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Do you ever walk through a proof, understand each step, yet not believe
the theorem, not say ‘Yes, of course it’s true’? The analytic, logical, sequen-
tial approach often does not convince one as well as does a carefully crafted
picture. This difference is no coincidence. The analytic, sequential portions
of our brain evolved with our capacity for language, which is perhaps 105

years old. Our pictorial, Gestalt hardware results from millions of years
of evolution of the visual system and cortex. In comparison to our visual
hardware, our symbolic, sequential hardware is an ill-developed latecomer.
Advertisers know that words alone do not convince you to waste money on
their clients’ junk, so they spend zillions on images. This principle, which
has higher applications, is the theme of this chapter.

4.1 Adding odd numbers
Here again is the sum from ?? that illustrated using extreme cases to find
fencepost errors:

S = 1 + 3 + 5 + · · ·+ (2n − 1).︸ ︷︷ ︸
n terms
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Before I show the promised picture proof, let’s go through the standard
method, proof by induction, to compare it later to the picture proof. An
induction proof has three pieces:

1. Verify the base case n = 1. With n = 1 terms, the sum is S = 1, which
equals n2. QED (Latin for ‘quite easily done’).

2. Assume the induction hypothesis. Assume that the sum holds for n terms:
n∑
1

(2k − 1) = n2.

This assumption is needed for the next step of verifying the sum for
n + 1 terms.

3. Do the induction step of verifying the sum for n+1 terms, which requires
showing that

n+1∑
1

(2k − 1) = (n + 1)2.

The sum splits into a new term and the old sum:

n+1∑
1

(2k − 1) = 2n + 1︸ ︷︷ ︸
new term

+

n∑
1

(2k − 1).

The sum on the right is n2 courtesy of the induction hypothesis. So

n+1∑
1

(2k − 1) = 2n + 1 + n2 = (n + 1)2.

The three parts of the induction proof are complete, and the theorem is
proved. However, the parts may leave you feeling that you follow each
step but do not see why the theorem is true.

1

3

5

7

9
Compare it against the picture proof. Each term in
the sum S adds one odd number represented as the
area of an L-shaped piece. Each piece extends the
square by one unit on each side. Adding n terms
means placing n pieces and making an n×n square.
[Or is it an (n − 1) × (n − 1) square?] The sum is
the area of the square, which is n2. Once you un-
derstand this picture, you never forget why adding
the first n odd numbers gives the perfect square n2.
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4.2 Geometric sums
Here is a familiar series:

S = 1 +
1

2
+

1

4
+

1

8
+ · · · .

The usual symbolic way to evaluate the sum is with the formula for a geo-
metric series. You can derive the formula using a trick. First compute 2S

by multiplying each term by 2:

2S = 2 + 1 +
1

2
+

1

4
+

1

8
+ · · ·︸ ︷︷ ︸

S

.

This sum looks like S, except for the first term 2. So 2S = 2 + S and S = 2.

0

1
2

3
4

5
The result, though correct, may seem like magic. Here then
is a picture proof. A square with unit area represents the first
term, which is 1/20 (and is labelled 0). The second term is a
1 × 1/2 rectangle representing 1/21 (and is labelled against
by the exponent 1). The third term is a 1/2 × 1/2 square
placed in the nook. The fourth term is, like the second term, a
rectangle. With every pair of terms, the empty area between
all the rectangles and three-quarters of the 1 × 2 outlining
rectangle fills in. In the limit, the sum fills the 1×2 rectangle,
showing that S = 2.

4.3 Arithmetic mean–geometric mean inequality
A classic inequality is the arithmetic mean–geometric mean inequality. Here
are a few numerical examples before the formal statement. Take two num-
bers, say, 1 and 2. Their arithmetic mean is 1.5. Their geometric mean is√

1× 2 = 1.414 . . .. Now try the same operations with 2 and 3. Their arith-
metic mean is 2.5, and their geometric mean is

√
2× 3 = 2.449 . . .. In both

cases, the geometric mean is smaller than the arithmetic mean. This pat-
tern is the theorem of the arithmetic mean and geometric mean. It says that
when a, b > 0, then

a + b

2︸ ︷︷ ︸
AM

>
√

ab︸︷︷︸
GM

,
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where AM means arithmetic mean and GM means geometric mean.

It has at least two proofs: symbolic and pictorial. A picture proof is hinted
at by the designation of

√
ab as the geometric mean. First, however, I prove

it symbolically. Look at (a − b)2. Since it is a square,

(a − b)2 > 0.

Expanding the left side gives a2 − 2ab + b2 > 0. Now do the magic step
of adding 4ab to both sides to get

a2 + 2ab + b2 > 4ab.

The left side is again a perfect square, whose perfection suggests taking the
square root of both sides to get

a + b > 2
√

ab.

Dividing both sides by 2 gives the theorem:

a + b

2︸ ︷︷ ︸
AM

>
√

ab︸︷︷︸
GM

Maybe you agree that, although each step is believable (and correct), the
sequence of all of them seems like magic. The little steps do not reveal the
structure of the argument, and the why is still elusive. For example, if the
algebra steps had ended with

a + b

4
>
√

ab,

it would not have seemed obviously wrong. We would like a proof whose
result could not have been otherwise.

√
ab

a + b
2

a b

Here then is a picture proof. Split
the diameter of the circle into the lengths
a and b. The radius is (a + b)/2,
which is the arithmetic mean. Now
we need to find the geometric mean,
whose name is auspicious. Look at
the second half chord rising from the
diameter where a and b meet. It is
also the height of the dotted triangle,
and that triangle is a right triangle. With right triangles everywhere, simi-
lar triangles must come in handy. Let the so-far-unknown length be x. By
similar triangles,
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x

a
=

b

x
,

so x =
√

ab, showing that the half chord is the geometric mean. That
half chord can never be greater than the radius, so the geometric mean is
never greater than the arithmetic mean. For the two means to be equal,
the geometric-mean half chord must slide left to become the radius, which
happens only when a = b. So the arithmetic mean equals the geometric
mean when a = b.

Compare this picture proof with the symbolic proof. The structure of the
picture proof is there to see, so to speak. The only non-obvious step is
showing that the half chord is the geometric mean

√
ab, the geometric

mean. Furthermore, the picture shows why equality between the two means
results only when a = b: Only then does the half chord become the radius.

Here are two applications of the AM–GM inequality to problems from in-
troductory calculus that one would normally solve with derivatives. In the
first problem, you get l = 40 m of fencing to mark off a rectangular garden.
What dimensions does the garden have in order to have the largest area? If
a is the length and b is the width, then l = 2(a + b), which is 4×AM. The
area is ab, which is (GM)2. Since AM > GM, the consequence in terms of
this problem’s parameters is

AM =
l

4
>
√

area = GM.

Since the geometric mean cannot be larger than l/4, which is constant, the
geometric mean is maximized when when a = b. For maximum area,
therefore choose a = b = 10 m and get A = 100 m2.

base

flap x

x

The next example in this genre is a more difficult three-
dimensional problem. Start with a unit square and cut
out four identical corners, folding in the four edges to
make an open-topped box. What size should the corners
be to maximize the box volume? Call x the side length of
the corner cutout. Each side of the box has length 1− 2x

and it has height x, so the volume is

V = x(1 − 2x)2.

For lack of imagination, let’s try the same trick as in the previous problem.
Two great mathematicians, George Polya and Gabor Szego, commented
that, ‘An idea which can be used once is a trick. If it can be used more than



87 87

87 87

Chapter 4. Picture proofs 87

2009-02-10 19:40:05 UTC / rev 4d4a39156f1e

once it becomes a method.’ So AM–GM, if it helps solve the next problem,
gets promoted from a mere trick to the more exalted method.

In the previous problem, the factors in the area were a and b, and their sum
a + b was constant because it was fixed by the perimeter. Then we could
use AM–GM to find the maximum area. Here, the factors of the volume are
x, 1 − 2x, and 1 − 2x. Their sum is 2 − 3x, which is not a constant; instead
it varies as x changes. This variation means that we cannot apply the AM–
GM theorem directly. The theorem is still valid but it does not tell us what
we want to know. We want to know the largest possible volume. And, di-
rectly applied, the theorem says that the volume is never less than the cube
of the arithmetic mean. Making the volume equal to this value does not
guarantee that the maximum volume has been found, because the arith-
metic mean is changing as one changes x to maximize the geometric mean.
The largest volume may result where the GM is not equal to the changing
AM. In the two-dimensional problem, this issue did not arise because the
AM was already constant (it was a fixed fraction of the perimeter).

If only the factor of x were a 4x, then the 3x would disappear when com-
puting the AM:

4x + (1 − 2x) + (1 − 2x) = 2.

As Captain Jean-luc Picard of The Next Generation says, ‘Make it so.’ You
can produce a 4x instead of an x by studying 4V instead of V :

4V = 4x× 1 − 2x× 1 − 2x.

The sum of the factors is 2 and their arithmetic mean is 2/3 – which is
constant. The geometric mean of the three factors is

(4x(1 − 2x)(1 − 2x))1/3 = (4V)1/3.

So by the AM–GM theorem:

AM =
2

3
> (4V)1/3 = GM,

so

V 6
1

4

(
2

3

)3

=
2

27
.

The volume equals this constant maximum value when the three factors
4x, 1 − 2x, and 1 − 2x are equal. This equality happens when x = 1/6,
which is the size of the corner cutouts.
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4.4 Logarithms
Pictures explain the early terms in many Taylor-series approximations. As
an example, I derive the first two terms for ln(1 + x). The logarithm func-
tion is defined as an integral

ln(1 + x) =

∫1+x

1

dt

t
.

area = x

1 1 + x

1

1/t

t

An integral, especially a definite integral, suggests an
area as its picture. As a first approximation, the loga-
rithm is the area of the shaded, circumscribed rectangle.
The rectangle, although it overestimates the integral, is
easy to analyze: Its area is its width (which is x) times
its height (which is 1). So the area is x. This area is the
first pictorial approximation, and explains the first term
in the Taylor series

ln(1 + x) = x − · · · .

area ≈
x(1 − x)

1 1 + x

1/t

t

1
−

x

An alternative to overestimating the integral is to un-
derestimate it using the inscribed rectangle. Its width is
still x but its height is 1/(1 + x). For small x,

1

1 + x
≈ 1 − x,

as you can check by multiplying both sides by 1 + x:

1 ≈ 1 − x2.

This approximation is valid when x2 is small, which happens when x is
small. Then the rectangle’s height is 1 − x and its area is x(1 − x) = x − x2.

area ≈
x − x2/2

1 1 + x

1/t

t

1
−

x
x

For the second approximation, average the over- and
underestimate:

ln(1 + x) ≡ area ≈ x + (x − x2)

2
= x −

x2

2
.

These terms are the first two terms in the Taylor series
for ln(1 + x). The picture for this symbolic average is
a trapezoidal area, so this series of pictures explains the
first two terms. Its error lies in making the smooth curve
1/t into a straight line, and this error produces the higher-order terms in
the series – but they are difficult to compute just using pictures.
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Alternatively you can derive all the terms from the binomial theorem and
the definition of the logarithm. The logarithm is

ln(1 + x) ≡
∫1+x

1

dt

t
=

∫x

0

1

1 + t
dt.

The binomial theorem says that

1

1 + t
= 1 − t + t2 − t3 + · · · ,

so

ln(1 + x) =

∫x

0
(1 − t + t2 − t3 + · · ·) dt.

Now integrate term by term; although this procedure produces much gnash-
ing of the teeth among mathematicians, it is usually valid. To paraphrase
a motto of the Chicago police department, ‘Integrate first, ask questions
later.’ Then

ln(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ · · · .

The term-by-term integration shows you the entire series. Understand both
methods and you will not only remember the logarithm series but will also
understand two useful techniques.

As an application of the logarithm approximation, I estimate ln 2. A quick
application of the first two terms of the series gives:

ln(1 + x) ≈ x −
x2

2

∣∣
x=1

= 1 −
1

2
=

1

2
.

That approximation is lousy because x is 1, so squaring x does not help pro-
duce a small x2/2 term. A trick, however, improves the accuracy. Rewrite
ln 2 as

ln 2 = ln
4/3

2/3
= ln

4

3
− ln 2/3.

Then approximate ln(4/3) as ln(1 + x) with x = 1/3 and approximate
ln(2/3) as ln(1 + x) with x = −1/3. With x = ±1/3, squaring x produces
a small number, so the error should shrink. Try it:

ln
4

3
= ln(1 + x)

∣∣
x=1/3

≈ 1

3
−

1

2
·
(

1

3

)2

,

ln
2

3
= ln(1 + x)

∣∣
x=−1/3

≈ −
1

3
−

1

2
·
(

−
1

3

)2

.
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When taking the difference, the quadratic terms cancel, so

ln 2 = ln
4

3
− ln

2

3
≈ 2

3
= 0.666 . . . .

The true value is 0.697 . . ., so this estimate is accurate to 5%!

4.5 Geometry
The following pictorial problem has a natural pictorial solution:

How do you cut an equilateral triangle into two equal halves using the
shortest, not-necessarily-straight path?

Here are several candidates among the infinite set of possibilities for the
path.

l = 1/
√

2 l =
√

3/2 l = 1 l = (a mess)

Let’s compute the lengths of each bisecting path, with length measured in
units of the triangle side. The first candidate encloses an equilateral triangle
with one-half the area of the original triangle, so the sides of the smaller,
shaded triangle are smaller by a factor of

√
2. Thus the path, being one of

those sides, has length 1/
√

2. In the second choice, the path is an altitude
of the original triangle, which means its length is

√
3/2, so it is longer than

the first candidate. The third candidate encloses a diamond made from two
small equilateral triangles. Each small triangle has one-fourth the area of
the original triangle with side length one, so each small triangle has side
length 1/2. The bisecting path is two sides of a small triangle, so its length
is 1. This candidate is longer than the other two.

The fourth candidate is one-sixth of a circle. To find its length, find the
radius r of the circle. One-sixth of the circle has one-half the area of the
triangle, so

πr2︸︷︷︸
Acircle

= 6× 1

2
Atriangle = 6× 1

2
× 1

2
× 1×

√
3

2︸ ︷︷ ︸
Atriangle

.
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Multiplying the pieces gives

πr2 =
3
√

3

4
,

and

r =

√
3
√

3

4π
.

The bisection path is one-sixth of a circle, so its length is

l =
2πr

6
=

π

3

√
3
√

3

4π
=

√
π
√

3

12
.

The best previous candidate (the first picture) has length 1/
√

2 = 0.707 . . ..
Does the mess of π and square roots produce a shorter path? Roll the
drums. . . :

l = 0.67338 . . . ,

which is less than 1/
√

2. So the circular arc is the best bisection path so far.
However, is it the best among all possible paths? The arc-length calculation
for the circle is messy, and most other paths do not even have a closed form
for their arc lengths.

Instead of making elaborate calculations, try a famil-
iar method, symmetry, in combination with a picture.
Replicate the triangle six times to make a hexagon, and
also replicate the candidate path. Here is the result of
replicating the first candidate (the bisection line going
straight across). The original triangle becomes the large
hexagon, and the enclosed half-triangle becomes a small-
er hexagon having one-half the area of the large hexagon.

Compare that picture with the result of replicating the
circular-arc bisection. The large hexagon is the same as
for the last replication, but now the bisected area repli-
cates into a circle. Which has the shorter perimeter, the
shaded hexagon or this circle? The isoperimetric theo-
rem says that, of all figures with the same area, the cir-
cle has the smallest perimeter. Since the circle and the
smaller hexagon enclose the same area – which is three times the area of
one triangle – the circle has a smaller perimeter than the hexagon, and has
a smaller perimeter than the result of replicating any other path!


