Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science 6.012
 Microelectronic Devices and Circuits
 Spring 2007
 February 21, 2007 - Homework \#2
 Due - February 28, 2007

Problem 1

Fill in the values for the maximum absolute electric field, built in voltage, and depletion width for the following pn junctions. Assume thermal equilibrium.

$N_{d} \mathrm{~cm}^{-3}$	$N_{a} \mathrm{~cm}^{-3}$	$x_{n o} \mathrm{~nm}$	$x_{p o} \mathrm{~nm}$	$E_{o} \mathrm{kV} / \mathrm{cm}$	$\phi_{\text {bi }} \mathrm{mV}$
10^{15}	10^{15}	$\mathbf{6 2 3}$	$\mathbf{6 2 3}$	$\mathbf{9 . 6}$	$\mathbf{6 0 0}$
10^{16}	10^{17}	303	$\mathbf{3 0 . 3}$	$\mathbf{4 6 . 8}$	$\mathbf{7 8 0}$
10^{16}	10^{18}	$\mathbf{3 2 8}$	$\mathbf{3 . 2 8}$	$\mathbf{5 0 . 7}$	$\mathbf{8 4 0}$

$\phi_{\mathrm{bi}}=60 \mathrm{mV} \log \left(N_{d} N_{a} / n_{i}^{2}\right)$
$x_{p}=\left[\left(2 \varepsilon_{\mathrm{s}} \phi_{\mathrm{bi}} N_{d}\right)\left(\mathrm{q} N_{a}\left(N_{a}+N_{d}\right)\right)^{-1}\right]^{0.5}$
$x_{n}=x_{p} N_{a} / N_{d}$
$E=\mathrm{q} x_{n} N_{d} / \varepsilon_{\mathrm{s}}$
Compare these values to Example 3.4 in the text and figure out what resulted in the differences.

Problem 2

We have a PN junction with the p-type side doped with $N_{a}=10^{17} \mathrm{~cm}^{-3}$ and the n-type side doped with $N_{d}=10^{18} \mathrm{~cm}^{-3}$. Assume thermal equilibrium.
a) Compute the built in potential ϕ_{bi}.
b) Calculate the depletion width on each side: $x_{n 0}$ and $x_{p 0}$.
c) Plot the charge density, electric field, and electric potential across the PN junction. Please follow the graph convention in Howe \& Sodini.
a) $\phi_{\mathrm{bi}}=\mathrm{v}_{\mathrm{th}} \ln \left(N_{a} N_{d} / n_{i}^{2}\right)=\mathbf{0 . 8 9 8} \mathrm{V}$
b) Using Eq 3.55
$x_{n 0}=\left[\left(2 \times 1.035 \times 10^{-12} \times .898 \times 10^{17}\right)\left(1.6 \times 10^{-19} \times 10^{18} \times\left(10^{17}+10^{18}\right)\right)^{-1}\right]^{0.5}=\mathbf{1 . 0 3} \times 10-6$
cm
Using Eq 3.52
$x_{p 0}=1.03 \times 10^{-5} \mathrm{~cm}$
c) $\mathrm{E}_{\text {max }}=-\mathrm{q} N_{a} X_{p 0} / \varepsilon_{\mathrm{s}}=-159 \mathrm{kV} / \mathrm{cm}$
$\phi_{\mathrm{n}}=\mathrm{v}_{\mathrm{th}} \ln \left(N_{d} / n_{i}\right)=.479$
$\phi_{\mathrm{p}}=\mathrm{v}_{\mathrm{th}} \ln \left(N_{a} / n_{i}\right)=-.419$
$\phi(0)=\phi_{\mathrm{n}}-\mathrm{E}_{\max } X_{\mathrm{n} 0} / 2=.397$
In addition to $x_{p 0}$ and $x_{n 0}$, these are the only six numbers needed for the graphs. Charge Density

Electric Field

Potential

Problem 3

Given $x_{n o}=100 \mathrm{~nm}, \phi_{\mathrm{bi}}=780 \mathrm{mV}, N_{d}=10^{17} \mathrm{~cm}^{-3}$. The voltage V varies from 0 to +3 volts.

a) Plot the amount of charge stored on the n-side versus voltage V.
b) What is C_{j}, the depletion capacitance at zero bias? Plot C_{j} versus voltage V .
a) $\mathrm{q}_{\mathrm{o}}=\mathrm{q} x_{n o} N_{d}=1.6 \times 10^{-7}$ coulombs $/ \mathrm{cm}^{2}$ $\mathrm{q}(\mathrm{V})=\mathrm{q}_{\mathrm{o}}\left(1+\left(\mathrm{V} / \phi_{\text {bi }}\right)\right)^{0.5}$

b) $\mathrm{C}_{\mathrm{jo}}=\mathrm{q} x_{n o} N_{d} / 2 \phi_{\mathrm{bi}}=10^{-7}$ farads $/ \mathrm{cm}^{2}$ $\mathrm{C}_{\mathrm{j}}(\mathrm{V})=\mathrm{C}_{\mathrm{jo}}\left(1+\left(\mathrm{V} / \phi_{\mathrm{bi}}\right)\right)^{-.5}$

Problem 4

For the given set up:

a) Plot the electric field versus distance. Follow the convention in H\&S. Set the oxide and p-type interface as $\mathrm{x}=0$.
b) Plot the charge density versus distance.
a) $\phi_{n^{+}}=550 \mathrm{mV}$ and $\phi_{\mathrm{p}}=-60 \mathrm{mV} \log \left(10^{16} / 10^{10}\right)=-360 \mathrm{mV}$

There is a total voltage drop of 910 mV across the MOS. We know there will be charge at the boundary of the oxide and the $n+$ silicon, no charge in the oxide, and a constant charge density of $\mathrm{q} N_{a}$ in the depleted region of the p-type silicon. Since the electric field is proportional to the integral of charge it will look like this.

The field decreases at a linear rate in the silicon because the charge density is constant. Using $\mathrm{E}=\mathrm{q} N_{a} \mathrm{X}_{\mathrm{d}} / \varepsilon_{\mathrm{s}}$, we know $\mathrm{X}_{\mathrm{d}}=\varepsilon_{\mathrm{s}} \mathrm{Eo} / 3 \mathrm{q} N_{a}$. Since the voltage is the negative integral of the electric field we know that:
$.91=$ Eo x tox $+1 / 2 \times \mathrm{X}_{\mathrm{d}} \times \mathrm{Eo} / 3$ (area of a triangle) $=\mathrm{Eo} \mathrm{x}$ tox $+\mathrm{Eo}^{2} \varepsilon_{\mathrm{s}} / 18 \mathrm{q} N_{a}$ Using the quadratic formula, $\mathrm{Eo}=157.7 \mathrm{kV} / \mathrm{cm}$ and $\mathrm{X}_{\mathrm{d}}=340 \mathrm{~nm}$.
b) To maintain charge neutrality, the charge on the metal surface is the opposite of the total charge in the silicon. The total charge in the silicon is $-\mathrm{q} N_{a} \mathrm{X}_{\mathrm{d}}=-5.44 \times 10^{-8}$ coulombs cm^{-2}.

