

MEMFiS:
A Fast Memory-Backed File System

By Tamara Stern

6.033 Design Project 1
Professor Sam Madden TR10

TA Hongyi Hu
March 24, 2006

Stern 2 of 10

1. Introduction
Many file systems are designed to be fast, while maintaining reliability in the face of crashes. This paper
presents an alternate design, MEMFiS: A Fast Memory-Backed File System, which optimizes only for
speed and not for reliability. To maximize efficiency and simplicity, MEMFiS employs three unusual
design decisions:

1. The File Table is stored in memory, which sacrifices a high maximum number of files for a
reduced number of disk seeks per system call.
2. The disk is segmented into pre-sized blocks, which sacrifices optimal disk utilization for a non-
fragmented disk with performance that degrades minimally over time.
3. The read-ahead caching scheme, which sacrifices throughput for an initial read() request for data
availability in the cache for future requests.

MEMFiS is optimized for a file distribution similar to that of a typical desktop computer, as presented in
Table 1.

File size
(kilobytes)

% of Total Files Stored % of Total Disk Space Used

0-1 25% 1%
1-10 45% 2%

10-100 25% 7%
100-1000 3% 20%

>1000 2% 70%

Table 1: The table demonstrates the file distribution of my laptop. For example, 25% of
files in a typical file distribution are 0-1 kilobyte in size. However, these files only
consume 1% of the total disk space. According to this data, the average file size is 200
kilobytes.

Because MEMFiS stores files in contiguous pre-sized chunks, the typical read() or write() operation will
incur one disk access for every megabyte of data read or written. An open(), close(), or unlink() operation
incur no disk accesses.

2. Design Description and Analysis
This section presents an overview of the design. Section 2.1 presents the file system interface, 2.2
presents the file system configuration, 2.3 presents the implementation details of system calls, and 2.4
presents a performance analysis of typical workloads.

2.1 File System Interface
Clients use a web server running on the machine to upload, download, and delete files. Multiple clients
can read and write files simultaneously. To support these operations, MEMFiS provides an API that is
based on the UNIX file system API [1], with the exception of the open() procedure. The open()
procedure will require an additional input parameter n, the total size of the file, which is available to the
web server during uploads and downloads through the http protocol [2]. This parameter allows the file
system to allocate the appropriate blocks on disk to store the file. Because n is not needed for read
operations, the client may pass a value of -1 for n when reading files.

2.2 File System Configuration
This section contains a description of the file system components as well as an analysis of how much
memory and disk space will be devoted to the different parts of the system.

Stern 3 of 10

2.2.1 Hard Disk
Figure 1 presents the division of the hard disk into the four following block types, based on the assumed
average workload presented in Table 1: 720,000 4-kilobyte blocks, 300,000 10-kilobyte blocks, 240,000
100-kilobyte blocks, and 90,000 1-megabyte blocks. The disk blocks are specified using 3 byte block
numbers ranging from 1 to 1,350,000. The last 120 megabytes of disk are left empty for storage of the
tables in memory, as well as other system parameters (e.g., the operation used to convert physical disk
addresses to block numbers), during a clean system startup or shutdown.

...

720,000
4-kilobyte
blocks
=
3G

300,000
10-kilobyte
blocks
=
3G

240,000
100-kilobyte
blocks
=
24G

90,000
1-megabyte
blocks
=
90G

71
9,

99
9

72
0,

00
0

1,
01

9,
99

9

1,
02

0,
00

0

1,
18

9,
99

9

1,
26

0,
00

0

1,
34

9,
99

9

Figure 1: The hard disk is split into blocks as follows: 750,000 4-kilobyte blocks, 300,000 10-kilobyte blocks,
240,000 100-kilobyte blocks, and 90,000 1-megabyte blocks. The blocks are specified using 3 byte block
numbers ranging from 1 to 1,350,000.

The disk will store files in one or more disk blocks (see Block-Choosing algorithm in Figure 7). Pointers
to these blocks are stored in memory.

The hard disk will provide the following procedures to the file system:

 HD_READ takes a block number and offset, and reads the data stored at that location.
 HD_WRITE takes a block number, an offset, and data, and writes the data to the specified location.

2.2.2 Memory
The memory consists of the Free Space Bit Map, the File Table, the File Descriptor Map, the Current
Reads/Writes Table, the Caching Table, and space reserved for the web server.

 Free Space Bit Map (170 kilobytes): The map, as shown in Figure 2, keeps track of which disk
blocks are currently storing data.

block number

Flag
(1 bit)

0
1

2

0
1

1

…

…

1,349,999 1

Figure 2: The Free Space Bit Map is stored in memory. Each
allocation block is represented by a bit in the map: if the bit is set to 1,
then the block is in use; if it is set to 0 then the block is free.

Total size = (1 bit · 1,350,000 blocks) · (1 byte / 8 bits) ≈ 170 KB

 The last 120 megabytes of disk are left empty for storage of the tables in
memory, as well as other system parameters (e.g., the operation used to convert physical disk addresses to
block numbers), during a clean shutdown.

0

…

1,
35

0,
00

0

120 MB for
storing tables
from memory
during a clean
system
shutdown

Stern 4 of 10

 File Table (70 megabytes): Figure 3 presents the constant-time lookup table, which maintains each
filename, file size, date uploaded, date last accessed, and the block blocks in which the file is
stored.

Keeping the File Table small enough to fit in memory imposes minor restrictions. First, the
filename size limited to 64 bytes. However, other file systems support as little as 12 bytes per
filename [3]. Additionally, the maximum number of files is limited to 750,000. This limit permits
an average file size of 160 kilobytes (120GB total disk space / 750,000 files), which is less than the
assumed average of 200 kilobytes, as presented in Table 1.

Filename
(64 bytes)

File size
(8 bytes)

file1.doc

file2.doc

1.5 MB

1 KB

… …

Date
Uploaded
(4 bytes)

Date Last
Accessed
(4 bytes)

03-20-2006

03-24-2006

03-22-2006

03-24-2006

… … …

1,260,000 1,260,001

0

Disk Blocks
(3 bytes each)

At most 1,350,000 blocks can be
referenced. Therefore, in the worst-
case, this entire column will take up
9.5 MB (1,350,000 possible
addresses · 7 bytes/ block
addressed) of memory.

Figure 3: The File Table is stored in memory. It maintains a maximum of 750,000
files and the metadata associated with them.

…

Total size = 78 bytes/entry · 750,000 entries + 9.5 MB for entire Disk Blocks column ≈ 70 MB

3 bytes to +
store block #

4 bytes to store = 7 bytes/block
memory pointer addressed

 File Descriptor Map (125 bytes): The bit map presented in Figure 4 maintains file descriptors that
are currently in use. Unique file descriptors permit concurrent readers and writers to access the
same file. MEMFiS limits the total number of concurrent reads and writes to 1000, which is on par
with other systems [4].

Figure 4: The File Descriptor Map is stored in memory. It keeps track of
the file descriptors that are currently in use; if the bit is set to 1, then the file
descriptor is in use. If it is zero, then it is free to use.

File descriptors

Flag
(1 bit)

0
1

2

0
1

0

…

…

999 1

Total size = (1 bit · 1,000 file descriptors) · (1 byte/8 bits) ≈ 125 bytes

Stern 5 of 10

 Current Reads/Writes Table (72 kilobytes): The constant-time lookup table maintains the files
currently being read from or written to. As shown in Figure 5, the table is indexed by a file
descriptor associated with a filename and the next block number (plus an offset) to access for
subsequent read or write operations. There will be at most 1000 open files in the table, which is
enforced by the limited number of file descriptors.

File
Descriptor
(2 bytes)

Next Read/Write
Block

(3 bytes)

2

999

0

1,260,001

… …

Filename
(64 bytes)

file1.doc

file2.doc

…

Next Read/Write
Block Offset

(3 bytes)

256

250,000

…

Figure 5: The Current Reads/Writes Table is kept in memory. It maintains the next
block number to access for at most 1000 open files, which is enforced by the limited
number of file descriptors.

Total size = 72 bytes/entry · 1000 entries ≈ 72 KB

 Caching Table (5 megabytes): Figure 6 shows the table used to cache data that is brought into
memory during read() requests. In this table, block numbers are mapped to the location in memory
storing the data. Additionally, there is a referenced bit, used by the clock page-removal policy
described in the 6.033 lecture notes [5], which is an approximation of the least recently used (LRU)
removal policy.

Cache size = 5 megabytes (This value is configurable upon system installation)

Memory
Address
(4 bytes)

…

Data stored in block
number 0

Data stored in block
number 1,260,000

0

1,260,000

referenced
bit

(1 bit)

…

Block
number
(3 bytes)

…

1

0

Figure 6: The Caching Table is kept in memory. It keeps track of the block number
mapped to the memory address of any cached data. Additionally there is a
referenced bit that is used by the clock page-removal policy, as described in 6.033
lecture notes [5].

 Web Server (45 megabytes): The remaining space is reserved for the web server.

2.3 Implementation of System Calls
This section describes the process for system calls to open(), read(), write(), close(), and unlink(), as well
as the system behavior during a shutdown and crash recovery.

2.3.1 Implementation of open(name, flags, mode, size)
1. Check the File Descriptor Map.

a. If there is no free file descriptor, return an error.
b. Otherwise, choose a free file descriptor and update the File Descriptor Map.

2. Check the value of size.

Stern 6 of 10

 a. If size is equal to -1, a read() request will follow (see Section 2.1 File System Interface). In
this case, if name is not in the File Table, return an error and skip to step 7.

 b. Otherwise, a write() request will follow. In this case, if name is already in the File Table,
return an error. Otherwise, continue to the next step.

3. Check the Free Space Bit Map.
a. If there is not enough free space on the disk, return an error.
b. Otherwise, continue to the next step.

4. Add an entry to the File Table with the filename, size, and date uploaded. Assign disk blocks
according to Block-Choosing Algorithm described in Figure 7.

5. Update the Free Space Map based on the blocks chosen.
6. Add an entry to the Current Reads/Writes Table with the file descriptor chosen, filename, and the

first block in which to write the file.
7. Return the file descriptor.

file size = 2.1 MB

 file size = 2.3 MB

file size = 125 KB 1 MB block

100 KB block …

…

…

…

Example block assignments using Block-Choosing Algorithm

1 MB block

Figure 7: The Block-Choosing Algorithm has three goals. The first priority is to assign the fewest
number of disk blocks to store the file. The second priority is to waste as little space as possible
by assigning the appropriately-sized disk blocks. The third priority is to choose blocks that are
contiguous, if possible. As a result, this algorithm does not maximize disk utilization. For
example, a 125 kilobyte file will be stored in one 1-megabyte block instead of one 100-kilobyte
block, two 10-kilobyte blocks, and 4-kilobyte block (wasting 899 kilobytes v. 1 kilobyte). However,
this algorithm does optimize for speed, minimizing the number of disk seeks necessary for disk
transfers (1 disk seek v. 4 disk seeks).

1 MB block

1 MB block 1 MB block

1 MB block

2.3.2 Implementation of read(fd, buf, n)
1. Check the Current Reads/Writes Table for next block to read.
2. Check the File Table to retrieve any subsequent blocks to read.
3. Check the Caching Table.

a. If the data is in the table, extract the requested regions and set the referenced bit to 1.
b. Otherwise, read the blocks from disk with a look-ahead policy that reads a minimum of one

megabyte (this number is configurable) of data for each read request. The data read is stored
in the Caching Table, using the clock page-removal policy [5] if necessary.

4. Update the Current Reads/Writes Table with the next read location.
5. Return the data requested.

2.3.3 Implementation of write(fd, buf, n)
1. Check the Current Reads/Writes Table for the next location to write to.
2. Check the File Table to retrieve additional blocks to write to.
3. Check if the block number being written to is currently stored in the Caching Table. If so, write

the data to the block in memory specified by the Caching Table.
4. Write the data to the blocks on hard disk.
5. Update the Current Reads/Writes Table with the next location.

Stern 7 of 10

2.3.4 Implementation of close(fd)
1. Remove the file from the Current Reads/Writes Table.
2. Set the bit in File Descriptor Map to 0.

2.3.5 Implementation of unlink(name)
1. Check the Current Reads/Writes Table.

a. If the file is currently being read or written, return an error. This behavior is similar that of
the Windows file system [6].

b. Otherwise, continue to next step.
2. Update the Free Space Bit Map to reflect free space.
3. Remove data from the Caching Table.
4. Remove file from File Table.

2.3.6 System Shutdown Behavior
When MEMFiS is signaled to shut down, it writes the tables in memory to the last 120 MB of the disk.
Upon system startup, reload the data into the appropriate tables.

2.3.7 System Crash Recovery
When the machine crashes, all data is lost. When the machine reboots, all table entries are set to null and
all bit map values are set to zero.

2.4 Performance Analysis
This section presents an analysis of the worst-case and best-case performance of MEMFiS on various
workloads. The best and worst cases are differentiated by the following parameters:

1. The amount of free space on disk, which determines the degree to which files are stored
contiguously on disk, which ultimately reduces the number of disk seeks per read() or write() call.

 2. The presence of interleaved requests because, which interrupts potentially contiguous disk accesses
with non-adjacent disk accesses to service other clients requests.

The calculations for the analyses are demonstrated in Figure 8, as described in 6.033 lecture notes [7].
The metrics analyzed include the time spent on disk transfers, time spent on disk seeks, average time
elapsed between a client request and response reception (latency), the rate at which data can be
transferred (throughput) and the achieved throughput compared to what the disk hardware allows
(efficiency).

Latency per
request

Throughput

1 sec

10 MB
.

10 ms .

Data size (in bytes)

Data size

Total time

Efficiency Throughput

10 MB / sec

Throughput between
disk and memory ,
which is the bottleneck
throughput .

Time spent on
disk seeks

Time spent on
disk transfers

=

=

=

=

=

Requests

Total time =

Total time

Time spent on disk transfers + Time spent on disk seeks

non-adjacent disk seeks

Figure 8: Performance analysis metrics defines, as described in
6.033 lecture notes [7].

Stern 8 of 10

The time spent between the network and memory is not considered because it is negligible as compared
with the disk transfer time (100 times faster), as long as the network does not overload the system.
Additionally, the time spent on adjacent track seeks is negligible as compared with non-adjacent track
seeks (10 times faster) so it is not considered in the analysis.

Finally, only read() and write() operations are considered in the analysis because open(), close(), and
unlink() require no disk seeks. This performance surpasses that of the UNIX file system, which requires
at least two disk seeks to perform open() or unlink() [8].

2.4.1 Small File Sequential Workload:
The analysis for the Small File Sequential Workload, which consists of creating many 1-kilobyte files
followed by reading the files in the order in which they were created, is presented in Table 2.

Time spent

on disk
transfers

Time spent
on disk
seeks

% Time
spent

seeking
Latency

per request Throughput Efficiency

Worst write() case
(small files written to a
partially filled disk, with
interleaved requests by

other clients)

0.1 sec 10 sec 99% 0.0101 sec 99 KB/sec 1%

Best write() case
(small files written to an

empty disk, with no
interleaved requests)

0.1 sec 0.01 sec 9.1% 0.00011 sec 9.1 MB/sec 91%

Worst read() case
(small files read from disk,
with interleaved requests

by other clients)

100 sec 10 sec 10% 0.11 sec 9 KB/sec 0.09%

Best read() case
(small files read from disk,

with no interleaved
requests)

0.1 sec 0.01 sec 9.1% 0.00011 sec 9.1 MB/sec 91%

Table 2: The Small File Workload Performance Analysis is performed for 1000 requests to read or write
files that are 1 kilobyte in size.

This workload performs poorly for the worst read() case because the file system will read and cache 1
megabyte even if only 1 kilobyte is being requested. However, the cache optimizes performance in the
average case, in which chunks of data are often read sequentially (Locality of Reference principle [9]).
This optimization is particularly useful when there are interleaved requests that would cause the system to
seek to a position away from the file being read. The cache is also useful for keeping popular files in
memory, which, if kept in the cache, may be returned immediately upon request.

The disk utilization for this workload could potentially be as low as 0.625% (750,000 maximum # of files
· 1 kilobyte/small file / 120 GB total disk storage). However, the expected workload has a greater file size
distribution.

For a small file workload in general, MEMFiS will more likely have best-case performance for read()
requests, because of the read-ahead caching scheme, and worst case performance for write() requests,
because the system will not guarantee the usage of adjacent blocks when writing many small files (see
Section 3 Conclusion and Future Work for suggestions for batching write() requests).

Stern 9 of 10

2.4.2 Large File Random Workload & Large File Workload with Deletes
The Large File Random Workload consists of creating several large files, followed by reading the files in
some unpredictable order. The Large File Workload with Deletes consists of creating and deleting many
large files followed by reading the remaining files in the order in which they were created. The analysis
for these workloads, as presented in Table 3, are identical because delete() operations require no
additional disk seeks and reading sequentially after any arbitrary number of delete() operations is
analyzed in the same way as reading in an unpredictable order because there is no guarantee of the
relative location of the remaining files.

Time spent

on disk
transfers

Time spent
on disk
seeks

% Time
spent

seeking

Latency
per request Throughput Efficiency

Worst write() case
(large files written to the 4-

kilobyte blocks, with
interleaved requests by

other clients)

0.1 sec 2.5 sec 96% 2.6 sec 385 KB/sec 3.9%

Best write() case
(large files written to the 1-
megabyte blocks, with no

interleaved requests)

0.1 sec 0.01 sec 9.1% 0.11 sec 9.1 MB/sec 91%

Worst read() case
(large files read from the 4-

kilobyte blocks, with
interleaved requests by

other clients)

0.1 sec 2.5 sec 96% 2.6 sec 385 KB/sec 3.9%

Best read() case
(large files read from 1-

megabyte blocks, with no
interleaved requests)

0.1 sec 0.01 sec 9.1% 0.11 sec 9.1 MB/sec 91%

Table 3: The Large File Random Workload & Large File Workload with Deletes Performance Analysis is
performed for 1 request to read or write a file that is 1 megabyte in size.

The worst case for read() requests is not as poor as in the Small File Sequential Workload because the
read() request is already 1 megabyte in size so MEMFiS will not read any additional data.

The worst case for write() requests could arise if 90,000 medium-sized (greater than 101 kilobyte) files
are utilizing all of the 1-megabyte disk blocks. However, only 3% of expected files fall into this range
(see Table 1). Nonetheless, MEMFiS optimizes performance in this situation by attempting to assign
contiguous blocks when storing larger files.

For the large file workload in general, because of the expected file distribution, MEMFiS will more likely
have best-case performance in which large files are stored in 1-megabyte blocks.

3. Conclusion and Future Work
MEMFiS is a file system optimized for speed rather than reliability. The key aspects of the MEMFiS
design include maintenance of the File Table in memory and pre-sized disk blocks for file storage. These
design decisions offer a solution that reduces the number of disk seeks significantly and avoids disk
fragmentation, increasing overall efficiency.

MEMFiS is designed to perform optimally on a distributed workload with recurring requests for popular
cached files, and frequent calls to open(), close(), and unlink(), which require no disk seeks.

Stern 10 of 10

MEMFiS does not optimize for highly interleaved workloads of very small, unordered read() and write()
requests. However, the read-ahead scheme handles this situation by speculating which blocks will
potentially be read and copying them to the cache.

There are four key areas in which future versions of MEMFiS could be optimized. First, buffering write()
requests in memory would increase the performance when multiple clients are making interleaved write()
requests to write to non-adjacent parts of the disk. Second, incorporating a queue of requests that could
be batched and reordered would increase performance by reducing the overhead for each individual
request. Third, future versions of MEMFiS could provide hierarchical directories for file organization.
Finally, the system would benefit from increased security by maintaining and enforcing permissions.
This improvement would also allow users to upload files that have the same name (e.g., index.html)
because filenames could be tagged with user identification numbers.

4. References and Acknowledgements

4.1 References
[1] Saltzer, Jerome H. and Kaashoek, M. Frans. “Case study of UNIX file system layering and naming,”
Principles of Computer System Design, Appendix 2-A, pp. 2-52, 2006.
[2] “Hypertext Transfer Protocol,” [Online document], 1999, [cited 2006 March 5]. Available HTTP:
http://www.w3.org/Protocols/rfc2616/rfc2616.html.
[3] “Comparison of file systems,” [Online document], 2006 March, [cited 2006 March 20]. Available
HTTP: http://en.wikipedia.org/wiki/Comparison_of_file_systems.
[4] “Web Server Comparisons,” [Online document], 2006 March, [cited 2006 March 21]. Available
HTTP: http://www.acme.com/software/thttpd/benchmarks.html.
[5] Saltzer, Jerome H. and Kaashoek, M. Frans. “Chapter 6: Performance,” Principles of Computer
System Design, Section B-7, pp. 46, 2006.
[6] “File Utilities,” [Online document], 2006 March, [cited 2006 March 21]. Available HTTP:
http://developer.gimp.org/api/2.0/glib/glib-File-Utilities.html.
[7] Saltzer, Jerome H. and Kaashoek, M. Frans. “Chapter 6: Performance,” Principles of Computer
System Design, Section B-7, pp. 9-11, 2006.
[8] Ritchie, D.M, and Thompson, K. “The UNIX Time-Sharing System.” BSTJ version of C.ACM Unix
paper (1974): 6-7.
[9] “Operating Systems: Glossary of Common Terms,” [Online document], 2006 March, [cited 2006
March 21]. Available HTTP: http://www.321site.com/greg/courses/os/glossary.htm.

4.2 Acknowledgements
I would like to thank Hongyi Hu, my 6.033 TA, for his tutorials and office hours, which were very helpful
in clarifying the assignment. Michael Lin, my 6.033 tutor, spent significant time helping me to
understand the assignment and drawing out possible file system configurations. I would like to thank
Keith Winstein, another 6.033 TA, for his suggestion to eliminate disk fragmentation from my design. I
would also like to thank Jane Connor and Robert Doherty, my 6.033 writing tutors, who helped me learn
to write better papers, proposals, and projects. Finally, I would like to thank Professor Madden, my 6.033
recitation instructor, for his patience when answering so many questions during and outside of his office
hours.

word count: 2,465
(not including figures, tables, title page, references, or acknowledgements)

