6.003 (Fall 2007)

Quiz 2

7 November 2007

Name:

Please circle your section number:

Section	Instructor	Time
1	Jeffrey Lang	10
2	Jeffrey Lang	11
3	Karen Livescu	11
4	Sanjoy Mahajan	12
5	Antonio Torralba	1
6	Qing Hu	2

Partial credit *will* be given, according to the conceptual features that a proposed answer shares with the correct answer.

Explanations are not required and do not affect your grade.

- You have two hours. Have fun!
- Please put your initials on all subsequent sheets.
- Enter your answers in the boxes.
- This quiz is closed book, but you may use two 8.5×11 sheets of paper (four sides).
- No calculators, computers, cell phones, music players, or other aids.

1.	/25()	4.	/10 ()	/ 35 ()
2.	/25()	5.	/20 ()	/ 45 ()
3.	/20()	6.	/00 ()	/ 20 ()
	/70 ()		/30 ()	/100()

1. Multiple representations [25 points]

Here are several pole–zero diagrams to use for the parts of this question. On each diagram, the real and imaginary axes have the same scale; however, each diagram has its own scale.

For each part, select the diagram that could be consistent with the information given. Each part has one correct answer. *If you are unsure of the correct answer, you can also select a second answer, in which case you will receive the average of the scores for the two answers.*

a. Differential equation

 $\ddot{y} = x + y,$

where x(t) is the input signal and y(t) is the output signal.

b. System function

$$H(s) = \frac{s}{1 + 8s + 8s^2}.$$

A B C D E F

c. Step (*not* impulse) response

d. $|H(j\omega)|$ (log scale) vs ω (log scale)

e. Circuit

2. Second-order systems [25 points]

Г

a. Here is the impulse response of a second-order system:

1. Estimate *Q*, marking your answer as an X on this (logarithmic) scale:

2. Using the usual log-log Bode axes, which magnitude asymptote is flat?

|--|

b. Here is the phase plot for another second-order system using the usual Bode linear–log axes:

1. Suppose that we draw the *magnitude* plot for this system using the usual log–log Bode axes. At what frequency ω_0 do the high- and low-frequency asymptotes intersect? [include units]

$\omega_0 =$		

2. Referring again to the Bode magnitude plot, which asymptote is flat?

low frequency	high frequency	neither	both	
---------------	----------------	---------	------	--

3. Estimate Q, marking your answer as an \times on this (logarithmic) scale:

3. Block diagram [20 points]

Here is a system initially at rest, represented by its block diagram:

a. What differential equation relates $y_2(t)$ and $y_3(t)$?

b. For the input signal $\delta(t)$ what is $y_2(0^+)$?

c. For the input signal $\delta(t)$ what is $y_3(0^+)$?

d. Circle the correct pole–zero diagram for Y_3/X . If you are unsure of the correct answer, you can also select a second answer, in which case you will receive the average of the scores for the two answers.

4. Cascade [10 points]

a. For the system

$$H(s) = \frac{1}{(1+\tau s)^4}$$

find the phase of the frequency response at $\omega = \sqrt{3}/\tau$.

phase =

b. Now wrap the system in proportional feedback:

At what controller gain *K* does the whole feedback system first become unstable as *K* sweeps from 0 to ∞ ?

5. System analysis [20 points]

Consider the system represented by the system function

$$H(s) = \frac{4 + s + 4s^2}{s^2}.$$

a. On these log–log axes, sketch the Bode magnitude plot giving the straight-line asymptotes and the smooth curve.

b. Circle the correct step response (*not* impulse response). The axes are all linear but each has its own scale. *If you are unsure of the correct answer, you can also select a second answer, in which case you will receive the average of the scores for the two answers.*

c. Now you wrap the system in a proportional-control feedback loop:

Sketch the location of the poles of the overall system as *K* sweeps from 0 to ∞ :

6. Bonus question: Square roots forever [extra credit of 5 points]

