Pictures help to accurately approximate ln n!

$$3! = 3 \times 2 \times 1;$$

 $4! = 4 \times 3 \times 2 \times 1;$
 $5! = 5 \times 4 \times 3 \times 2 \times 1;$
....

n! is the most important function in statistical mechanics.

ln n! is the area of the rectangles

The area under ln k is the first approximation

 $\ln n! \approx \int_1^n \ln k \, dk = n \ln n - n + 1$

The error is the protruing pieces

Each piece is almost a triangle

Doubling the 'triangles' makes them easier to add

The rectangles slide across and stack at the end

Sum of doubled protrusions $= \ln n$

Combine the integral and approximated protrusion

$$\ln n! = \sum_{1}^{n} \ln k$$

$$\approx n \ln n - n + 1$$

$$-\frac{1}{2}\ln n$$

The preceding pictorial approximation ignores only a tiny region

Numerical calculation confirms the accuracy

Picture:
$$7 \times (\ln 7 - 1) + 1 + \frac{1}{2} \ln 7 = 8.594...$$

Exact:
$$\sum_{1}^{7} \ln k = 8.525...$$

The approximation makes error of 0.07 in ln 7! (which results in a 7% error in 7!).