6.003 (Fall 2007)

Quiz 1

3 October 2007

Name:

Please circle your section number:

Section	ction Instructor	
1	Jeffrey Lang	10
2	Jeffrey Lang	11
3	Karen Livescu	11
4	Sanjoy Mahajan	12
5	Antonio Torralba	1
6	Qing Hu	2

Explanations are not required and do not affect your grade.

• You have two hours. Have fun!

- Please put your initials on all subsequent sheets.
- Enter your answers in the boxes.
- This quiz is closed book, but you may use one 8.5 × 11 sheet of paper (two sides).
- No calculators, computers, cell phones, music players, or other aids.

2.	/20 () /20 () /20 ()	4. /20 () 5. /20 ()	/ 40 () / 40 () / 20 ()
	/60 ()	/40 ()	/100()

1. Third-order system [20 points]

Find the third-order (linear, constant-coefficient) difference equation for the system whose impulse response is the signal Y where

 $y[n] = \begin{cases} (n+1)^2 & \text{if } n \ge 0; \\ 0 & \text{otherwise.} \end{cases}$

y[n] =

2. Pole–zero diagrams [20 points]

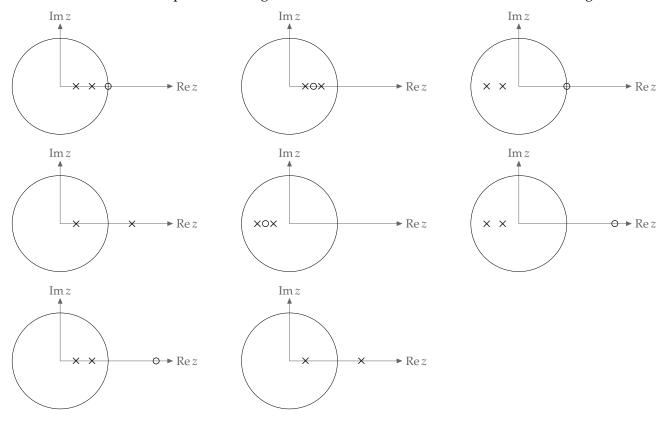
Here is a system of difference equations:

$$a[n] = \frac{1}{3}a[n-1] + x[n],$$

$$\frac{3}{2}c[n] = c[n-1] + x[n],$$

$$y[n] = 2a[n] + 3c[n].$$

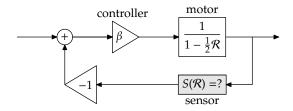
a. Circle the correct pole–zero diagram for Y/X. The unit circle is shown on each diagram.



b. Estimate, to within 0.01%, the ratio y[2007]/y[2005] when the input signal *X* is the impulse 1, 0, 0, 0, ... (n = 0, 1, 2, 3, ...) with the system at rest prior to n = 0.

3. Feedback control [20 points]

Here is a proportional-feedback system to control a motor ($\beta > 0$):



It has the system functional

$$\frac{\beta}{1-\frac{1}{2}\mathcal{R}+\beta\mathcal{R}^2}.$$

a. Find the sensor functional $S(\mathcal{R})$.

b. Find β_0 , the smallest positive β for which the feedback system has a pole on the unit circle.

$$\beta_0 =$$

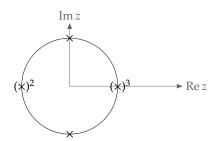
- **c.** Now change the motor functional to $\mathcal{R}/(1 \mathcal{R}/2)$. Let β_1 be the smallest positive β for which this feedback system has a pole on the unit circle. Circle the correct option from the following list:
 - 1. $\beta_1 = \beta_0$ because only sensor delays destabilize a feedback system.
 - 2. $\beta_1 = \beta_0$ because the extra delay does not change the poles of the motor.
 - 3. $\beta_1 = \beta_0$ because an extra delay in the forward path just delays the output but does not affect loop stability.
 - 4. $\beta_1 > \beta_0$ because an extra delay in the forward path postpones any instability by one time step.
 - 5. $\beta_1 > \beta_0$ because a delay gives the controller time to stabilize the system.
 - 6. $\beta_1 < \beta_0$ because any delay in the controller, motor, or sensor reduces the stability of a feedback system.
 - 7. $\beta_1 < \beta_0$ because a sensor delay adds a zero to the loop functional.

4. Lots of poles [20 points]

The figure shows a system's pole–zero diagram. All the poles are on the unit circle. The '2' and '3' means that the adjacent pole, marked with parentheses, is a repeated pole of order 2 or 3 respectively.

Which of the following choices represents the order of growth of this system's impulse response for large *n*? Circle your choice and give the required information.

- 1. *y*[*n*] is periodic. If you choose this option, give the period:
- 2. $y[n] \sim An^k$ (where *A* is a constant). If you choose this option, give *k*:
- 3. $y[n] \sim Az^n$ (where A is a constant). If you choose this option, give z:
- 4. None of the above. If you choose this option, give a closed-form asymptotic expression for y[n]:



5. Complex sum [20 points]

Each diagram below shows the unit circle in the complex plane, with the origin labeled with a dot.

Each diagram illustrates the sum

$$S = \sum_{n=0}^{100} \alpha^n.$$

Circle the diagram for which $\alpha = 0.8 + 0.2j$.

