6.003: Signals and Systems

Fourier Representations

October 27, 2011

Fourier Representations

Fourier series represent signals in terms of sinusoids.
\rightarrow leads to a new representation for systems as filters.

Fourier Series

Representing signals by their harmonic components.

$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array} \leftarrow$ harmonic \#
$\begin{aligned} \text { DC } & \rightarrow \\ \text { fundamental } & \rightarrow \\ \text { second harmonic } & \rightarrow \\ \text { third harmonic } & \rightarrow \\ \text { fourth harmonic } & \rightarrow \\ \text { fifth harmonic } & \rightarrow \\ \text { sixth harmonic } & \rightarrow\end{aligned}$

Musical Instruments

Harmonic content is natural way to describe some kinds of signals.
Ex: musical instruments (http://theremin.music.uiowa.edu/MIS)

Musical Instruments

Harmonic content is natural way to describe some kinds of signals.
Ex: musical instruments (http://theremin.music.uiowa.edu/MIS)

Musical Instruments

Harmonic content is natural way to describe some kinds of signals.
Ex: musical instruments (http://theremin.music.uiowa.edu/MIS)

Harmonics

Harmonic structure determines consonance and dissonance.

Harmonic Representations

What signals can be represented by sums of harmonic components?

Only periodic signals: all harmonics of ω_{0} are periodic in $T=2 \pi / \omega_{0}$.

Harmonic Representations

Is it possible to represent ALL periodic signals with harmonics? What about discontinuous signals?

Fourier claimed YES - even though all harmonics are continuous! Lagrange ridiculed the idea that a discontinuous signal could be written as a sum of continuous signals.

We will assume the answer is YES and see if the answer makes sense.

Separating harmonic components

Underlying properties.

1. Multiplying two harmonics produces a new harmonic with the same fundamental frequency:

$$
e^{j k \omega_{0} t} \times e^{j l \omega_{0} t}=e^{j(k+l) \omega_{0} t}
$$

2. The integral of a harmonic over any time interval with length equal to a period T is zero unless the harmonic is at DC:

$$
\begin{aligned}
\int_{t_{0}}^{t_{0}+T} e^{j k \omega_{0} t} d t \equiv \int_{T} e^{j k \omega_{0} t} d t & = \begin{cases}0, & k \neq 0 \\
T, & k=0\end{cases} \\
& =T \delta[k]
\end{aligned}
$$

Separating harmonic components

Assume that $x(t)$ is periodic in T and is composed of a weighted sum of harmonics of $\omega_{0}=2 \pi / T$.

$$
x(t)=x(t+T)=\sum_{k=-\infty}^{\infty} a_{k} e^{j \omega_{0} k t}
$$

Then

$$
\begin{aligned}
\int_{T} x(t) e^{-j l \omega_{0} t} d t & =\int_{T} \sum_{k=-\infty}^{\infty} a_{k} e^{j \omega_{0} k t} e^{-j \omega_{0} l t} d t \\
& =\sum_{k=-\infty}^{\infty} a_{k} \int_{T} e^{j \omega_{0}(k-l) t} d t \\
& =\sum_{k=-\infty}^{\infty} a_{k} T \delta[k-l]=T a_{l}
\end{aligned}
$$

Therefore

$$
a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j \omega_{0} k t} d t \quad=\frac{1}{T} \int_{T} x(t) e^{-j \frac{2 \pi}{T} k t} d t
$$

Fourier Series

Determining harmonic components of a periodic signal.

$$
\begin{aligned}
a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j \frac{2 \pi}{T} k t} d t & \text { ("analysis" equation) } \\
x(t)=x(t+T)=\sum_{k=-\infty}^{\infty} a_{k} e^{j \frac{2 \pi}{T} k t} & \text { ("synthesis" equation) }
\end{aligned}
$$

Check Yourself

Let a_{k} represent the Fourier series coefficients of the following square wave.

How many of the following statements are true?

1. $a_{k}=0$ if k is even
2. a_{k} is real-valued
3. $\left|a_{k}\right|$ decreases with k^{2}
4. there are an infinite number of non-zero a_{k}
5. all of the above

Check Yourself

Let a_{k} represent the Fourier series coefficients of the following square wave.

$$
\begin{aligned}
a_{k} & =\int_{T} x(t) e^{-j \frac{2 \pi}{T} k t} d t=-\frac{1}{2} \int_{-\frac{1}{2}}^{0} e^{-j 2 \pi k t} d t+\frac{1}{2} \int_{0}^{\frac{1}{2}} e^{-j 2 \pi k t} d t \\
& =\frac{1}{j 4 \pi k}\left(2-e^{j \pi k}-e^{-j \pi k}\right) \\
& =\left\{\begin{array}{cl}
\frac{1}{j \pi k} ; & \text { if } k \text { is odd } \\
0 ; & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Check Yourself

Let a_{k} represent the Fourier series coefficients of the following square wave.

$$
a_{k}=\left\{\begin{array}{cl}
\frac{1}{j \pi k} ; & \text { if } k \text { is odd } \\
0 ; & \text { otherwise }
\end{array}\right.
$$

How many of the following statements are true?

1. $a_{k}=0$ if k is even
2. a_{k} is real-valued \times
3. $\left|a_{k}\right|$ decreases with $k^{2} \times$
4. there are an infinite number of non-zero a_{k}
5. all of the above X

Check Yourself

Let a_{k} represent the Fourier series coefficients of the following square wave.

How many of the following statements are true? 2

1. $a_{k}=0$ if k is even
2. a_{k} is real-valued \times
3. $\left|a_{k}\right|$ decreases with $k^{2} \quad \times$
4. there are an infinite number of non-zero a_{k}
5. all of the above \times

Fourier Series Properties

If a signal is differentiated in time, its Fourier coefficients are multiplied by $j \frac{2 \pi}{T} k$.
Proof: Let

$$
x(t)=x(t+T)=\sum_{k=-\infty}^{\infty} a_{k} e^{j \frac{2 \pi}{T} k t}
$$

then

$$
\dot{x}(t)=\dot{x}(t+T)=\sum_{k=-\infty}^{\infty}\left(j \frac{2 \pi}{T} k a_{k}\right) e^{j \frac{2 \pi}{T} k t}
$$

Check Yourself

Let b_{k} represent the Fourier series coefficients of the following triangle wave.

How many of the following statements are true?

1. $b_{k}=0$ if k is even
2. b_{k} is real-valued
3. $\left|b_{k}\right|$ decreases with k^{2}
4. there are an infinite number of non-zero b_{k}
5. all of the above

Check Yourself

The triangle waveform is the integral of the square wave.

Therefore the Fourier coefficients of the triangle waveform are $\frac{1}{j 2 \pi k}$ times those of the square wave.

$$
b_{k}=\frac{1}{j k \pi} \times \frac{1}{j 2 \pi k}=\frac{-1}{2 k^{2} \pi^{2}} ; k \text { odd }
$$

Check Yourself

Let b_{k} represent the Fourier series coefficients of the following triangle wave.

$$
b_{k}=\frac{-1}{2 k^{2} \pi^{2}} ; k \text { odd }
$$

How many of the following statements are true?

1. $b_{k}=0$ if k is even
2. b_{k} is real-valued
3. $\left|b_{k}\right|$ decreases with k^{2}
4. there are an infinite number of non-zero b_{k}
5. all of the above $\sqrt{ }$

Check Yourself

Let b_{k} represent the Fourier series coefficients of the following triangle wave.

How many of the following statements are true? 5

1. $b_{k}=0$ if k is even
2. b_{k} is real-valued
3. $\left|b_{k}\right|$ decreases with k^{2}
4. there are an infinite number of non-zero b_{k}
5. all of the above

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier series representations of functions with discontinuous slopes converge toward functions with discontinuous slopes.

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Fourier Series

Partial sums of Fourier series of discontinuous functions "ring" near discontinuities: Gibb's phenomenon.

This ringing results because the magnitude of the Fourier coefficients is only decreasing as $\frac{1}{k}$ (while they decreased as $\frac{1}{k^{2}}$ for the triangle). You can decrease (and even eliminate the ringing) by decreasing the magnitudes of the Fourier coefficients at higher frequencies.

Fourier Series: Summary

Fourier series represent periodic signals as sums of sinusoids.

- valid for an extremely large class of periodic signals
- valid even for discontinuous signals such as square wave

However, convergence as \# harmonics increases can be complicated.

Filtering

The output of an LTI system is a "filtered" version of the input.

Input: Fourier series \rightarrow sum of complex exponentials.

$$
x(t)=x(t+T)=\sum_{k=-\infty}^{\infty} a_{k} e^{j \frac{2 \pi}{T} k t}
$$

Complex exponentials: eigenfunctions of LTI systems.

$$
e^{j \frac{2 \pi}{T} k t} \rightarrow H\left(j \frac{2 \pi}{T} k\right) e^{j \frac{2 \pi}{T} k t}
$$

Output: same eigenfunctions, amplitudes/phases set by system.

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j \frac{2 \pi}{T} k t} \rightarrow y(t)=\sum_{k=-\infty}^{\infty} a_{k} H\left(j \frac{2 \pi}{T} k\right) e^{j \frac{2 \pi}{T} k t}
$$

Filtering

Notion of a filter.

LTI systems

- cannot create new frequencies.
- can scale magnitudes and shift phases of existing components.

Example: Low-Pass Filtering with an RC circuit

Lowpass Filter

Calculate the frequency response of an RC circuit.

Lowpass Filtering

Let the input be a square wave.

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l}
\frac{1}{2} & & \\
\\
& 0 & & & \square \\
& -\frac{1}{2}
\end{array} \\
& x(t)=\sum_{k \text { odd }} \frac{1}{j \pi k} e^{j \omega_{0} k t} ; \quad \omega_{0}=\frac{2 \pi}{T}
\end{aligned}
$$

Lowpass Filtering

Low frequency square wave: $\omega_{0} \ll 1 / R C$.

$$
x(t)=\sum_{k \text { odd }} \frac{1}{j \pi k} e^{j \omega_{0} k t} ; \quad \omega_{0}=\frac{2 \pi}{T}
$$

Lowpass Filtering

Higher frequency square wave: $\omega_{0}<1 / R C$.

$$
\begin{aligned}
& x(t)=\sum_{k \text { odd }} \frac{1}{j \pi k} e^{j \omega_{0} k t} ; \quad \omega_{0}=\frac{2 \pi}{T}
\end{aligned}
$$

Lowpass Filtering

Still higher frequency square wave: $\omega_{0}=1 / R C$.

$$
x(t)=\sum_{k \text { odd }} \frac{1}{j \pi k} e^{j \omega_{0} k t} ; \quad \omega_{0}=\frac{2 \pi}{T}
$$

Lowpass Filtering

High frequency square wave: $\omega_{0}>1 / R C$.

$$
x(t)=\sum_{k \text { odd }} \frac{1}{j \pi k} e^{j \omega_{0} k t} ; \quad \omega_{0}=\frac{2 \pi}{T}
$$

Fourier Series: Summary

Fourier series represent signals by their frequency content.

Representing a signal by its frequency content is useful for many signals, e.g., music.

Fourier series motivate a new representation of a system as a filter.

