SHUTDOWN Implementation

Primary and secondary bucket tables are written to the root partition of disk.
All other memory is discarded.

I1.B.5. Maintenance Operations

During evening hours with little use, the tag storage system can be taken
offline and maintenance operations can be performed. Holes can be filled simply
by writing a bucket to memory, defragmenting all tags, and rewriting the bucket to
disk. This can be performed iteratively on all buckets. Secondary buckets can be
unlinked accordingly. Hash functions can be rewritten to minimize overflow. Data
will be read into memory and then written into new buckets corresponding to the
new hash function. These functions are not fully defined. The performance of the
system benefits, but is not dependent, on these maintenance operations.

lll. Design Analysis and Discussion
lllLA. Performance

Obviously, performance varies greatly based on the application and tag
distribution. We attempt to quantitatively estimate performance in general and in
two specific applications, Flickr++ and a library catalog.

II.LA.1 FIND and DELETE Performance

Performance of FIND and DELETE is closely related to the number of tags
assigned to a given primary bucket. If tag distribution is approximately uniform,
then the stated workload of 100 GB divided among 600,000 buckets would yield
1,600 tags per bucket. However, if the tag distribution contains “peaks”, then
separate seeks would be required to access every linked secondary bucket,
reducing performance. Table 1 below summarizes performance times for FIND
and DELETE.

DELETE’s times shown are approximately half of the actual time. DELETE
performs two removals from disk due to the double tagging. The identical tags
could be arranged in different linked structures, leading to different times for each
removal.

Tags assigned to | # linked secondary | FIND time Y2 DELETE time
primary bucket buckets *(see below)
1-3,125 0 19.67 ms 39.34 ms
3,126-15,625 1 61.84 ms 123.68 ms
15,626-28,125 2 104.01 ms 208.02 ms
28,126-40,625 3 146.18 ms 292.36 ms

Table 1: Find and Delete Performance
IIILA.2 INSERT Performance

INSERT’s performance depends little on the number of tags assigned to a
certain primary bucket. The bucket tables in memory track full and not full buckets.
INSERT simply has to find a not full primary bucket or linked secondary bucket and
perform a READ_BLOCKS and WRITE_BLOCKS. If all buckets are full, INSERT
can link a new secondary bucket and insert the tag there. Table 2 below
summarizes performance times for INSERT.

INSERT’s time shown is approximately half of the actual time. INSERT
performs two insertions one indexed by subject and the other indexed by object.
These two insertions could require different times.

Type of bucket tag inserted in 2 INSERT time
* (see below)

primary bucket 39.34 ms

linked secondary bucket 84.34 ms

Table 2: Insert Performance

IIl.A.3. Flickr++ Performance

75% of requests in Flickr++ request are of the form FIND <*, “isa”,
object>. If there are much fewer objects than buckets or some objects are tagged
more than others, “peaks” will form and performance will suffer. However, it is
highly unlikely this tag storage system will perform worse on average than the
naive implementation. 15% of requests are of the form FIND <subject, “owns”, *>
and will take around 19.67 ms to complete. 5% of the requests are DELETE’s
which may take a long time. However, this will have negligible impact on overall
performance due to its rarity. Similarly, INSERT’s will have negligible impact on
performance.

IIlLA.4. Library Catalog Performance

INSERT’s are called when the system initializes and DELETE’s are not
allowed. Thus, the performance is determined solely by FIND requests. We do
not expect many “peaks” in the library catalog tags. It is hard to imagine one
author writing thousands of books, or one title being in more than one book. It is
possible for there to be many thousand subjects of type “book”. However, no
searches are conducted on this. Finally, 10% of FIND’s look for books from a given
publisher. This could be a “peak” which would lead to decreased performance.
However, overall, we expect the performance to be close to 19.67 ms.

lll.B. Tradeoffs
I11.B.1. Double Tagging: FIND vs. INSERT/DELETE

Double tagging increased the completion time of INSERT and DELETE and
increased their complexity. Double tagging reduced the complexity of FIND and
made its completion time consistent regardless of the input. Double tagging also
reduced the maximum number of tags that could be stored. This tradeoff was
justified because the overwhelming majority of API calls were to FIND.

Il.B.2. Table Overhead: Complexity vs. INSERT Performance

Use of the extend pointer and full? bit added complexity to FIND, INSERT,

and DELETE. API implementations were required to alter the bucket tables
whenever any changes were made to a linked bucket structure. A traditional linked
list would have reserved the last spot of a bucket for a pointer to a linked bucket
and determined full? by reading a bucket. The traditional implementation would
not have allowed INSERT to make only one seek and would require it to read
through a chain of linked buckets to find an empty slot. The increased
performance justified the added complexity.

IIl.B.3. DELETE leaves holes: Complexity vs. Performance

DELETE leaves empty 160 byte slots in buckets after removing a tag.
Holes waste space and are undesirable. If 3126 tags were written to a primary
bucket and linked secondary bucket, a DELETE of a tag in the primary bucket
could potentially allow the unlinking of the secondary bucket through
rearrangement. The downside is enormous added complexity. Because INSERT
first looks for holes in existing buckets, hole formation and deletion will balance in
the steady state. Thus the performance does not justify the cost.

llIl.C. Limitations

One limitation of the system currently is the small number (150,000) of
secondary buckets compared to 1,200,000 primary buckets. This confines the
number of “peaks” to ~10% of the number of buckets. It is possible that “peaks”
are much more common and as the size grows, not enough secondary buckets will
be able to be allocated. A possible solution is reducing the number of primary
buckets and increasing the number of secondary buckets.

IV. Conclusion

The tag storage system explored provides a simple, effective, and reliable
design for a wide range of applications. Double tagging ensures simplicity for the
FIND API. Hash buckets ensure effectiveness by quickly finding the corresponding
bucket for any input. Linked secondary buckets ensure reliability by allowing
flexible data structures to accommodate “peaks”.

Overall, the tag storage system provides good performance for the Flickr++
and library catalog applications. This system could be improved by tweaking
primary bucket sizes and secondary bucket sizes. The optimal sizes and number
of primary/secondary buckets depend on the hash function and the particular
application. Other performance enhancements could also be added. These
include the use of caches or last block # for bucket.

Word Count: 2460

