Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science 6.012
 Microelectronic Devices and Circuits
 Spring 2007
 March 16, 2007 - Homework \#4
 Due - March 23, 2007

Problem 1

Consider the CMOS inverter pictured below. Take channel length modulation into account.

Parameter	NMOS	PMOS
$V_{\text {TO }}$	0.5 V	-0.5 V
μ	$220 \mathrm{~cm}^{2} / \mathrm{Vs}$	$110 \mathrm{~cm}^{2} / \mathrm{Vs}$
λ	$0.1 \mathrm{~V}^{-1}$	$0.1 \mathrm{~V}^{-1}$
$\mathrm{~T}_{\mathbf{o x}}$	15 nm	15 nm

- Dimensions of W and L are in μm

a) Calculate V_{M}, the voltage midpoint.
b) Calculate A_{V}, the voltage gain at $V_{i n}=V_{M}$.
c) Calculate N_{ML} and N_{MH}, the noise margin low and noise margin high.
d) Calculate $t_{\text {PhL }}$ and $t_{\text {PLH }}$, the propagation delay from high-to-low and propagation delay from low-to-high.
a) We set the drain current of the PMOS equal to the drain current of the NMOS, and plug in $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{M}}$.
$\mathrm{V}_{\mathrm{M}}=0.75 \mathrm{~V}$
b) Voltage gain, $\mathrm{Av}=-\left(\mathrm{g}_{\mathrm{mn}}+\mathrm{g}_{\mathrm{mp}}\right) *\left(\mathrm{r}_{\mathrm{on}} \| \mathrm{r}_{\mathrm{op}}\right)$
$\mathrm{g}_{\mathrm{mn}}=\mathrm{g}_{\mathrm{mp}}=50 \mu \mathrm{~S}$
$\mathrm{r}_{\mathrm{on}}=\mathrm{r}_{\mathrm{op}}=1.47 \mathrm{M} \Omega$
$\mathrm{A}_{\mathrm{v}}=-74$
c) $\mathrm{NM}_{\mathrm{L}}=\mathrm{V}_{\mathrm{M}}+\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{M}}\right) / \mathrm{A}_{\mathrm{V}}=0.74 \mathrm{~V}$
$\mathrm{NM}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{M}}+\mathrm{V}_{\mathrm{M}} / \mathrm{A}_{\mathrm{V}}=0.74 \mathrm{~V}$
d) propagation delay $=\Delta \mathrm{V}^{*} \mathrm{C} / \mathrm{I}$
$\Delta \mathrm{V}=0.75 \mathrm{~V}=50 \%$ of the total value
$\mathrm{C}=500 \mathrm{fF}$
$\mathrm{I}_{\mathrm{D}, \mathrm{pmos}}=\mathrm{I}_{\mathrm{D}, \mathrm{nmos}}=202 \mu \mathrm{~A}$
$\mathrm{T}_{\mathrm{PH}}=\mathrm{T}_{\mathrm{PL}}=1.856 \mathrm{~ns}$

Problem 2

We will now use the following SPICE model and compare our hand calculations from Problem 1 with simulated results.

```
.MODEL N15 NMOS LEVEL=1 VT0=0.5 TOX=1.5e-8 U0=220 LAMBDA=1.0e-1
+GAMMA=0.6 CJ=1e-4 CJSW=5e-10 PB=0.95
.MODEL P15 PMOS LEVEL=1 VT0 =-0.5 TOX=1.5e-8 U0=110 LAMBDA=1.0e-1
+GAMMA=0.6 CJ=3e-4 CJSW=3.5e-10 PB=0.9
```

a) Use the DC sweep on the input voltage to simulate transfer characteristics using SPICE. Compare $\mathrm{V}_{\mathrm{M}}, \mathrm{A}_{\mathrm{V}}, \mathrm{N}_{\mathrm{ML}}, \mathrm{N}_{\mathrm{MH}}$, with the calculated results.
b) Use the Pulse input to simulate an input waveform shown below using SPICE. Compare $t_{\text {PHL }}$ and $t_{\text {PLH }}$ with your hand calculations.

We see $\mathrm{V}_{\mathrm{M}}=0.75 \mathrm{~V}$.
$\mathrm{N}_{\mathrm{ML}}=\mathrm{V}_{\mathrm{IL}}-\mathrm{V}_{\mathrm{OL}} \sim 0.677 \mathrm{~V}-0.0625 \mathrm{~V}=0.615 \mathrm{~V}$
$\mathrm{N}_{\mathrm{MH}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{IH}} \sim 1.44 \mathrm{~V}-0.821 \mathrm{~V}=0.619 \mathrm{~V}$

$t_{\text {PLH }} \sim 4 \mathrm{~ns}$
$\mathrm{t}_{\text {PHL }}$ 4.1ns

Problem 3

Consider the circuit below, which consists of an NMOS device and resistor load. Disregard channel length modulation for this problem.
a) Calculate $\mathrm{V}_{\mathrm{M}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$. Remember, for hand calculations we assume $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{MAX}}$, and $\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{MIN}}$.
b) Calculate the voltage gain of this circuit, when $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{M}}$.

a) Set the current through the resistor equal to the current through the NMOS, with $V_{\text {in }}=V_{\text {out }}=V_{M}$.
$\frac{V_{D D}-V_{M}}{R}=\frac{1}{2} \frac{W}{L} \mu C_{o x}\left(V_{M}-V_{T n}\right)^{2}$
$\mathrm{V}_{\mathrm{M}}=1.16 \mathrm{~V}$
When the input is 0 V (low), the NMOS is in cutoff, so no current flows. Therefore, $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{MAX}}=1.5 \mathrm{~V}$

When the input is 1.5 V (high), the NMOS is in triode. We must solve as we did earlier, setting the current through the resistor equal to the NMOS in triode. $\mathrm{V}_{\text {in }}$ is set to 1.5 V .

$$
\begin{aligned}
& \frac{V_{D D}-V_{\min }}{R}=\frac{W}{L} \mu C_{o x}\left(V_{D D}-\frac{V_{\min }}{2}-V_{T n}\right) V_{\min } \\
& \mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{MIN}}=0.63 \mathrm{~V}
\end{aligned}
$$

b) The small signal gain of this circuit is $-\mathrm{g}_{\mathrm{m}} * \mathrm{R}$.

$$
g_{m}=\sqrt{2 \frac{W}{L} \mu C_{o x} I_{D S a t}}=1.34 \mathrm{~mA} / \mathrm{V}
$$

$\mathrm{A}_{\mathrm{V}}=-1.34$

Problem 4

Consider the circuit below, which consists of an NMOS device and PMOS current source load. Do not neglect channel length modulation.
a) Calculate the width of the PMOS device so its saturation current is $50 \mu \mathrm{~A}$.
b) Calculate $\mathrm{V}_{\mathrm{M}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$. Remember, for hand calculations we assume $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{MAX}}$, and $\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{MIN}}$.
c) Calculate the voltage gain of this circuit, when $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{M}}$.

a) $50 \mu A=\frac{1}{2} \frac{W}{1.5} \mu_{p} C_{o x}(1-0.5)^{2}$

Width of device, $\mathrm{W}=23.7$ microns
b) Setting the saturation drain current of the NMOS equal to that of the PMOS, we find
$\mathrm{V}_{\mathrm{M}}=1.175 \mathrm{~V}$
When the input is low, the NMOS is in cutoff, therefore
$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$
When the input is high, the NMOS is in triode. Setting the current through the NMOS equal to the PMOS,
$\frac{1}{2} \frac{23.7}{1.5} \mu_{p} C_{o x}(1-0.5)^{2}\left(1+.1\left(V_{D D}-V_{\min }\right)\right)=\frac{6}{1.5} \mu C_{o x}\left(V_{D D}-\frac{V_{\min }}{2}-0.5\right) V_{\min }$ $\mathrm{V}_{\mathrm{MIN}}=\mathrm{V}_{\mathrm{OL}}=0.33 \mathrm{~V}$
c) For this circuit, the voltage gain is $-\mathrm{g}_{\mathrm{mn}} *\left(\mathrm{r}_{\mathrm{on}} \| \mathrm{r}_{\mathrm{op}}\right)$
$g_{m}=\sqrt{2 \frac{W}{L} \mu C_{o x} I_{\text {DSat }}}=0.144 \mathrm{~mA} / \mathrm{V}$
$r_{\text {on }}=r_{o p}=\frac{1}{\lambda I_{D}} \rightarrow I_{D}=50 \mu \mathrm{~A}, r_{o}=200 \mathrm{k} \Omega$
$\mathrm{A}_{\mathrm{v}}=-14$

